1932

Abstract

Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070523-034109
2024-07-22
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070523-034109.html?itemId=/content/journals/10.1146/annurev-arplant-070523-034109&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abas L, Kolb M, Stadlmann J, Janacek DP, Lukic K, et al. 2021.. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. . PNAS 118::e2020857118 1. Demonstrates that PINs are the physiologically relevant targets of the NPA.
    [Crossref] [Google Scholar]
  2. 2.
    Adamowski M, Friml J. 2015.. PIN-dependent auxin transport: action, regulation, and evolution. . Plant Cell 27::2032
    [Crossref] [Google Scholar]
  3. 3.
    Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, et al. 2009.. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. . Science 323::171822
    [Crossref] [Google Scholar]
  4. 4.
    Andersen CG, Bavnhøj L, Pedersen BP. 2023.. May the proton motive force be with you: a plant transporter review. . Curr. Opin. Struct. Biol. 79::102535
    [Crossref] [Google Scholar]
  5. 5.
    Armengot L, Marques-Bueno MM, Jaillais Y. 2016.. Regulation of polar auxin transport by protein and lipid kinases. . J. Exp. Bot. 67::401537
    [Crossref] [Google Scholar]
  6. 5a.
    Aryal B, Huynh J, Schneuwly J, Siffert A, Liu J, . 2019.. ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. . Front. Plant Sci. 10::899
    [Crossref] [Google Scholar]
  7. 6.
    Band LR. 2021.. Auxin fluxes through plasmodesmata. . New Phytol. 231::168692
    [Crossref] [Google Scholar]
  8. 7.
    Bandyopadhyay A, Blakeslee JJ, Lee OR, Mravec J, Sauer M, et al. 2007.. Interactions of PIN and PGP auxin transport mechanisms. . Biochem. Soc. Trans. 35::13741
    [Crossref] [Google Scholar]
  9. 7a.
    Barbez E, Kubeš M, Rolčík J, Béziat C, Pĕnčík A, . 2012.. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. . Nature 485::11922
    [Crossref] [Google Scholar]
  10. 8.
    Barbosa ICR, Hammes UZ, Schwechheimer C. 2018.. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. . Trends Plant Sci. 23::52338
    [Crossref] [Google Scholar]
  11. 9.
    Bassukas AEL, Xiao Y, Schwechheimer C. 2022.. Phosphorylation control of PIN auxin transporters. . Curr. Opin. Plant Biol. 65::102146
    [Crossref] [Google Scholar]
  12. 10.
    Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, Pedersen BP. 2023.. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. . Nat. Plants 9::93850
    [Crossref] [Google Scholar]
  13. 11.
    Bazzone A, Barthmes M, Fendler K. 2017.. SSM-based electrophysiology for transporter research. . Methods Enzymol. 594::3183
    [Crossref] [Google Scholar]
  14. 12.
    Bazzone A, Zabadne AJ, Salisowski A, Madej MG, Fendler K. 2017.. A loose relationship: incomplete H+/sugar coupling in the MFS sugar transporter GlcP. . Biophys. J. 113::273649
    [Crossref] [Google Scholar]
  15. 13.
    Bazzone A, Zerlotti R, Barthmes M, Fertig N. 2023.. Functional characterization of SGLT1 using SSM-based electrophysiology: kinetics of sugar binding and translocation. . Front. Physiol. 14::1058583
    [Crossref] [Google Scholar]
  16. 14.
    Beckstein O, Naughton F. 2022.. General principles of secondary active transporter function. . Biophys. Rev. 3::011307
    [Crossref] [Google Scholar]
  17. 15.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, et al. 2003.. Local, efflux-dependent auxin gradients as a common module for plant organ formation. . Cell 115::591602
    [Crossref] [Google Scholar]
  18. 16.
    Bennett MJ, Marchant A, Green HG, May ST, Ward SP, et al. 1996.. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. . Science 273::94850
    [Crossref] [Google Scholar]
  19. 17.
    Bennett T. 2015.. PIN proteins and the evolution of plant development. . Trends Plant Sci. 20::498507
    [Crossref] [Google Scholar]
  20. 18.
    Bennett T, Brockington SF, Rothfels C, Graham SW, Stevenson D, et al. 2014.. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. . Mol. Biol. Evol. 31::204260
    [Crossref] [Google Scholar]
  21. 19.
    Bilanovičová V, Rýdza N, Koczka L, Hess M, Feraru E, et al. 2022.. The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein. . Int. J. Mol. Sci. 23::6352
    [Crossref] [Google Scholar]
  22. 20.
    Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, et al. 2007.. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. . Plant Cell 19::13147
    [Crossref] [Google Scholar]
  23. 21.
    Blatt MR, Rodriguez-Navarro A, Slayman CL. 1987.. Potassium-proton symport in Neurospora: kinetic control by pH and membrane potential. . J. Membr. Biol. 98::16989
    [Crossref] [Google Scholar]
  24. 22.
    Boudker O, Oh S. 2015.. Isothermal titration calorimetry of ion-coupled membrane transporters. . Methods 76::17182
    [Crossref] [Google Scholar]
  25. 23.
    Broer S. 2010.. Xenopus laevis oocytes. . Methods Mol. Biol. 637::295310
    [Crossref] [Google Scholar]
  26. 24.
    Busi R, Goggin DE, Heap IM, Horak MJ, Jugulam M, et al. 2018.. Weed resistance to synthetic auxin herbicides. . Pest Manag. Sci. 74::226576
    [Crossref] [Google Scholar]
  27. 24a.
    Chen J, Hu Y, Hao P, Tsering T, Xia J, . 2023.. ABCB-mediated shootward auxin transport feeds into the root clock. . EMBO Rep. 24::e56271
    [Crossref] [Google Scholar]
  28. 25.
    Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, et al. 2011.. Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments. . J. Mol. Microbiol. Biotechnol. 21::8396
    [Google Scholar]
  29. 26.
    Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH. 1998.. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. . PNAS 95::1511217
    [Crossref] [Google Scholar]
  30. 27.
    Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, et al. 2015.. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. . J. Plant Res. 128::67986
    [Crossref] [Google Scholar]
  31. 28.
    Cho M, Lee SH, Cho H-T. 2007.. P-glycoprotein4 displays auxin efflux transporter–like action in Arabidopsis root hair cells and tobacco cells. . Plant Cell 19::393043
    [Crossref] [Google Scholar]
  32. 29.
    Christensen SK, Dagenais N, Chory J, Weigel D. 2000.. Regulation of auxin response by the protein kinase PINOID. . Cell 100::46978
    [Crossref] [Google Scholar]
  33. 30.
    Cleland WW. 1963.. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. . Biochim. Biophys. Acta 67::10437
    [Crossref] [Google Scholar]
  34. 31.
    Corratge-Faillie C, Lacombe B. 2017.. Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. . J. Exp. Bot. 68::310713
    [Crossref] [Google Scholar]
  35. 32.
    De Smet I, Voss U, Lau S, Wilson M, Shao N, et al. 2011.. Unraveling the evolution of auxin signaling. . Plant Physiol. 155::20921
    [Crossref] [Google Scholar]
  36. 33.
    Deslauriers SD, Spalding EP. 2021.. Electrophysiological study of Arabidopsis ABCB4 and PIN2 auxin transporters: Evidence of auxin activation and interaction enhancing auxin selectivity. . Plant Direct 5::e361
    [Crossref] [Google Scholar]
  37. 34.
    Dharmasiri N, Dharmasiri S, Estelle M. 2005.. The F-box protein TIR1 is an auxin receptor. . Nature 435::44145
    [Crossref] [Google Scholar]
  38. 35.
    Dhonukshe P, Huang F, Galvan-Ampudia CS, Mähönen AP, Kleine-Vehn J, et al. 2010.. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. . Development 137::324555
    [Crossref] [Google Scholar]
  39. 36.
    Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Müller HM, et al. 2018.. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. . Nat. Comm. 9::1174 36. Uses several electrophysiological approaches to demonstrate proton couple IAA transport in AUX1.
    [Crossref] [Google Scholar]
  40. 36a.
    Ding Z, Wang B, Moreno I, Dupláková N, Simon S, . 2012.. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. . Nat. Comm. 3::941
    [Crossref] [Google Scholar]
  41. 37.
    Do THT, Martinoia E, Lee Y, Hwang JU. 2021.. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. . Plant Physiol. 187::187692
    [Crossref] [Google Scholar]
  42. 38.
    Drew D, Boudker O. 2016.. Shared molecular mechanisms of membrane transporters. . Annu. Rev. Biochem. 85::54372
    [Crossref] [Google Scholar]
  43. 39.
    Dumont JN. 1972.. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. . J. Morphol. 136::15379
    [Crossref] [Google Scholar]
  44. 40.
    Fang S, Huang X, Zhang X, Zhang M, Hao Y, et al. 2021.. Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. . PNAS 118::e2101632118
    [Crossref] [Google Scholar]
  45. 41.
    Fastner A, Absmanner B, Hammes UZ. 2017.. Use of Xenopus laevis oocytes to study auxin transport. . Methods Mol. Biol. 1497::25970
    [Crossref] [Google Scholar]
  46. 42.
    Fisher TJ, Flores-Sandoval E, Alvarez JP, Bowman JL. 2023.. PIN-FORMED is required for shoot phototropism/gravitropism and facilitates meristem formation in Marchantia polymorpha. . New Phytol. 238::1498515
    [Crossref] [Google Scholar]
  47. 43.
    Forgac M. 2007.. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. . Nat. Rev. Mol. Cell Biol. 8::91729
    [Crossref] [Google Scholar]
  48. 44.
    Friml J, Yang X, Michniewicz M, Weijers D, Quint A, et al. 2004.. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. . Science 306::86265
    [Crossref] [Google Scholar]
  49. 45.
    Gadsby DC. 2009.. Ion channels versus ion pumps: the principal difference, in principle. . Nat. Rev. Mol. Cell Biol. 10::34452
    [Crossref] [Google Scholar]
  50. 46.
    Gälweiler L, Guan C, Muller A, Wisman E, Mendgen K, et al. 1998.. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. . Science 282::222630
    [Crossref] [Google Scholar]
  51. 46a.
    Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, . 2005.. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. . Plant J. 44::17994
    [Crossref] [Google Scholar]
  52. 47.
    Goldsmith MHM. 1977.. The polar transport of auxin. . Annu. Rev. Plant Physiol. 28::43978
    [Crossref] [Google Scholar]
  53. 48.
    Grossmann K. 2010.. Auxin herbicides: current status of mechanism and mode of action. . Pest Manag. Sci. 66::11320
    [Crossref] [Google Scholar]
  54. 49.
    Hafke JB, van Amerongen J-K, Kelling F, Furch ACU, Gaupels F, van Bel AJE. 2005.. Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem. . Plant Physiol. 138::152737
    [Crossref] [Google Scholar]
  55. 50.
    Haga K, Frank L, Kimura T, Schwechheimer C, Sakai T. 2018.. Roles of AGCVIII kinases in the hypocotyl phototropism of Arabidopsis seedlings. . Plant Cell Physiol. 59::106071
    [Crossref] [Google Scholar]
  56. 51.
    Hammes UZ, Murphy AS, Schwechheimer C. 2022.. Auxin transporters — a biochemical view. . Cold Spring Harb. Perspect. Biol. 14::a039875
    [Crossref] [Google Scholar]
  57. 52.
    Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. 2021.. PIN-mediated polar auxin transport regulations in plant tropic responses. . New Phytol. 232::51022
    [Crossref] [Google Scholar]
  58. 53.
    Hartung W, Weiler EW, Radin JW. 1992.. Auxin and cytokinins in the apoplastic solution of dehydrated cotton leaves. . J. Plant Physiol. 140::32427
    [Crossref] [Google Scholar]
  59. 54.
    Hedrich R. 2012.. Ion channels in plants. . Physiol. Rev. 92::1777811
    [Crossref] [Google Scholar]
  60. 55.
    Hertel R, Evans ML, Leopold AC, Sell HM. 1969.. The specificity of the auxin transport system. . Planta 85::23849
    [Crossref] [Google Scholar]
  61. 56.
    Hertel R, Lomax TL, Briggs WR. 1983.. Auxin transport in membrane vesicles from Cucurbita pepo L. . Planta 157::193201
    [Crossref] [Google Scholar]
  62. 57.
    Higinbotham N, Graves JS, Davis RF. 1970.. Evidence for an electrogenic ion transport pump in cells of higher plants. . J. Membr. Biol. 3::21022
    [Crossref] [Google Scholar]
  63. 58.
    Hille B. 1992.. Potassium channels and chloride channels. . In In Ionic Channels of Excitable Membranes, ed. B Hill , pp. 13033 , 2nd ed..
    [Google Scholar]
  64. 59.
    Hol WGJ. 1985.. Effects of the α-helix dipole upon the functioning and structure of proteins and peptides. . Adv. Biophys. 19::13365
    [Crossref] [Google Scholar]
  65. 60.
    Hresko RC, Kraft TE, Quigley A, Carpenter EP, Hruz PW. 2016.. Mammalian glucose transporter activity is dependent upon anionic and conical phospholipids. . J. Biol. Chem. 291::1727182
    [Crossref] [Google Scholar]
  66. 61.
    Hu N-J, Iwata S, Cameron AD, Drew D. 2011.. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. . Nature 478::40811
    [Crossref] [Google Scholar]
  67. 62.
    Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H. 2005.. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. . Nature 435::1197202
    [Crossref] [Google Scholar]
  68. 63.
    Jack DL, Yang NM, Saier MH Jr. 2001.. The drug/metabolite transporter superfamily. . Eur. J. Biochem. 268::362039
    [Crossref] [Google Scholar]
  69. 64.
    Jardetzky O. 1966.. Simple allosteric model for membrane pumps. . Nature 211::96970
    [Crossref] [Google Scholar]
  70. 65.
    Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, et al. 2012.. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. . Plant Cell Physiol. 53::2090100
    [Crossref] [Google Scholar]
  71. 66.
    Kang J, Park J, Choi H, Burla B, Kretzschmar T, et al. 2011.. Plant ABC transporters. . Arabidopsis Book 9::e0153
    [Crossref] [Google Scholar]
  72. 67.
    Kashkan I, Hrtyan M, Retzer K, Humpolíčková J, Jayasree A, et al. 2022.. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. . New Phytol. 233::32943 67. Provides evidence for the hypothesis that PIN heteromers with specific properties exist.
    [Crossref] [Google Scholar]
  73. 68.
    Kazmier K, Claxton DP, McHaourab HS. 2017.. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. . Curr. Opin. Struct. Biol. 45::1008
    [Crossref] [Google Scholar]
  74. 69.
    Kojima K, Ohtake E, Yu Z. 2002.. Distribution and transport of IAA in tomato plants. . Plant Growth Regul. 37::24954
    [Crossref] [Google Scholar]
  75. 70.
    Kojima K, Tamura Y, Nakano M, Han D-S, Niimi Y. 2003.. Distribution of indole-acetic acid, gibberellin and cytokinins in apoplast and symplast of parthenocarpic tomato fruits. . Plant Growth Regul. 41::99104
    [Crossref] [Google Scholar]
  76. 71.
    Konings WN, Lolkema JS, Poolman B. 1995.. The generation of metabolic energy by solute transport. . Arch. Microbiol. 164::23542
    [Crossref] [Google Scholar]
  77. 72.
    Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, et al. 2009.. The PIN-FORMED (PIN) protein family of auxin transporters. . Genome Biol. 10::249
    [Crossref] [Google Scholar]
  78. 73.
    Krishnamurthy H, Gouaux E. 2012.. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. . Nature 481::46974
    [Crossref] [Google Scholar]
  79. 74.
    Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, et al. 2010.. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. . Dev. Cell 18::92737
    [Crossref] [Google Scholar]
  80. 74a.
    Kubeš M, Yang H, Richter GL, Cheng Y, Młodzińska E, . 2012.. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. . Plant J. 69::64054
    [Crossref] [Google Scholar]
  81. 75.
    Ladwig F, Stahl M, Ludewig U, Hirner AA, Hammes UZ, et al. 2012.. Siliques are red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. . Plant Physiol. 158::164355
    [Crossref] [Google Scholar]
  82. 75a.
    Laňková M, Smith RS, Pešek B, Kubeš M, Zažímalová E, . 2010.. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. . J. Exp. Bot. 61::358998
    [Crossref] [Google Scholar]
  83. 76.
    Law CJ, Maloney PC, Wang D-N. 2008.. Ins and outs of major facilitator superfamily antiporters. . Annu. Rev. Microbiol. 62::289305
    [Crossref] [Google Scholar]
  84. 77.
    Lee C, Kang HJ, von Ballmoos C, Newstead S, Uzdavinys P, et al. 2013.. A two-domain elevator mechanism for sodium/proton antiport. . Nature 501::57377
    [Crossref] [Google Scholar]
  85. 78.
    Li L, Gallei M, Friml J. 2022.. Bending to auxin: fast acid growth for tropisms. . Trends Plant Sci. 27::44049
    [Crossref] [Google Scholar]
  86. 79.
    Liu X-Y, Hou W-T, Wang L, Li B, Chen Y, et al. 2021.. Structures of cyanobacterial bicarbonate transporter SbtA and its complex with PII-like SbtB. . Cell Discov. 7::63
    [Crossref] [Google Scholar]
  87. 80.
    Livnat-Levanon N, Gilson AI, Ben-Tal N, Lewinson O. 2016.. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity. . Sci. Rep. 6::21696
    [Crossref] [Google Scholar]
  88. 81.
    Locher KP. 2016.. Mechanistic diversity in ATP-binding cassette (ABC) transporters. . Nat. Struct. Mol. Biol. 23::48793
    [Crossref] [Google Scholar]
  89. 82.
    Lomax TL, Mehlhorn RJ, Briggs WR. 1985.. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. . PNAS 82::654145
    [Crossref] [Google Scholar]
  90. 83.
    Ludwig-Müller J. 2022.. Auxins in the right space and time regulate pea fruit development. . J. Exp. Bot. 73::383135
    [Crossref] [Google Scholar]
  91. 84.
    Luschnig C, Gaxiola RA, Grisafi P, Fink GR. 1998.. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. . Genes Dev. 12::217587
    [Crossref] [Google Scholar]
  92. 85.
    Maeshima M. 2000.. Vacuolar H+-pyrophosphatase. . Biochim. Biophys. Acta 1465::3751
    [Crossref] [Google Scholar]
  93. 86.
    Mansour NM, Sawhney M, Tamang DG, Vogl C, Saier MH Jr. 2007.. The bile/arsenite/riboflavin transporter (BART) superfamily. . FEBS J. 274::61229
    [Crossref] [Google Scholar]
  94. 87.
    Marhava P, Bassukas AEL, Zourelidou M, Kolb M, Moret B, et al. 2018.. A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. . Nature 558::297300
    [Crossref] [Google Scholar]
  95. 88.
    Martinière A, Bassil E, Jublanc E, Alcon C, Reguera M, et al. 2013.. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. . Plant Cell 25::402843
    [Crossref] [Google Scholar]
  96. 89.
    McKay DW, McFarlane HE, Qu Y, Situmorang A, Gilliham M, Wege S. 2022.. Plant trans-Golgi network/early endosome pH regulation requires cation chloride cotransporter (CCC1). . eLife 11::e70701
    [Crossref] [Google Scholar]
  97. 90.
    Meharg AA, Blatt MR. 1995.. NO3 transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. . J. Membr. Biol. 145::4966
    [Crossref] [Google Scholar]
  98. 91.
    Mellor NL, Voß U, Ware A, Janes G, Barrack D, et al. 2022.. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. . Plant Cell 34::230927
    [Crossref] [Google Scholar]
  99. 92.
    Michniewicz M, Ho C-H, Enders TA, Floro E, Damodaran S, et al. 2019.. TRANSPORTER OF IBA1 links auxin and cytokinin to influence root architecture. . Dev. Cell 50::599609.e4
    [Crossref] [Google Scholar]
  100. 93.
    Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, et al. 2007.. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. . Cell 130::104456
    [Crossref] [Google Scholar]
  101. 94.
    Mitchell P. 1961.. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. . Nature 191::14448
    [Crossref] [Google Scholar]
  102. 95.
    Morffy N, Strader LC. 2022.. Structural aspects of auxin signaling. . Cold Spring Harb. Perspect. Biol. 14::a039883
    [Crossref] [Google Scholar]
  103. 96.
    Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, et al. 2007.. Crystal structure of the sodium-potassium pump. . Nature 450::104349
    [Crossref] [Google Scholar]
  104. 97.
    Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, et al. 1998.. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. . EMBO J. 17::690311
    [Crossref] [Google Scholar]
  105. 98.
    Müller B, Fastner A, Karmann J, Mansch V, Hoffmann T, et al. 2015.. Amino acid export in developing Arabidopsis seeds depends on UmamiT facilitators. . Curr. Biol. 25::312631
    [Crossref] [Google Scholar]
  106. 99.
    Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y. 1991.. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. . Plant Cell 3::67784
    [Crossref] [Google Scholar]
  107. 100.
    Palmgren MG. 2001.. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. . Annu. Rev. Plant Physiol. Plant Mol. Biol. 52::81745
    [Crossref] [Google Scholar]
  108. 101.
    Pao SS, Paulsen IT, Saier MH Jr. 1998.. Major facilitator superfamily. . Microbiol. Mol. Biol. Rev. 62::134
    [Crossref] [Google Scholar]
  109. 102.
    Parker JL, Newstead S. 2014.. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. . Nature 507::6872
    [Crossref] [Google Scholar]
  110. 103.
    Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P. 2007.. Crystal structure of the plasma membrane proton pump. . Nature 450::111114
    [Crossref] [Google Scholar]
  111. 104.
    Peña A, Uribe S, Pardo JP, Borbolla M. 1984.. The use of a cyanine dye in measuring membrane potential in yeast. . Arch. Biochem. Biophys. 231::21725
    [Crossref] [Google Scholar]
  112. 105.
    Peret B, Swarup K, Ferguson A, Seth M, Yang Y, et al. 2012.. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. . Plant Cell 24::287485
    [Crossref] [Google Scholar]
  113. 106.
    Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, et al. 2009.. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. . Plant Cell 21::165968
    [Crossref] [Google Scholar]
  114. 107.
    Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, et al. 2006.. PIN proteins perform a rate-limiting function in cellular auxin efflux. . Science 312::91418
    [Crossref] [Google Scholar]
  115. 108.
    Rajarathnam K, Rösgen J. 2014.. Isothermal titration calorimetry of membrane proteins—progress and challenges. . Biochim. Biophys. Acta 1838::6977
    [Crossref] [Google Scholar]
  116. 109.
    Ranocha P, Dima O, Nagy R, Felten J, Corratge-Faillie C, et al. 2013.. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. . Nat. Comm. 4::2625
    [Crossref] [Google Scholar]
  117. 110.
    Raven JA. 1975.. Transport of indolacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar auxin transport. . New Phytol. 74::16372
    [Crossref] [Google Scholar]
  118. 111.
    Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr. 2012.. The major facilitator superfamily (MFS) revisited. . FEBS J. 279::202235
    [Crossref] [Google Scholar]
  119. 112.
    Reinecke DM. 1999.. 4-Chloroindole-3-acetic acid and plant growth. . Plant Growth Regul. 27::313
    [Crossref] [Google Scholar]
  120. 113.
    Reinecke DM, Ozga JA, Magnus V. 1995.. Effect of halogen substitution of indole-3-acetic acid on biological activity in pea fruit. . Phytochemistry 40::136166
    [Crossref] [Google Scholar]
  121. 114.
    Rubery PH, Sheldrake AR. 1974.. Carrier-mediated auxin transport. . Planta 118::10121
    [Crossref] [Google Scholar]
  122. 114a.
    Růžička K, Strader LC, Bailly A, Yang H, Blakeslee J, . 2010.. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. . PNAS 107::1074953
    [Crossref] [Google Scholar]
  123. 115.
    Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, et al. 2005.. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. . FEBS Lett. 579::5399406
    [Crossref] [Google Scholar]
  124. 116.
    Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA. 1992.. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. . J. Biol. Chem. 267::485458
    [Crossref] [Google Scholar]
  125. 117.
    Schneider E, Hunke S. 1998.. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. . FEMS Microbiol. Rev. 22::120
    [Crossref] [Google Scholar]
  126. 118.
    Screpanti E, Hunte C. 2007.. Discontinuous membrane helices in transport proteins and their correlation with function. . J. Struct. Biol. 159::26167
    [Crossref] [Google Scholar]
  127. 119.
    Serrano R, Kielland-Brandt MC, Fink GR. 1986.. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. . Nature 319::68993
    [Crossref] [Google Scholar]
  128. 120.
    Shen J, Zeng Y, Zhuang X, Sun L, Yao X, Pimpl P, Jiang L. 2013.. Organelle pH in the Arabidopsis endomembrane system. . Mol. Plant 6::141937
    [Crossref] [Google Scholar]
  129. 121.
    Shi B, Vernoux T. 2019.. Patterning at the shoot apical meristem and phyllotaxis. . Curr. Top. Dev. Biol. 131::81107
    [Crossref] [Google Scholar]
  130. 122.
    Simon S, Petrášek J. 2011.. Why plants need more than one type of auxin. . Plant Sci. 180::45460
    [Crossref] [Google Scholar]
  131. 123.
    Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, et al. 2019.. PIN-driven auxin transport emerged early in streptophyte evolution. . Nat. Plants 5::111419
    [Crossref] [Google Scholar]
  132. 124.
    Skou JC. 1957.. The influence of some cations on an adenosine triphosphatase from peripheral nerves. . Biochim. Biophys. Acta 23::394401
    [Crossref] [Google Scholar]
  133. 125.
    Slayman CL. 1965.. Electrical properties of Neurospora crassa: respiration and the intracellular potential. . J. Gen. Physiol. 49::93116
    [Crossref] [Google Scholar]
  134. 126.
    Somlyo AV, Gonzalez-Serratos H, Shuman H, McClellan G. 1981.. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. . J. Cell Biol. 90::57794
    [Crossref] [Google Scholar]
  135. 127.
    Spalding EP. 2013.. Diverting the downhill flow of auxin to steer growth during tropisms. . Am. J. Bot. 100::20314
    [Crossref] [Google Scholar]
  136. 128.
    Sparks RP, Fratti R. 2019.. Use of microscale thermophoresis (MST) to measure binding affinities of components of the fusion machinery. . Methods Mol. Biol. 1860::19198
    [Crossref] [Google Scholar]
  137. 129.
    Su N, Zhu A, Tao X, Ding ZJ, Chang S, et al. 2022.. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. . Nature 609::61621 129. Provides three structures for PIN3; identifies the IAA-bound inward state.
    [Crossref] [Google Scholar]
  138. 130.
    Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N. 2014.. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. . Nature 507::7377
    [Crossref] [Google Scholar]
  139. 131.
    Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, et al. 2008.. The auxin influx carrier LAX3 promotes lateral root emergence. . Nat. Cell Biol. 10::94654
    [Crossref] [Google Scholar]
  140. 132.
    Swarup R, Bhosale R. 2019.. Developmental roles of AUX1/LAX auxin influx carriers in plants. . Front. Plant Sci. 10::1306
    [Crossref] [Google Scholar]
  141. 133.
    Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, et al. 2005.. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. . Nat. Cell Biol. 7::105765
    [Crossref] [Google Scholar]
  142. 134.
    Tan YZ, Keon KA, Abdelaziz R, Imming P, Schulze W, et al. 2022.. Structure of V-ATPase from citrus fruit. . Structure 30::140310.e4
    [Crossref] [Google Scholar]
  143. 135.
    Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, et al. 2005.. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. . Plant Cell 17::292239
    [Crossref] [Google Scholar]
  144. 136.
    Tsurusaki K-i, Masuda Y, Sakurai N. 1997.. Distribution of indole-3-acetic acid in the apoplast and symplast of squash (Cucurbita maxima) hypocotyls. . Plant Cell Physiol. 38::35256
    [Crossref] [Google Scholar]
  145. 137.
    Ung KL, Schulz L, Kleine-Vehn J, Pedersen BP, Hammes UZ. 2023.. Auxin transport at the ER: Roles and structural similarity of PIN-FORMED and PIN-LIKES. . J. Exp. Bot. 2023::erad192. Erratum . J. Exp. Bot. 2023::erad322
    [Google Scholar]
  146. 138.
    Ung KL, Schulz L, Stokes DL, Hammes UZ, Pedersen BP. 2023.. Substrate recognition and transport mechanism of the PIN-FORMED auxin exporters. . Trends Biochem. Sci. 48::93748
    [Crossref] [Google Scholar]
  147. 139.
    Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, et al. 2022.. Structures and mechanism of the plant PIN-FORMED auxin transporter. . Nature 609::60510 139. The first article providing PIN structures and a model of transport, and the only article providing outward states.
    [Crossref] [Google Scholar]
  148. 140.
    van den Berg T, Yalamanchili K, de Gernier H, Santos Teixeira J, Beeckman T, et al. 2021.. A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites. . Dev. Cell 56::217691.e10
    [Crossref] [Google Scholar]
  149. 141.
    Verma S, Attuluri VPS, Robert HS. 2021.. An essential function for auxin in embryo development. . Cold Spring Harb. Perspect. Biol. 13::a039966
    [Crossref] [Google Scholar]
  150. 142.
    Viaene T, Delwiche CF, Rensing SA, Friml J. 2013.. Origin and evolution of PIN auxin transporters in the green lineage. . Trends Plant Sci. 18::510
    [Crossref] [Google Scholar]
  151. 143.
    Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, et al. 2005.. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. . Development 132::452131
    [Crossref] [Google Scholar]
  152. 144.
    Vosolsobě S, Skokan R, Petrášek J. 2020.. The evolutionary origins of auxin transport: what we know and what we need to know. . J. Exp. Bot. 71::328795
    [Crossref] [Google Scholar]
  153. 145.
    Wagner CA, Friedrich B, Setiawan I, Lang F, Bröer S. 2000.. The use of Xenopus laevis oocytes for the functional characterization of heterologously expressed membrane proteins. . Cellular Physiol. Biochem. 10::112
    [Crossref] [Google Scholar]
  154. 146.
    Walter A, Caputi L, O'Connor S, van Pée K-H, Ludwig-Müller J. 2020.. Chlorinated auxins—how does Arabidopsis thaliana deal with them?. Int. J. Mol. Sci. 21::2567
    [Crossref] [Google Scholar]
  155. 147.
    Wang P, Shen L, Guo J, Jing W, Qu Y, et al. 2019.. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress. . Plant Cell 31::25071
    [Crossref] [Google Scholar]
  156. 148.
    Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, et al. 2020.. The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. . PNAS 117::315009
    [Crossref] [Google Scholar]
  157. 149.
    Weller B, Zourelidou M, Frank L, Barbosa IC, Fastner A, et al. 2017.. Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth. . PNAS 114::E88796
    [Crossref] [Google Scholar]
  158. 150.
    Wightman F, Lighty DL. 1982.. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. . Physiol. Plant. 55::1724
    [Crossref] [Google Scholar]
  159. 151.
    Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB. 2002.. Conservation of amino acid transporters in fungi, plants and animals. . Trends Biochem. Sci. 27::13947
    [Crossref] [Google Scholar]
  160. 152.
    Xia J, Kong M, Yang Z, Sun L, Peng Y, et al. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. . Plant Commun. 29::100632
    [Google Scholar]
  161. 153.
    Xu D, Sanden NCH, Hansen LL, Belew ZM, Madsen SR, et al. 2023.. Export of defensive glucosinolates is key for their accumulation in seeds. . Nature 617::13238
    [Crossref] [Google Scholar]
  162. 153a.
    Yang H, Murphy AS. 2009.. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. . Plant J. 59::17991
    [Crossref] [Google Scholar]
  163. 154.
    Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E. 2006.. High-affinity auxin transport by the AUX1 influx carrier protein. . Curr. Biol. 16::112327
    [Crossref] [Google Scholar]
  164. 155.
    Yang Z, Xia J, Hong J, Zhang C, Wei H, et al. 2022.. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. . Nature 61115 155. Provides three structures for PIN1 and identifies the IAA pre-bound inward state.
    [Crossref] [Google Scholar]
  165. 155a.
    Ying W, Wang Y, Wei H, Luo Y, Ma Q, . 2024.. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. . Science 383::eadj4591
    [Crossref] [Google Scholar]
  166. 156.
    Zhang J, Nodzynski T, Pencik A, Rolcik J, Friml J. 2010.. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. . PNAS 107::91822
    [Crossref] [Google Scholar]
  167. 157.
    Zhang XC, Zhao Y, Heng J, Jiang D. 2015.. Energy coupling mechanisms of MFS transporters. . Protein Sci. 24::156079
    [Crossref] [Google Scholar]
  168. 158.
    Zhang Y, Hartinger C, Wang X, Friml J. 2020.. Directional auxin fluxes in plants by intramolecular domain–domain coevolution of PIN auxin transporters. . New Phytol. 227::140616
    [Crossref] [Google Scholar]
  169. 159.
    Zhang Y, Rodriguez L, Li L, Zhang X, Friml J. 2020.. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. . Sci. Adv. 6::eabc8895
    [Crossref] [Google Scholar]
  170. 160.
    Zhang Y, Xiao G, Wang X, Zhang X, Friml J. 2019.. Evolution of fast root gravitropism in seed plants. . Nat. Comm. 10::3480
    [Crossref] [Google Scholar]
  171. 161.
    Zhao C, Pratelli R, Yu S, Shelley B, Collakova E, Pilot G. 2021.. Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plant. . J. Exp. Bot. 72::640017
    [Crossref] [Google Scholar]
  172. 162.
    Zourelidou M, Absmanner B, Weller B, Barbosa IC, Willige BC, et al. 2014.. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. . eLife 3::e02860
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070523-034109
Loading
/content/journals/10.1146/annurev-arplant-070523-034109
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error