1932

Abstract

Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata–pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant–pathogen interactions outside of the well-studied pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense–growth trade-off in relation to stomatal immunity, as little is known at this time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-091552
2024-07-22
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-091552.html?itemId=/content/journals/10.1146/annurev-arplant-070623-091552&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acharya BR, Assmann SM. 2009.. Hormone interactions in stomatal function. . Plant Mol. Biol. 69:(4):45162
    [Crossref] [Google Scholar]
  2. 2.
    Adem GD, Chen G, Shabala L, Chen Z-H, Shabala S. 2020.. GORK channel: a master switch of plant metabolism?. Trends Plant Sci. 25:(5):43445
    [Crossref] [Google Scholar]
  3. 3.
    Aung K, Jiang Y, He SY. 2018.. The role of water in plant–microbe interactions. . Plant J. Cell Mol. Biol. 93:(4):77180
    [Crossref] [Google Scholar]
  4. 4.
    Babilonia K, Wang P, Liu Z, Jamieson P, Mormile B, et al. 2021.. A nonproteinaceous Fusarium cell wall extract triggers receptor-like protein-dependent immune responses in Arabidopsis and cotton. . New Phytol. 230:(1):27589
    [Crossref] [Google Scholar]
  5. 5.
    Balmant KM, Lawrence SR, Duong BV, Zhu F, Zhu N, et al. 2021.. Guard cell redox proteomics reveals a role of lipid transfer protein in plant defense. . J. Proteom. 242::104247
    [Crossref] [Google Scholar]
  6. 6.
    Battache M, Lebrun M-H, Sakai K, Soudière O, Cambon F, et al. 2022.. Blocked at the stomatal gate, a key step of wheat Stb16q-mediated resistance to Zymoseptoria tritici. . Front. Plant Sci. 13::921074 6. Identified Stb-mediated stomatal immunity using the nonmodel organism wheat.
    [Crossref] [Google Scholar]
  7. 7.
    Beattie GA. 2011.. Water relations in the interaction of foliar bacterial pathogens with plants. . Annu. Rev. Phytopathol. 49::53355
    [Crossref] [Google Scholar]
  8. 8.
    Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K. 2017.. Evolution of hormone signaling networks in plant defense. . Annu. Rev. Phytopathol. 55::40125
    [Crossref] [Google Scholar]
  9. 9.
    Brouwer SM, Lindqvist-Reis P, Persson DP, Marttila S, Grenville-Briggs LJ, Andreasson E. 2021.. Visualising the ionome in resistant and susceptible plant–pathogen interactions. . Plant J. 108:(3):87085
    [Crossref] [Google Scholar]
  10. 10.
    Buscaill P, Chandrasekar B, Sanguankiattichai N, Kourelis J, Kaschani F, et al. 2019.. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. . Science 364:(6436):eaav0748
    [Crossref] [Google Scholar]
  11. 11.
    Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, et al. 2014.. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. . eLife 3::e03766
    [Crossref] [Google Scholar]
  12. 12.
    Chan C, Panzeri D, Okuma E, Tõldsepp K, Wang Y-Y, et al. 2020.. STRESS INDUCED FACTOR 2 regulates Arabidopsis stomatal immunity through phosphorylation of the anion channel SLAC1. . Plant Cell 32:(7):221636
    [Crossref] [Google Scholar]
  13. 13.
    Chen D, Cao Y, Li H, Kim D, Ahsan N, et al. 2017.. Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. . Nat. Commun. 8:(1):2265
    [Crossref] [Google Scholar]
  14. 14.
    Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, et al. 2013.. Protein–protein interactions in the regulation of WRKY transcription factors. . Mol. Plant 6:(2):287300
    [Crossref] [Google Scholar]
  15. 15.
    Costa L, Archer L, Ampatzidis Y, Casteluci L, Caurin GAP, Albrecht U. 2021.. Determining leaf stomatal properties in citrus trees utilizing machine vision and artificial intelligence. . Precis. Agric. 22:(4):110719
    [Crossref] [Google Scholar]
  16. 16.
    Cui Y, Zhao Y, Lu Y, Su X, Chen Y, et al. 2021.. In vivo single-particle tracking of the aquaporin AtPIP2;1 in stomata reveals cell type-specific dynamics. . Plant Physiol. 185:(4):16668116 16. Characterized the regulation of the AtPIP2;1 dynamic in stomatal movement during PTI.
    [Crossref] [Google Scholar]
  17. 17.
    Czékus Z, Iqbal N, Pollák B, Martics A, Ördög A, Poór P. 2021.. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants. . J. Plant Physiol. 263::153461
    [Crossref] [Google Scholar]
  18. 18.
    David L, Kang J, Dufresne D, Zhu D, Chen S. 2020.. Multi-omics revealed molecular mechanisms underlying guard cell systemic acquired resistance. . Int. J. Mol. Sci. 22:(1):191
    [Crossref] [Google Scholar]
  19. 19.
    David L, Kang J, Nicklay J, Dufresne C, Chen S. 2021.. Identification of DIR1-dependant cellular responses in guard cell systemic acquired resistance. . Front. Mol. Biosci. 8::746523
    [Crossref] [Google Scholar]
  20. 20.
    Desaki Y, Kouzai Y, Ninomiya Y, Iwase R, Shimizu Y, et al. 2018.. OsCERK1 plays a crucial role in the lipopolysaccharide-induced immune response of rice. . New Phytol. 217:(3):104249
    [Crossref] [Google Scholar]
  21. 21.
    Devireddy AR, Arbogast J, Mittler R. 2020.. Coordinated and rapid whole-plant systemic stomatal responses. . New Phytol. 225:(1):2125
    [Crossref] [Google Scholar]
  22. 22.
    Dixon MH, Cowles KN, Zaacks SC, Marciniak IN, Barak JD. 2022.. Xanthomonas infection transforms the apoplast into an accessible and habitable niche for Salmonella enterica. . Appl. Environ. Microbiol. 88:(22):e01330-22
    [Crossref] [Google Scholar]
  23. 23.
    Djami-Tchatchou AT, Harrison GA, Harper CP, Wang R, Prigge MJ, et al. 2020.. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae PtoDC3000 pathogenesis. . Mol. Plant Microbe Interact. 33:(8):105971
    [Crossref] [Google Scholar]
  24. 24.
    Dutton C, Hõrak H, Hepworth C, Mitchell A, Ton J, et al. 2019.. Bacterial infection systemically suppresses stomatal density. . Plant Cell Environ. 42:(8):241121
    [Crossref] [Google Scholar]
  25. 25.
    Eichstädt B, Lederer S, Trempel F, Jiang X, Guerra T, et al. 2021.. Plant immune memory in systemic tissue does not involve changes in rapid calcium signaling. . Front. Plant Sci. 12::798230
    [Crossref] [Google Scholar]
  26. 26.
    Endo H, Torii KU. 2019.. Stomatal development and perspectives toward agricultural improvement. . Cold Spring Harb. Perspect. Biol. 11:(5):a034660
    [Crossref] [Google Scholar]
  27. 27.
    Erickson MC. 2012.. Internalization of fresh produce by foodborne pathogens. . Annu. Rev. Food Sci. Technol. 3::283310
    [Crossref] [Google Scholar]
  28. 28.
    Felix G, Duran JD, Volko S, Boller T. 1999.. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. . Plant J. Cell Mol. Biol. 18:(3):26576
    [Crossref] [Google Scholar]
  29. 29.
    Freeman BC, Beattie GA. 2009.. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. . Mol. Plant Microbe Interact. 22:(7):85767
    [Crossref] [Google Scholar]
  30. 30.
    Fu ZQ, Dong X. 2013.. Systemic acquired resistance: turning local infection into global defense. . Annu. Rev. Plant Biol. 64::83963
    [Crossref] [Google Scholar]
  31. 31.
    García AV, Hirt H. 2014.. Salmonella enterica induces and subverts the plant immune system. . Front. Microbiol. 5::141
    [Crossref] [Google Scholar]
  32. 32.
    Geiger D, Scherzer S, Mumm P, Marten I, Ache P, et al. 2010.. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. . PNAS 107:(17):802328
    [Crossref] [Google Scholar]
  33. 33.
    Gentzel I, Giese L, Ekanayake G, Mikhail K, Zhao W, et al. 2022.. Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize. . Cell Host Microbe 30:(4):502517.e4
    [Crossref] [Google Scholar]
  34. 34.
    Gimenez-Ibanez S, Boter M, Ortigosa A, García-Casado G, Chini A, et al. 2017.. JAZ2 controls stomata dynamics during bacterial invasion. . New Phytol. 213:(3):137892
    [Crossref] [Google Scholar]
  35. 35.
    Golisz A, Krzyszton M, Stepien M, Dolata J, Piotrowska J, et al. 2021.. Arabidopsis spliceosome factor SmD3 modulates immunity to Pseudomonas syringae infection. . Front. Plant Sci. 12::765003
    [Crossref] [Google Scholar]
  36. 36.
    Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C. 2015.. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. . Plant Cell 27:(7):194554
    [Crossref] [Google Scholar]
  37. 37.
    Guan Q, David L, Moran R, Grela I, Ortega A, et al. 2023.. Role of NPR1 in systemic acquired stomatal immunity. . Plants 12:(11):2137
    [Crossref] [Google Scholar]
  38. 38.
    Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran L-SP. 2020.. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. . Crit. Rev. Biotechnol. 40:(3):32040
    [Crossref] [Google Scholar]
  39. 39.
    Guzel Deger A, Scherzer S, Nuhkat M, Kedzierska J, Kollist H, et al. 2015.. Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. . New Phytol. 208:(1):16273
    [Crossref] [Google Scholar]
  40. 40.
    Guzman AR, Kim J-G, Taylor KW, Lanver D, Mudgett MB. 2020.. Tomato atypical receptor kinase1 is involved in the regulation of preinvasion defense. . Plant Physiol. 183:(3):130618
    [Crossref] [Google Scholar]
  41. 41.
    He J, Zhang R-X, Peng K, Tagliavia C, Li S, et al. 2018.. The BIG protein distinguishes the process of CO2-induced stomatal closure from the inhibition of stomatal opening by CO2. . New Phytol. 218:(1):23241
    [Crossref] [Google Scholar]
  42. 42.
    Hõrak H, Fountain L, Dunn JA, Landymore J, Gray JE. 2021.. Dynamic thermal imaging confirms local but not fast systemic ABA responses. . Plant Cell Environ. 44:(3):88599
    [Crossref] [Google Scholar]
  43. 43.
    Hou S, Liu D, He P. 2021.. Phytocytokines function as immunological modulators of plant immunity. . Stress Biol. 1:(1):8
    [Crossref] [Google Scholar]
  44. 44.
    Hou S, Wang X, Chen D, Yang X, Wang M, et al. 2014.. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. . PLOS Pathog. 10:(9):e1004331
    [Crossref] [Google Scholar]
  45. 45.
    Hu Y, Ding Y, Cai B, Qin X, Wu J, et al. 2022.. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. . Cell Host Microbe 30:(4):51829.e6
    [Crossref] [Google Scholar]
  46. 46.
    Huang S, Waadt R, Nuhkat M, Kollist H, Hedrich R, Roelfsema MRG. 2019.. Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. . New Phytol. 224:(1):17787
    [Crossref] [Google Scholar]
  47. 47.
    Jacob C, Velásquez AC, Josh NA, Settles M, He SY, Melotto M. 2021.. Dual transcriptomic analysis reveals metabolic changes associated with differential persistence of human pathogenic bacteria in leaves of Arabidopsis and lettuce. . G3 11:(12):jkab331
    [Crossref] [Google Scholar]
  48. 48.
    Jarratt-Barnham E, Wang L, Ning Y, Davies JM. 2021.. The complex story of plant cyclic nucleotide-gated channels. . Int. J. Mol. Sci. 22:(2):874
    [Crossref] [Google Scholar]
  49. 49.
    Johnson N, Litt PK, Kniel KE, Bais H. 2020.. Evasion of plant innate defense response by Salmonella on lettuce. . Front. Microbiol. 11::500
    [Crossref] [Google Scholar]
  50. 50.
    Kachroo A, Kachroo P. 2020.. Mobile signals in systemic acquired resistance. . Curr. Opin. Plant Biol. 58::4147
    [Crossref] [Google Scholar]
  51. 51.
    Kadota Y, Liebrand TWH, Goto Y, Sklenar J, Derbyshire P, et al. 2019.. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. . New Phytol. 221:(4):216075
    [Crossref] [Google Scholar]
  52. 52.
    Karpinska B, Alomrani SO, Foyer CH. 2017.. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. . Philos. Trans. R. Soc. B 372:(1730):20160392
    [Crossref] [Google Scholar]
  53. 53.
    Kaur A, Sharma A, Madhu, Dixit S, Singh K, Upadhyay SK. 2022.. OSCA genes in bread wheat: molecular characterization, expression profiling, and interaction analyses indicated their diverse roles during development and stress response. . Int. J. Mol. Sci. 23:(23):14867
    [Crossref] [Google Scholar]
  54. 54.
    Köster P, DeFalco TA, Zipfel C. 2022.. Ca2+ signals in plant immunity. . EMBO J. 41:(12):e110741
    [Crossref] [Google Scholar]
  55. 55.
    Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, et al. 2009.. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. . Appl. Environ. Microbiol. 75:(19):607686
    [Crossref] [Google Scholar]
  56. 56.
    Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 2004.. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. . Plant Cell 16:(12):3496507
    [Crossref] [Google Scholar]
  57. 57.
    Kutschera A, Dawid C, Gisch N, Schmid C, Raasch L, et al. 2019.. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. . Science 364:(6436):17881
    [Crossref] [Google Scholar]
  58. 58.
    Lan L, Deng X, Zhou J, Tang X. 2006.. Genome-wide gene expression analysis of Pseudomonas syringae pv. tomato DC3000 reveals overlapping and distinct pathways regulated by hrpL and hrpRS. . Mol. Plant Microbe Interact. 19:(9):97687
    [Crossref] [Google Scholar]
  59. 59.
    Lawrence SR, Gaitens M, Guan Q, Dufresne C, Chen S. 2020.. S-nitroso-proteome revealed in stomatal guard cell response to flg22. . Int. J. Mol. Sci. 21:(5):1688
    [Crossref] [Google Scholar]
  60. 60.
    Lawson T, Matthews J. 2020.. Guard cell metabolism and stomatal function. . Annu. Rev. Plant Biol. 71::273302
    [Crossref] [Google Scholar]
  61. 61.
    Li J, Staiger CJ. 2018.. Understanding cytoskeletal dynamics during the plant immune response. . Annu. Rev. Phytopathol. 56::51333
    [Crossref] [Google Scholar]
  62. 62.
    Li K, Prada J, Damineli DSC, Liese A, Romeis T, et al. 2021.. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca2+ and H+ reveals new insights into ion signaling in plants. . New Phytol. 230:(6):2292310
    [Crossref] [Google Scholar]
  63. 63.
    Li L, Li M, Yu L, Zhou Z, Liang X, et al. 2014.. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. . Cell Host Microbe 15:(3):32938
    [Crossref] [Google Scholar]
  64. 64.
    Li Q-Y, Li P, Htwe NMPS, Shangguan K-K, Liang Y. 2019.. Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis. . J. Zhejiang Univ. Sci. B 20:(9):71327
    [Crossref] [Google Scholar]
  65. 65.
    Li Y, Jiao C, Wei Z, Chai S, Jia H, et al. 2022.. Analysis of grapevine's somatic embryogenesis receptor kinase (SERK) gene family: VqSERK3/BAK1 overexpression enhances disease resistance. . Phytopathology 112:(5):108192
    [Crossref] [Google Scholar]
  66. 66.
    Liao H, Wen X, Deng X, Wu Y, Xu J, et al. 2022.. Integrated proteomic and metabolomic analyses reveal significant changes in chloroplasts and mitochondria of pepper (Capsicum annuum L.) during Sclerotium rolfsii infection. . J. Microbiol. 60:(5):51125
    [Crossref] [Google Scholar]
  67. 67.
    Lim CW, Baek W, Jung J, Kim J-H, Lee SC. 2015.. Function of ABA in stomatal defense against biotic and drought stresses. . Int. J. Mol. Sci. 16:(7):1525170
    [Crossref] [Google Scholar]
  68. 68.
    Lin P-A, Chen Y, Ponce G, Acevedo FE, Lynch JP, et al. 2022.. Stomata-mediated interactions between plants, herbivores, and the environment. . Trends Plant Sci. 27:(3):287300
    [Crossref] [Google Scholar]
  69. 69.
    Liu J, Liu B, Chen S, Gong B-Q, Chen L, et al. 2018.. A tyrosine phosphorylation cycle regulates fungal activation of a plant receptor Ser/Thr kinase. . Cell Host Microbe 23:(2):24153.e6
    [Crossref] [Google Scholar]
  70. 70.
    Liu L, Li Y, Xu Z, Chen H, Zhang J, et al. 2022.. The Xanthomonas type III effector XopAP prevents stomatal closure by interfering with vacuolar acidification. . J. Integr. Plant Biol. 64:(10):19942008
    [Crossref] [Google Scholar]
  71. 71.
    Liu T, Liu Z, Song C, Hu Y, Han Z, et al. 2012.. Chitin-induced dimerization activates a plant immune receptor. . Science 336:(6085):116064
    [Crossref] [Google Scholar]
  72. 72.
    Liu Y, Maierhofer T, Rybak K, Sklenar J, Breakspear A, et al. 2019.. Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure. . eLife 8::e44474
    [Crossref] [Google Scholar]
  73. 73.
    Liu Z, Hou S, Rodrigues O, Wang P, Luo D, et al. 2022.. Phytocytokine signalling reopens stomata in plant immunity and water loss. . Nature 605:(7909):33239 73. Established SCREW/NUT disruption of the aqueous apoplastic environment post-pathogenic invasion.
    [Crossref] [Google Scholar]
  74. 74.
    López-Gresa MP, Payá C, Ozáez M, Rodrigo I, Conejero V, et al. 2018.. A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. . tomato. Front. Plant Sci. 9::1855
    [Crossref] [Google Scholar]
  75. 75.
    Magalhaes IP, Marques JPR, Gomes ME, Scaloppi EJ Jr., Fischer IH, et al. 2021.. Structural and biochemical aspects related to resistance and susceptibility of rubber tree clones to anthracnose. . Plants 10:(5):985
    [Crossref] [Google Scholar]
  76. 76.
    Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. 2002.. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. . Nature 419:(6905):399403
    [Crossref] [Google Scholar]
  77. 77.
    Marshall KE, Hexemer A, Seelman SL, Fatica MK, Blessington T, et al. 2020.. Lessons learned from a decade of investigations of shiga toxin-producing Escherichia coli outbreaks linked to leafy greens, United States and Canada. . Emerg. Infect. Dis. 26:(10):231928
    [Crossref] [Google Scholar]
  78. 78.
    McKown AD, Guy RD, Quamme L, Klápště J, La Mantia J, et al. 2014.. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. . Mol. Ecol. 23:(23):577190
    [Crossref] [Google Scholar]
  79. 79.
    Melotto M, Brandl MT, Jacob C, Jay-Russell MT, Micallef SA, et al. 2020.. Breeding crops for enhanced food safety. . Front. Plant Sci. 11::428
    [Crossref] [Google Scholar]
  80. 80.
    Melotto M, Panchal S, Roy D. 2014.. Plant innate immunity against human bacterial pathogens. . Front. Microbiol. 5::411
    [Crossref] [Google Scholar]
  81. 81.
    Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006.. Plant stomata function in innate immunity against bacterial invasion. . Cell 126:(5):96980
    [Crossref] [Google Scholar]
  82. 82.
    Melotto M, Zhang L, Oblessuc PR, He SY. 2017.. Stomatal defense a decade later. . Plant Physiol. 174:(2):56171
    [Crossref] [Google Scholar]
  83. 83.
    Misra BB, Reichman SM, Chen S. 2019.. The guard cell ionome: understanding the role of ions in guard cell functions. . Prog. Biophys. Mol. Biol. 146::5062
    [Crossref] [Google Scholar]
  84. 84.
    Montano J, Rossidivito G, Torreano J, Porwollik S, Sela Saldinger S, et al. 2020.. Salmonella enterica serovar Typhimurium 14028s genomic regions required for colonization of lettuce leaves. . Front. Microbiol. 11::6
    [Crossref] [Google Scholar]
  85. 85.
    Murata Y, Mori IC, Munemasa S. 2015.. Diverse stomatal signaling and the signal integration mechanism. . Annu. Rev. Plant Biol. 66::36992
    [Crossref] [Google Scholar]
  86. 86.
    Murray RR, Emblow MSM, Hetherington AM, Foster GD. 2016.. Plant virus infections control stomatal development. . Sci. Rep. 6:(1):34507
    [Crossref] [Google Scholar]
  87. 87.
    Narula K, Elagamey E, Abdellatef MAE, Sinha A, Ghosh S, et al. 2020.. Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome. . Plant J. Cell Mol. Biol. 103:(2):56183
    [Crossref] [Google Scholar]
  88. 88.
    Oblessuc PR, Matiolli CC, Melotto M. 2020.. Novel molecular components involved in callose-mediated Arabidopsis defense against Salmonella enterica and Escherichia coli O157:H7. . BMC Plant Biol. 20::16
    [Crossref] [Google Scholar]
  89. 89.
    Obulareddy N, Panchal S, Melotto M. 2013.. Guard cell purification and RNA isolation suitable for high-throughput transcriptional analysis of cell-type responses to biotic stresses. . Mol. Plant Microbe Interact. 26:(8):84449
    [Crossref] [Google Scholar]
  90. 90.
    Panchal S, Chitrakar R, Thompson BK, Obulareddy N, Roy D, et al. 2016.. Regulation of stomatal defense by air relative humidity. . Plant Physiol. 172:(3):202132
    [Crossref] [Google Scholar]
  91. 91.
    Panchal S, Roy D, Chitrakar R, Price L, Breitbach ZS, et al. 2016.. Coronatine facilitates Pseudomonas syringae infection of Arabidopsis leaves at night. . Front. Plant Sci. 7::880
    [Crossref] [Google Scholar]
  92. 92.
    Pang Q, Zhang T, Wang Y, Kong W, Guan Q, et al. 2018.. Metabolomics of early stage plant cell–microbe interaction using stable isotope labeling. . Front. Plant Sci. 9::760
    [Crossref] [Google Scholar]
  93. 93.
    Pang Q, Zhang T, Zhang A, Lin C, Kong W, Chen S. 2020.. Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. . Planta 252:(4):66
    [Crossref] [Google Scholar]
  94. 94.
    Pathoumthong P, Zhang Z, Roy SJ, El Habti A. 2023.. Rapid non-destructive method to phenotype stomatal traits. . Plant Methods 19:(1):36
    [Crossref] [Google Scholar]
  95. 95.
    Peng P, Li R, Chen Z-H, Wang Y. 2022.. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. . Front. Plant Sci. 13::1031891
    [Crossref] [Google Scholar]
  96. 96.
    Postiglione AE, Muday GK. 2023.. Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. . Plant Physiol. 192:(1):46987
    [Crossref] [Google Scholar]
  97. 97.
    Potnis N, Colee J, Jones JB, Barak JD. 2015.. Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves. . Appl. Environ. Microbiol. 81:(23):812634
    [Crossref] [Google Scholar]
  98. 98.
    Prodhan Y, Issak M, Munemasa S, Nakamura Y, Murata Y. 2020.. Salicylic acid receptor NPR1 is involved in guard cell chitosan signaling. . Biosci. Biotechnol. Biochem. 84:(5):96369
    [Crossref] [Google Scholar]
  99. 99.
    Qi J, Song C-P, Wang B, Zhou J, Kangasjärvi J, et al. 2018.. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. . J. Integr. Plant Biol. 60:(9):80526
    [Crossref] [Google Scholar]
  100. 100.
    Raffeiner M, Üstün S, Guerra T, Spinti D, Fitzner M, et al. 2022.. The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum). . Plant Cell 34:(5):1684708
    [Crossref] [Google Scholar]
  101. 101.
    Ramos RN, Martin GB, Pombo MA, Rosli HG. 2021.. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. . Plant Mol. Biol. 105:(1–2):6582
    [Crossref] [Google Scholar]
  102. 102.
    Ranf S. 2017.. Sensing of molecular patterns through cell surface immune receptors. . Curr. Opin. Plant Biol. 38::6877
    [Crossref] [Google Scholar]
  103. 103.
    Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, et al. 2015.. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. . Nat. Immunol. 16:(4):42633
    [Crossref] [Google Scholar]
  104. 104.
    Rhodes J, Roman A-O, Bjornson M, Brandt B, Derbyshire P, et al. 2022.. Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. . eLife 11::e74687
    [Crossref] [Google Scholar]
  105. 105.
    Robison FM, Turner MF, Jahn CE, Schwartz HF, Prenni JE, et al. 2018.. Common bean varieties demonstrate differential physiological and metabolic responses to the pathogenic fungus Sclerotinia sclerotiorum. . Plant Cell Environ. 41:(9):214154
    [Google Scholar]
  106. 106.
    Rodrigues O, Reshetnyak G, Grondin A, Saijo Y, Leonhardt N, et al. 2017.. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. . PNAS 114:(34):9200205 106. Showed the importance of H2O2 transport by plant aquaporins during stomatal closure.
    [Crossref] [Google Scholar]
  107. 107.
    Rodrigues O, Shan L. 2022.. Stomata in a state of emergency: H2O2 is the target locked. . Trends Plant Sci. 27:(3):27486
    [Crossref] [Google Scholar]
  108. 108.
    Rodrigues Oblessuc P, Vaz Bisneta M, Melotto M. 2019.. Common and unique Arabidopsis proteins involved in stomatal susceptibility to Salmonella enterica and Pseudomonas syringae. . FEMS Microbiol. Lett. 366:(16):fnz197
    [Crossref] [Google Scholar]
  109. 109.
    Rodríguez-Puerto C, Chakraborty R, Singh R, Rocha-Loyola P, Rojas CM. 2022.. The Pseudomonas syringae type III effector HopG1 triggers necrotic cell death that is attenuated by AtNHR2B.. Sci. Rep. 12:(1):5388
    [Crossref] [Google Scholar]
  110. 110.
    Roussin-Léveillée C, Lajeunesse G, St-Amand M, Veerapen VP, Silva-Martins G, et al. 2022.. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. . Cell Host Microbe 30:(4):489501.e4 110. Provided a mechanism for how bacterial effectors induce aqueous apoplast during infection (see also Reference 43).
    [Crossref] [Google Scholar]
  111. 111.
    Roy D, Melotto M. 2019.. Stomatal response and human pathogen persistence in leafy greens under preharvest and postharvest environmental conditions. . Postharvest Biol. Technol. 148::7682
    [Crossref] [Google Scholar]
  112. 112.
    Roy D, Panchal S, Rosa BA, Melotto M. 2013.. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344. . Phytopathology 103:(4):32632 112. Established that the human pathogen Salmonella enterica serovar Typhimurium can reopen stomata after PTI-triggered stomatal closure.
    [Crossref] [Google Scholar]
  113. 113.
    Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary SMT, et al. 2021.. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. . Nat. Commun. 12:(1):433
    [Crossref] [Google Scholar]
  114. 114.
    Sakata N, Ishiga Y. 2023.. Prevention of stomatal entry as a strategy for plant disease control against foliar pathogenic Pseudomonas species. . Plants 12:(3):590
    [Crossref] [Google Scholar]
  115. 115.
    Sakata N, Ishiga T, Masuo S, Hashimoto Y, Ishiga Y. 2021.. Coronatine contributes to Pseudomonas cannabina pv. alisalensis virulence by overcoming both stomatal and apoplastic defenses in dicot and monocot plants. . Mol. Plant Microbe Interact. 34:(7):74657
    [Crossref] [Google Scholar]
  116. 116.
    Sakata N, Ishiga T, Taniguchi S, Ishiga Y. 2020.. Acibenzolar-S-methyl activates stomatal-based defense systemically in Japanese radish. . Front. Plant Sci. 11::565745
    [Crossref] [Google Scholar]
  117. 117.
    Saldaña Z, Sánchez E, Xicohtencatl-Cortes J, Puente JL, Girón JA. 2011.. Surface structures involved in plant stomata and leaf colonization by shiga-toxigenic Escherichia coli O157:H7. . Front. Microbiol. 2::119
    [Crossref] [Google Scholar]
  118. 118.
    Shang-Guan K, Wang M, Htwe NMPS, Li P, Li Y, et al. 2018.. Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations. . Plant Physiol. 176:(3):254356
    [Crossref] [Google Scholar]
  119. 119.
    Shen J, Diao W, Zhang L, Acharya BR, Wang M, et al. 2020.. Secreted peptide PIP1 induces stomatal closure by activation of guard cell anion channels in Arabidopsis. . Front. Plant Sci. 11::1029
    [Crossref] [Google Scholar]
  120. 120.
    Shinya T, Yamaguchi K, Desaki Y, Yamada K, Narisawa T, et al. 2014.. Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. . Plant J. 79:(1):5666
    [Crossref] [Google Scholar]
  121. 121.
    Sobol G, Majhi BB, Pasmanik-Chor M, Zhang N, Roberts HM, et al. 2023.. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. . Plant Physiol. 192:(1):56581
    [Crossref] [Google Scholar]
  122. 122.
    Song Z, Zhang C, Chen L, Jin P, Tetteh C, et al. 2021.. The Arabidopsis small G-protein AtRAN1 is a positive regulator in chitin-induced stomatal closure and disease resistance. . Mol. Plant Pathol. 22:(1):92107
    [Crossref] [Google Scholar]
  123. 123.
    Sun T, Zhang Y. 2022.. MAP kinase cascades in plant development and immune signaling. . EMBO Rep. 23:(2):e53817
    [Crossref] [Google Scholar]
  124. 124.
    Sun Y, Li L, Macho AP, Han Z, Hu Z, et al. 2013.. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. . Science 342:(6158):62428
    [Crossref] [Google Scholar]
  125. 125.
    Suzuki M, Shibuya M, Shimada H, Motoyama N, Nakashima M, et al. 2016.. Autophosphorylation of specific threonine and tyrosine residues in Arabidopsis CERK1 is essential for the activation of chitin-induced immune signaling. . Plant Cell Physiol. 57:(11):231222
    [Crossref] [Google Scholar]
  126. 126.
    Tan Y-Q, Yang Y, Shen X, Zhu M, Shen J, et al. 2023.. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. . Plant Cell 35:(1):23959
    [Crossref] [Google Scholar]
  127. 127.
    Tanaka K, Heil M. 2021.. Damage-associated molecular patterns (DAMPs) in plant innate immunity: applying the danger model and evolutionary perspectives. . Annu. Rev. Phytopathol. 59::5375
    [Crossref] [Google Scholar]
  128. 128.
    Thor K, Jiang S, Michard E, George J, Scherzer S, et al. 2020.. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. . Nature 585:(7826):56973 128. Identified the Ca2+ channel OSCA1.3 and the importance of a Ca2+ influx mechanism during stomatal closure.
    [Crossref] [Google Scholar]
  129. 129.
    Tian W, Hou C, Ren Z, Wang C, Zhao F, et al. 2019.. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. . Nature 572:(7767):13135
    [Crossref] [Google Scholar]
  130. 130.
    Torii KU. 2022.. Plant signaling: Peptide-receptor pair re-opens stomata after pathogen infection. . Curr. Biol. 32:(14):R78386
    [Crossref] [Google Scholar]
  131. 131.
    Vega-Álvarez C, Francisco M, Cartea ME, Fernández JC, Soengas P. 2023.. The growth-immunity tradeoff in Brassica oleracea-Xanthomonas campestris pv. campestris pathosystem. . Plant Cell Environ. 46:(10):298597 131. Highlighted the growth–immunity trade-off by illustrating phytohormone profiles and changes in metabolism.
    [Crossref] [Google Scholar]
  132. 132.
    Wang C, Gao H, Chu Z, Ji C, Xu Y, et al. 2021.. A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato. . Mol. Plant Pathol. 22:(1):4863
    [Crossref] [Google Scholar]
  133. 133.
    Wang H, Wang Y, Sang T, Lin Z, Li R, et al. 2023.. Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells. . J. Integr. Plant Biol. 65:(9):212237
    [Crossref] [Google Scholar]
  134. 134.
    Wang S, Li S, Wang J, Li Q, Xin X-F, et al. 2021.. A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. . Nat. Commun. 12:(1):5479
    [Crossref] [Google Scholar]
  135. 135.
    Wang S, Wu X-M, Liu C-H, Shang J-Y, Gao F, Guo H-S. 2020.. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. . PLOS Pathog. 16:(4):e1008481
    [Crossref] [Google Scholar]
  136. 136.
    Wang Y, Holroyd G, Hetherington AM, Ng CK-Y. 2004.. Seeing ‘cool’ and ‘hot’—infrared thermography as a tool for non-invasive, high-throughput screening of Arabidopsis guard cell signalling mutants. . J. Exp. Bot. 55:(400):118793
    [Crossref] [Google Scholar]
  137. 137.
    Wei J, Li D-X, Zhang J-R, Shan C, Rengel Z, et al. 2018.. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. . J. Pineal Res. 65:(2):e12500
    [Crossref] [Google Scholar]
  138. 138.
    Wu J, Liu Y. 2022.. Stomata–pathogen interactions: over a century of research. . Trends Plant Sci. 27:(10):96467
    [Crossref] [Google Scholar]
  139. 139.
    Wu J, Mei X, Zhang J, Ye L, Hu Y, et al. 2023.. CURLY LEAF modulates apoplast liquid water status in Arabidopsis leaves. . Plant Physiol. 193::792808
    [Crossref] [Google Scholar]
  140. 140.
    Xiang Q, Lott AA, Assmann SM, Chen S. 2021.. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. . Plant Sci. 302::110697
    [Crossref] [Google Scholar]
  141. 141.
    Xin X-F, He SY. 2013.. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. . Annu. Rev. Phytopathol. 51::47398
    [Crossref] [Google Scholar]
  142. 142.
    Xin X-F, Nomura K, Aung K, Velásquez AC, Yao J, et al. 2016.. Bacteria establish an aqueous living space in plants crucial for virulence. . Nature 539:(7630):52429
    [Crossref] [Google Scholar]
  143. 143.
    Yan J, Yu H, Li B, Fan A, Melkonian J, et al. 2019.. Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense. . PLOS Pathog. 15:(10):e1008094
    [Crossref] [Google Scholar]
  144. 144.
    Yang L-N, Liu H, Wang Y-P, Seematti J, Grenville-Briggs LJ, et al. 2021.. Pathogen-mediated stomatal opening: a previously overlooked pathogenicity strategy in the oomycete pathogen Phytophthora infestans. . Front. Plant Sci. 12::668797
    [Crossref] [Google Scholar]
  145. 145.
    Yang Q, Peng Z, Ma W, Zhang S, Hou S, et al. 2021.. Melatonin functions in priming of stomatal immunity in Panax notoginseng and Arabidopsis thaliana. . Plant Physiol. 187:(4):283751
    [Crossref] [Google Scholar]
  146. 146.
    Ye W, Munemasa S, Shinya T, Wu W, Ma T, et al. 2020.. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. . PNAS 117:(34):2093242 146. Showed that stomatal immunity against fungal pathogens includes guard cell death.
    [Crossref] [Google Scholar]
  147. 147.
    Yekondi S, Liang F-C, Okuma E, Radziejwoski A, Mai H-W, et al. 2018.. Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure. . New Phytol. 218:(1):25368
    [Crossref] [Google Scholar]
  148. 148.
    Yoshioka K, Moeder W. 2020.. Calcium channel in plants helps shut the door on intruders. . Nature 585:(7826):5078
    [Crossref] [Google Scholar]
  149. 149.
    Yu X, Feng B, He P, Shan L. 2017.. From chaos to harmony: responses and signaling upon microbial pattern recognition. . Annu. Rev. Phytopathol. 55::10937
    [Crossref] [Google Scholar]
  150. 150.
    Zarkani AA, López-Pagán N, Grimm M, Sánchez-Romero MA, Ruiz-Albert J, et al. 2020.. Salmonella heterogeneously expresses flagellin during colonization of plants. . Microorganisms 8:(6):815
    [Crossref] [Google Scholar]
  151. 151.
    Zeng W, He SY. 2010.. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. . Plant Physiol. 153:(3):118898
    [Crossref] [Google Scholar]
  152. 152.
    Zhang D, Tian C, Yin K, Wang W, Qiu J-L. 2019.. Postinvasive bacterial resistance conferred by open stomata in rice. . Mol. Plant Microbe Interact. 32:(2):25566 152. Established that open stomata promote post-invasive resistance against bacterial pathogens.
    [Crossref] [Google Scholar]
  153. 153.
    Zhang R-X, Ge S, He J, Li S, Hao Y, et al. 2019.. BIG regulates stomatal immunity and jasmonate production in Arabidopsis. . New Phytol. 222:(1):33548
    [Crossref] [Google Scholar]
  154. 154.
    Zhang Y, Berman A, Shani E. 2023.. Plant hormone transport and localization: signaling molecules on the move. . Annu. Rev. Plant Biol. 74::45379
    [Crossref] [Google Scholar]
  155. 155.
    Zhang Y, Goritschnig S, Dong X, Li X. 2003.. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. . Plant Cell 15:(11):263646
    [Crossref] [Google Scholar]
  156. 156.
    Zheng X, Kang S, Jing Y, Ren Z, Li L, et al. 2018.. Danger-associated peptides close stomata by OST1-independent activation of anion channels in guard cells. . Plant Cell 30:(5):113246
    [Crossref] [Google Scholar]
  157. 157.
    Zou M, Guo M, Zhou Z, Wang B, Pan Q, et al. 2021.. MPK3- and MPK6-mediated VLN3 phosphorylation regulates actin dynamics during stomatal immunity in Arabidopsis. . Nat. Commun. 12::6474
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-091552
Loading
/content/journals/10.1146/annurev-arplant-070623-091552
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error