1932

Abstract

Red and far-red light–sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-110636
2024-07-22
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-110636.html?itemId=/content/journals/10.1146/annurev-arplant-070623-110636&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahuja LG, Taylor SS, Kornev AP. 2019.. Tuning the “violin” of protein kinases: the role of dynamics-based allostery. . IUBMB Life 71::68596
    [Crossref] [Google Scholar]
  2. 2.
    Al-Sady B, Ni WM, Kircher S, Schäfer E, Quail PH. 2006.. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. . Mol. Cell 23::43946
    [Crossref] [Google Scholar]
  3. 3.
    Anders K, Daminelli-Widany G, Mroginski MA, von Stetten D, Essen LO. 2013.. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. . J. Biol. Chem. 288::3571425
    [Crossref] [Google Scholar]
  4. 4.
    Auldridge ME, Satyshur KA, Anstrom DM, Forest KT. 2012.. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. . J. Biol. Chem. 287::70009
    [Crossref] [Google Scholar]
  5. 5.
    Barkovits K, Schubert B, Heine S, Scheer M, Frankenberg-Dinkel N. 2011.. Function of the bacteriophytochrome BphP in the RpoS/Las quorum-sensing network of Pseudomonas aeruginosa. . Microbiology 157::165164
    [Crossref] [Google Scholar]
  6. 6.
    Bellini D, Papiz MZ. 2012.. Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor. . Structure 20::143646
    [Crossref] [Google Scholar]
  7. 7.
    Björling A, Berntsson O, Lehtivuori H, Takala H, Hughes AJ, et al. 2016.. Structural photoactivation of a full-length bacterial phytochrome. . Sci. Adv. 2::e1600920
    [Crossref] [Google Scholar]
  8. 8.
    Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, et al. 2005.. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. . Curr. Biol. 15::183338
    [Crossref] [Google Scholar]
  9. 9.
    Böhm C, Gourinchas G, Zweytick S, Hujdur E, Reiter M, et al. 2022.. Characterisation of sequence–structure–function space in sensor–effector integrators of phytochrome-regulated diguanylate cyclases. . Photochem. Photobiol. Sci. 21::176179
    [Crossref] [Google Scholar]
  10. 10.
    Böhm C, Todorovic N, Balasso M, Gourinchas G, Winkler A. 2021.. The PHY domain dimer interface of bacteriophytochromes mediates cross-talk between photosensory modules and output domains. . J. Mol. Biol. 433::167092
    [Crossref] [Google Scholar]
  11. 11.
    Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, et al. 2016.. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. . EMBO Rep. 17::156577
    [Crossref] [Google Scholar]
  12. 12.
    Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK. 1952.. A reversible photoreaction controlling seed germination. . PNAS 38::66266
    [Crossref] [Google Scholar]
  13. 13.
    Borucki B, Seibeck S, Heyn MP, Lamparter T. 2009.. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis. . Biochemistry 48::630517
    [Crossref] [Google Scholar]
  14. 14.
    Borucki B, von Stetten D, Seibeck S, Lamparter T, Michael N, et al. 2005.. Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. . J. Biol. Chem. 280::3435864
    [Crossref] [Google Scholar]
  15. 15.
    Brockmann J, Rieble S, Kazarinova-Fukshansky N, Seyfried M, Schäfer E. 1987.. Phytochrome behaves as a dimer in vivo. . Plant Cell Environ. 10::10511
    [Crossref] [Google Scholar]
  16. 16.
    Buhrke D, Gourinchas G, Müller M, Michael N, Hildebrandt P, Winkler A. 2020.. Distinct chromophore–protein environments enable asymmetric activation of a bacteriophytochrome-activated diguanylate cyclase. . J. Biol. Chem. 295::53951
    [Crossref] [Google Scholar]
  17. 17.
    Buhrke D, Kuhlmann U, Michael N, Hildebrandt P. 2018.. The photoconversion of phytochrome includes an unproductive shunt reaction pathway. . Chem. Phys. Chem. 19::56670
    [Crossref] [Google Scholar]
  18. 18.
    Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD. 2014.. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. . PNAS 111::1017984
    [Crossref] [Google Scholar]
  19. 19.
    Burgie ES, Gannam ZTK, McLoughlin KE, Sherman CD, Holehouse AS, et al. 2021.. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. . PNAS 118::e2105649118
    [Crossref] [Google Scholar]
  20. 20.
    Burgie ES, Li H, Gannam ZTK, McLoughlin KE, Vierstra RD, Li H. 2023.. The structure of Arabidopsis phytochrome A reveals topological and functional diversification among the plant photoreceptor isoforms. . Nat. Plants 9::111629
    [Crossref] [Google Scholar]
  21. 21.
    Burgie ES, Wang T, Bussell AN, Walker JM, Li H, Vierstra RD. 2014.. Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion. . J. Biol. Chem. 289::2457387
    [Crossref] [Google Scholar]
  22. 22.
    Burgie ES, Zhang J, Vierstra RD. 2016.. Crystal structure of Deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion. . Structure 24::44857
    [Crossref] [Google Scholar]
  23. 23.
    Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, Johansson H. 2020.. Identification of BBX proteins as rate-limiting cofactors of HY5. . Nat. Plants 6::92128
    [Crossref] [Google Scholar]
  24. 24.
    Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, et al. 2021.. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. . Structure 29::74354.e4
    [Crossref] [Google Scholar]
  25. 25.
    Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, et al. 2020.. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. . eLife 9::e53514
    [Crossref] [Google Scholar]
  26. 26.
    Dasgupta J, Frontiera RR, Taylor KC, Lagarias JC, Mathies RA. 2009.. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. . PNAS 106::178489
    [Crossref] [Google Scholar]
  27. 27.
    Davis SJ, Vener AV, Vierstra RD. 1999.. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. . Science 286::251720
    [Crossref] [Google Scholar]
  28. 28.
    Ermert AL, Mailliet K, Hughes J. 2016.. Holophytochrome-interacting proteins in Physcomitrella: putative actors in phytochrome cytoplasmic signaling. . Front. Plant Sci. 7::613
    [Crossref] [Google Scholar]
  29. 29.
    Escobar FV, Piwowarski P, Salewski J, Michael N, Fernandez Lopez M, et al. 2015.. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes. . Nat. Chem. 7::42330
    [Crossref] [Google Scholar]
  30. 30.
    Essen L-O, Mailliet J, Hughes J. 2008.. The structure of a complete phytochrome sensory module in the Pr ground state. . PNAS 105::1470914 30. The first structural description of a photochemically functional phytochrome in the Pr state, complemented by Reference 156 for Pfr.
    [Crossref] [Google Scholar]
  31. 31.
    Etzl S, Lindner R, Nelson MD, Winkler A. 2018.. Structure-guided design and functional characterization of an artificial red light–regulated guanylate/adenylate cyclase for optogenetic applications. . J. Biol. Chem. 293::907889
    [Crossref] [Google Scholar]
  32. 32.
    Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J. 1999.. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. . Science 284::153941
    [Crossref] [Google Scholar]
  33. 33.
    Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, et al. 2008.. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. . Nature 451::47579
    [Crossref] [Google Scholar]
  34. 34.
    Fischer AJ, Lagarias JC. 2004.. Harnessing phytochrome's glowing potential. . PNAS 101::1733439
    [Crossref] [Google Scholar]
  35. 35.
    Fischer AJ, Rockwell NC, Jang AY, Ernst LA, Waggoner AS, et al. 2005.. Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes. . Biochemistry 44::1520315
    [Crossref] [Google Scholar]
  36. 36.
    Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC. 2001.. Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. . Plant Cell 13::96578
    [Crossref] [Google Scholar]
  37. 37.
    Fushimi K, Narikawa R. 2019.. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. . Curr. Opin. Struct. Biol. 57::3946
    [Crossref] [Google Scholar]
  38. 38.
    Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B, et al. 2002.. Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. . Nature 417::2025
    [Crossref] [Google Scholar]
  39. 39.
    Golonka D, Fischbach P, Jena SG, Kleeberg JRW, Essen LO, et al. 2019.. Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. . Commun. Biol. 2::448
    [Crossref] [Google Scholar]
  40. 40.
    Gourinchas G, Etzl S, Gobl C, Vide U, Madl T, Winkler A. 2017.. Long-range allosteric signaling in red light–regulated diguanylyl cyclases. . Sci. Adv. 3::e1602498
    [Crossref] [Google Scholar]
  41. 41.
    Gourinchas G, Etzl S, Winkler A. 2019.. Bacteriophytochromes – from informative model systems of phytochrome function to powerful tools in cell biology. . Curr. Opin. Struct. Biol. 57::7283
    [Crossref] [Google Scholar]
  42. 42.
    Gourinchas G, Heintz U, Winkler A. 2018.. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. . eLife 7::e34815 42. The first structural description of a full-length phytochrome with a Pr:Pfr dimer accompanied by an active signaling conformation.
    [Crossref] [Google Scholar]
  43. 43.
    Gustavsson E, Isaksson L, Persson C, Mayzel M, Brath U, et al. 2020.. Modulation of structural heterogeneity controls phytochrome photoswitching. . Biophys. J. 118::41521
    [Crossref] [Google Scholar]
  44. 44.
    Hahn J, Strauss HM, Landgraf FT, Gimenéz HF, Lochnit G, et al. 2006.. Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis. . FEBS J. 273::141529
    [Crossref] [Google Scholar]
  45. 45.
    Helizon H, Rösler-Dalton J, Gasch P, von Horsten S, Essen L-O, Zeidler M. 2018.. Arabidopsis phytochrome A nuclear translocation is mediated by a far-red elongated hypocotyl 1–importin complex. . Plant J. 96::125568 45. Describes the association of importins and FHY1 in nuclear translocation of phyA; how phyB enters the nucleus is unknown.
    [Crossref] [Google Scholar]
  46. 46.
    Hiltbrunner A, Tscheuschler A, Viczián A, Kunkel T, Kircher S, Schäfer E. 2006.. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. . Plant Cell Physiol. 47::102334
    [Crossref] [Google Scholar]
  47. 47.
    Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett MJ, et al. 2016.. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. . Mol. Cell. Proteom. 15::20117
    [Crossref] [Google Scholar]
  48. 48.
    Hughes J. 2013.. Phytochrome cytoplasmic signaling. . Annu. Rev. Plant Biol. 64::377402
    [Crossref] [Google Scholar]
  49. 49.
    Hughes J. 2020.. Phytochrome photoreceptors: rapid response. . eLife 9::e57105
    [Crossref] [Google Scholar]
  50. 50.
    Hughes J, Lamparter T, Mittmann F, Hartmann E, Gärtner W, et al. 1997.. A prokaryotic phytochrome. . Nature 386::663
    [Crossref] [Google Scholar]
  51. 51.
    Hunt RE, Pratt LH. 1981.. Physicochemical differences between the red- and the far-red-absorbing forms of phytochrome. . Biochemistry 20::94145
    [Crossref] [Google Scholar]
  52. 52.
    Ihalainen JA, Gustavsson E, Schroeder L, Donnini S, Lehtivuori H, et al. 2018.. Chromophore–protein interplay during the phytochrome photocycle revealed by step-scan FTIR spectroscopy. . J. Am. Chem. Soc. 140::12396404
    [Crossref] [Google Scholar]
  53. 53.
    Isaksson L, Gustavsson E, Persson C, Brath U, Vrhovac L, et al. 2021.. Signaling mechanism of phytochromes in solution. . Structure 29::15160.e3
    [Crossref] [Google Scholar]
  54. 54.
    Jaedicke K, Lichtenthäler AL, Meyberg R, Zeidler M, Hughes J. 2012.. A phytochrome–phototropin light signaling complex at the plasma membrane. . PNAS 109::1223136
    [Crossref] [Google Scholar]
  55. 55.
    Jenal U, Reinders A, Lori C. 2017.. Cyclic di-GMP: second messenger extraordinaire. . Nat. Rev. Microbiol. 15::27184
    [Crossref] [Google Scholar]
  56. 56.
    Jeong AR, Lee SS, Han YJ, Shin AY, Baek A, et al. 2016.. New constitutively active phytochromes exhibit light-independent signaling activity. . Plant Physiol. 171::282640
    [Crossref] [Google Scholar]
  57. 57.
    Jones AM, Erickson HP. 1989.. Domain structure of phytochrome from Avena sativa visualized by electron microscopy. . Photochem. Photobiol. 49::47983
    [Crossref] [Google Scholar]
  58. 58.
    Jordan ET, Marita JM, Clough RC, Vierstra RD. 1997.. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity. . Plant Physiol. 115::693704
    [Crossref] [Google Scholar]
  59. 59.
    Jung JH, Jeong S, Im S, Kim MK, Seo HS, Lim S. 2021.. Lack of the bacterial phytochrome protein decreases Deinococcus radiodurans resistance to mitomycin C. . Front. Microbiol. 12::659233
    [Crossref] [Google Scholar]
  60. 60.
    Kacprzak S, Njimona I, Renz A, Feng J, Reijerse E, et al. 2017.. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion. . J. Biol. Chem. 292::7598606
    [Crossref] [Google Scholar]
  61. 61.
    Kami C, Mukougawa K, Muramoto T, Yokota A, Shinomura T, et al. 2004.. Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin:ferredoxin oxidoreductase. . PNAS 101::1099104
    [Crossref] [Google Scholar]
  62. 62.
    Kerbler SM, Wigge PA. 2023.. Temperature sensing in plants. . Annu. Rev. Plant Biol. 74::34166
    [Crossref] [Google Scholar]
  63. 63.
    Kikis EA, Oka Y, Hudson ME, Nagatani A, Quail PH. 2009.. Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3. . PLOS Genet. 5::e1000352
    [Crossref] [Google Scholar]
  64. 64.
    Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, et al. 1999.. Light quality–dependent nuclear import of the plant photoreceptors phytochrome A and B. . Plant Cell 11::144556
    [Google Scholar]
  65. 65.
    Klose C, Viczián A, Kircher S, Schäfer E, Nagy F. 2015.. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. . New Phytol. 206::96571
    [Crossref] [Google Scholar]
  66. 66.
    Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC. 2001.. The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. . Plant Cell 13::42536
    [Crossref] [Google Scholar]
  67. 67.
    Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, et al. 2009.. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. . Curr. Biol. 19::40813
    [Crossref] [Google Scholar]
  68. 68.
    Kraskov A, Nguyen AD, Goerling J, Buhrke D, Velazquez Escobar F, et al. 2020.. Intramolecular proton transfer controls protein structural changes in phytochrome. . Biochemistry 59::102337
    [Crossref] [Google Scholar]
  69. 69.
    Kretsch T, Poppe C, Schäfer E. 2000.. A new type of mutation in the plant photoreceptor phytochrome B causes loss of photoreversibility and an extremely enhanced light sensitivity. . Plant J. 22::17786
    [Crossref] [Google Scholar]
  70. 70.
    Kuwasaki Y, Suzuki K, Yu G, Yamamoto S, Otabe T, et al. 2022.. A red light–responsive photoswitch for deep tissue optogenetics. . Nat. Biotechnol. 40::167279
    [Crossref] [Google Scholar]
  71. 71.
    Lagarias JC, Rapoport H. 1980.. Chromopeptides from phytochrome. The structure and linkage of the PR form of the phytochrome chromophore. . J. Am. Chem. Soc. 102::482128
    [Crossref] [Google Scholar]
  72. 72.
    Lamparter T, Michael N, Caspani O, Miyata T, Shirai K, Inomata K. 2003.. Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring A vinyl side chain. . J. Biol. Chem. 278::3378692
    [Crossref] [Google Scholar]
  73. 73.
    Lamparter T, Xue P, Elkurdi A, Kaeser G, Sauthof L, et al. 2021.. Phytochromes in Agrobacterium fabrum. . Front. Plant Sci. 12::642801
    [Crossref] [Google Scholar]
  74. 74.
    Legris M, Ince YC, Fankhauser C. 2019.. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. . Nat. Commun. 10::5219
    [Crossref] [Google Scholar]
  75. 75.
    Lehtinen K, Nokia MS, Takala H. 2021.. Red light optogenetics in neuroscience. . Front. Cell Neurosci. 15::778900
    [Crossref] [Google Scholar]
  76. 76.
    Li FW, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, et al. 2015.. Phytochrome diversity in green plants and the origin of canonical plant phytochromes. . Nat. Commun. 6::7852
    [Crossref] [Google Scholar]
  77. 77.
    Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. 2022.. Plant phytochrome B is an asymmetric dimer with unique signalling potential. . Nature 604::12733 77. The first structural description of a full-length plant phytochrome (Arabidopsis phyB) as Pr; illustrates the increasing power of cryo-EM technology in structural biology.
    [Crossref] [Google Scholar]
  78. 78.
    Li H, Zhang J, Vierstra RD, Li H. 2010.. Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. . PNAS 107::1087277
    [Crossref] [Google Scholar]
  79. 79.
    Lorraine S, Allen T, Duek PD, Whitelam GC, Fankhauser C. 2008.. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. . Plant J. 53::31223
    [Crossref] [Google Scholar]
  80. 80.
    Ma L, Li J, Qu L, Hager J, Chen Z, et al. 2001.. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. . Plant Cell 13::2589607
    [Crossref] [Google Scholar]
  81. 81.
    Mailliet J, Psakis G, Feilke K, Sineshchekov V, Essen LO, Hughes J. 2011.. Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1. . J. Mol. Biol. 413::11527
    [Crossref] [Google Scholar]
  82. 82.
    Mandoli D, Briggs WR. 1981.. Phytochrome control of two low-irradiance responses in etiolated oat seedlings. . Plant Physiol. 67::73339
    [Crossref] [Google Scholar]
  83. 83.
    Matsushita T, Mochizuki N, Nagatani A. 2003.. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. . Nature 424::57174 83. Shows that the PSM plant phyB can mediate the light signal and therefore the C-terminal “output module” is nothing of the kind.
    [Crossref] [Google Scholar]
  84. 84.
    McGrane R, Beattie GA. 2017.. Pseudomonas syringae pv. syringae B728a regulates multiple stages of plant colonization via the bacteriophytochrome BphP1. . mBio 8::e01178-17
    [Crossref] [Google Scholar]
  85. 85.
    Menon C, Klose C, Hiltbrunner A. 2020.. Arabidopsis FHY1 and FHY1-LIKE are not required for phytochrome A signal transduction in the nucleus. . Plant Commun. 1::100007
    [Crossref] [Google Scholar]
  86. 86.
    Mira-Rodado V, Sweere U, Grefen C, Kunkel T, Fejes E, et al. 2007.. Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. . J. Exp. Bot. 58::2595607
    [Crossref] [Google Scholar]
  87. 87.
    Möglich A. 2019.. Signal transduction in photoreceptor histidine kinases. . Protein Sci. 28::192346
    [Crossref] [Google Scholar]
  88. 88.
    Multamäki E, Nanekar R, Morozov D, Lievonen T, Golonka D, et al. 2021.. Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling. . Nat. Commun. 12::4394 88. Analyzes the basis of kinase versus phosphatase function in prokaryotic HK phytochromes.
    [Crossref] [Google Scholar]
  89. 89.
    Nagano S, Guan K, Shenkutie SM, Feiler C, Weiss M, et al. 2020.. Structural insights into photoactivation and signalling in plant phytochromes. . Nat. Plants 6::58188 89. Describes high-resolution crystal structures of various plant phytochrome PSMs in the Pr state.
    [Crossref] [Google Scholar]
  90. 90.
    Nagano S, Sadeghi M, Balke J, Fleck M, Heckmann N, et al. 2022.. Improved fluorescent phytochromes for in situ imaging. . Sci. Rep. 12::5587
    [Crossref] [Google Scholar]
  91. 91.
    Nagano S, Scheerer P, Zubow K, Michael N, Inomata K, et al. 2016.. The crystal structures of the N-terminal photosensory core module of Agrobacterium phytochrome Agp1 as parallel and anti-parallel dimers. . J. Biol. Chem. 291::2067491
    [Crossref] [Google Scholar]
  92. 92.
    Ni M, Tepperman JM, Quail PH. 1998.. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. . Cell 95::65767
    [Crossref] [Google Scholar]
  93. 93.
    Ni M, Tepperman JM, Quail PH. 1999.. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. . Nature 400::78184
    [Crossref] [Google Scholar]
  94. 94.
    Ni W, Xu SL, Gonzalez-Grandio E, Chalkley RJ, Huhmer AFR, Quail PH. 2017.. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. . Nat. Commun. 8::15236 94. Together with Reference 130 describes the role of Mut9-like kinases in phyB/PIF proteolysis.
    [Crossref] [Google Scholar]
  95. 95.
    Oka Y, Matsushita T, Mochizuki N, Quail PH, Nagatani A. 2008.. Mutant screen distinguishes between residues necessary for light-signal perception and signal transfer by phytochrome B. . PLOS Genet. 4::e1000158
    [Crossref] [Google Scholar]
  96. 96.
    Oka Y, Matsushita T, Mochizuki N, Suzuki T, Tokutomi S, Nagatani A. 2004.. Functional analysis of a 450–amino acid N-terminal fragment of phytochrome B in Arabidopsis. . Plant Cell 16::210416
    [Crossref] [Google Scholar]
  97. 97.
    Oka Y, Ono Y, Toledo-Ortiz G, Kokaji K, Matsui M, et al. 2012.. Arabidopsis phytochrome A is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. . Plant Cell 24::294962
    [Crossref] [Google Scholar]
  98. 98.
    Otero LH, Foscaldi S, Antelo GT, Rosano GL, Sirigu S, et al. 2021.. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. . Sci. Adv. 7::eabh1097
    [Crossref] [Google Scholar]
  99. 99.
    Otero LH, Klinke S, Rinaldi J, Velazquez-Escobar F, Mroginski MA, et al. 2016.. Structure of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris provides clues to its long-range signaling mechanism. . J. Mol. Biol. 428::370220
    [Crossref] [Google Scholar]
  100. 100.
    Papiz MZ, Bellini D, Evans K, Grossmann JG, Fordham-Skelton T. 2019.. Light-induced complex formation of bacteriophytochrome RpBphP1 and gene repressor RpPpsR2 probed by SAXS. . FEBS J. 286::426177
    [Crossref] [Google Scholar]
  101. 101.
    Pardi SA, Nusinow DA. 2021.. Out of the dark and into the light: A new view of phytochrome photobodies. . Front. Plant Sci. 12::732947
    [Crossref] [Google Scholar]
  102. 102.
    Park E, Park J, Kim J, Nagatani A, Lagarias JC, Choi G. 2012.. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. . Plant J. 72::53746
    [Crossref] [Google Scholar]
  103. 103.
    Pfeiffer A, Nagel MK, Popp C, Wust F, Bindics J, et al. 2012.. Interaction with plant transcription factors can mediate nuclear import of phytochrome B. . PNAS 109::589297
    [Crossref] [Google Scholar]
  104. 104.
    Pham VN, Kathare PK, Huq E. 2018.. Phytochromes and phytochrome interacting factors. . Plant Physiol. 176::102538
    [Crossref] [Google Scholar]
  105. 105.
    Podolec R, Ulm R. 2018.. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. . Curr. Opin. Plant Biol. 45::1825
    [Crossref] [Google Scholar]
  106. 106.
    Ponnu J, Hoecker U. 2021.. Illuminating the COP1/SPA ubiquitin ligase: fresh insights into its structure and functions during plant photomorphogenesis. . Front. Plant Sci. 12::662793
    [Crossref] [Google Scholar]
  107. 107.
    Possart A, Hiltbrunner A. 2013.. An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants. . Plant Cell 25::10214
    [Crossref] [Google Scholar]
  108. 108.
    Qiu Y, Pasoreck EK, Reddy AK, Nagatani A, Ma W, et al. 2017.. Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. . Nat. Commun. 8::1905
    [Crossref] [Google Scholar]
  109. 109.
    Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D. 1995.. Phytochromes: photosensory perception and signal transduction. . Science 268::67580
    [Crossref] [Google Scholar]
  110. 110.
    Rausenberger J, Tscheuschler A, Nordmeier W, Wust F, Timmer J, et al. 2011.. Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light. . Cell 146::81325
    [Crossref] [Google Scholar]
  111. 111.
    Redchuk TA, Omelina ES, Chernov KG, Verkhusha VV. 2017.. Near-infrared optogenetic pair for protein regulation and spectral multiplexing. . Nat. Chem. Biol. 13::63339
    [Crossref] [Google Scholar]
  112. 112.
    Rockwell NC, Lagarias JC. 2020.. Phytochrome evolution in 3D: deletion, duplication, and diversification. . New Phytol. 225::2283300
    [Crossref] [Google Scholar]
  113. 113.
    Rockwell NC, Shang L, Martin SS, Lagarias JC. 2009.. Distinct classes of red/far-red photochemistry within the phytochrome superfamily. . PNAS 106::612327
    [Crossref] [Google Scholar]
  114. 114.
    Rumfeldt JA, Takala H, Liukkonen A, Ihalainen JA. 2019.. UV-Vis spectroscopy reveals a correlation between Y263 and BV protonation states in bacteriophytochromes. . Photochem. Photobiol. 95::96979
    [Crossref] [Google Scholar]
  115. 115.
    Sakamoto K, Nagatani A. 1996.. Nuclear localization activity of phytochrome B. . Plant J. 10::85968
    [Crossref] [Google Scholar]
  116. 116.
    Schirmer T. 2016.. C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation. . J. Mol. Biol. 428::3683701
    [Crossref] [Google Scholar]
  117. 117.
    Schmidt A, Sauthof L, Szczepek M, Lopez MF, Escobar FV, et al. 2018.. Structural snapshot of a bacterial phytochrome in its functional intermediate state. . Nat. Commun. 9::4912
    [Crossref] [Google Scholar]
  118. 118.
    Seibeck S, Borucki B, Otto H, Inomata K, Khawn H, et al. 2007.. Locked 5Zs-biliverdin blocks the Meta-RA to Meta-RC transition in the functional cycle of bacteriophytochrome Agp1. . FEBS Lett. 581::542529
    [Crossref] [Google Scholar]
  119. 119.
    Sharrock RA, Quail PH. 1989.. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. . Genes Dev. 3::174557
    [Crossref] [Google Scholar]
  120. 120.
    Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. 2002.. A light-switchable gene promoter system. . Nat. Biotechnol. 20::104144
    [Crossref] [Google Scholar]
  121. 121.
    Shinomura T, Nagatani A, Chory J, Furuya M. 1994.. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. . Plant Physiol. 104::36371
    [Crossref] [Google Scholar]
  122. 122.
    Sineshchekov VA. 1995.. Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. . Biochim. Biophys. Acta Bioeng. 1228::12564
    [Crossref] [Google Scholar]
  123. 123.
    Sineshchekov VA, Koppel' L, Esteban B, Hughes J, Lamparter T. 2002.. Fluorescence investigation of the recombinant cyanobacterial phytochrome (Cph1) and its C-terminally truncated monomeric species (Cph1Δ2): implication for holoprotein assembly, chromophore–apoprotein interaction and photochemistry. . J. Photochem. Photobiol. B 67::3950
    [Crossref] [Google Scholar]
  124. 124.
    Sineshchekov VA, Mailliet J, Psakis G, Feilke K, Kopycki J, et al. 2014.. Tyrosine 263 in cyanobacterial phytochrome Cph1 optimizes photochemistry at the prelumi-R → lumi-R step. . Photochem. Photobiol. 90::78695
    [Crossref] [Google Scholar]
  125. 125.
    Smith H, Whitelam GC. 1997.. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. . Plant Cell Environ. 20::84044
    [Crossref] [Google Scholar]
  126. 126.
    Song C, Essen LO, Gärtner W, Hughes J, Matysik J. 2012.. Solid-state NMR spectroscopic study of chromophore–protein interactions in the Pr ground state of plant phytochrome A. . Mol. Plant 5::698715
    [Crossref] [Google Scholar]
  127. 127.
    Song C, Mroginski MA, Lang C, Kopycki J, Gärtner W, et al. 2018.. 3D structures of plant phytochrome A as Pr and Pfr from solid-state NMR: implications for molecular function. . Front. Plant Sci. 9::498
    [Crossref] [Google Scholar]
  128. 128.
    Song C, Psakis G, Lang C, Mailliet J, Gärtner W, et al. 2011.. Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. . PNAS 108::384247
    [Crossref] [Google Scholar]
  129. 129.
    Song C, Psakis G, Lang C, Mailliet J, Zaanen J, et al. 2011.. On the collective nature of phytochrome photoactivation. . Biochemistry 50::1098789
    [Crossref] [Google Scholar]
  130. 130.
    Song P, Yang Z, Guo C, Han R, Wang H, et al. 2023.. 14-3-3 proteins regulate photomorphogenesis by facilitating light-induced degradation of PIF3. . New Phytol. 237::14059
    [Crossref] [Google Scholar]
  131. 131.
    Stewart CM, Buffalo CZ, Valderrama JA, Henningham A, Cole JN, et al. 2016.. Coiled-coil destabilizing residues in the group A Streptococcus M1 protein are required for functional interaction. . PNAS 113::951520
    [Crossref] [Google Scholar]
  132. 132.
    Su YS, Lagarias JC. 2007.. Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. . Plant Cell 19::212439
    [Crossref] [Google Scholar]
  133. 133.
    Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Bäurle I, et al. 2001.. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. . Science 294::110811
    [Crossref] [Google Scholar]
  134. 134.
    Takala H, Björling A, Berntsson O, Lehtivuori H, Niebling S, et al. 2014.. Signal amplification and transduction in phytochrome photosensors. . Nature 509::24548
    [Crossref] [Google Scholar]
  135. 135.
    Takala H, Björling A, Linna M, Westenhoff S, Ihalainen JA. 2015.. Light-induced changes in the dimerization interface of bacteriophytochromes. . J. Biol. Chem. 290::1638392
    [Crossref] [Google Scholar]
  136. 136.
    Takala H, Edlund P, Ihalainen JA, Westenhoff S. 2020.. Tips and turns of bacteriophytochrome photoactivation. . Photochem. Photobiol. Sci. 19::1488510
    [Crossref] [Google Scholar]
  137. 137.
    Takala H, Lehtivuori H, Berntsson O, Hughes A, Nanekar R, et al. 2018.. On the (un)coupling of the chromophore, tongue interactions and overall conformation in a bacterial phytochrome. . J. Biol. Chem. 293::816172
    [Crossref] [Google Scholar]
  138. 138.
    Takala H, Lehtivuori H, Hammaren H, Hytonen VP, Ihalainen JA. 2014.. Connection between absorption properties and conformational changes in Deinococcus radiodurans phytochrome. . Biochemistry 53::707685
    [Crossref] [Google Scholar]
  139. 139.
    Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH. 2001.. Multiple transcription-factor genes are early targets of phytochrome A signaling. . PNAS 98::943742
    [Crossref] [Google Scholar]
  140. 140.
    Toh KC, Stojković EA, van Stokkum IH, Moffat K, Kennis JT. 2010.. Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome. . PNAS 107::917075
    [Crossref] [Google Scholar]
  141. 141.
    van Thor JJ, Borucki B, Crielaard W, Otto H, Lamparter T, et al. 2001.. Light-induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1. . Biochemistry 40::1146071
    [Crossref] [Google Scholar]
  142. 142.
    VanDerWoude WJ. 1985.. A dimeric mechanism for the action of phytochrome: evidence from photothermal interactions in lettuce seed germination. . Photochem. Photobiol. 42::65561
    [Crossref] [Google Scholar]
  143. 143.
    Velazquez Escobar F, Lang C, Takiden A, Schneider C, Balke J, et al. 2017.. Protonation-dependent structural heterogeneity in the chromophore binding site of cyanobacterial phytochrome Cph1. . J. Phys. Chem. B 121::4757
    [Crossref] [Google Scholar]
  144. 144.
    Viczián A, Ádám E, Wolf I, Bindics J, Kircher S, et al. 2012.. A short amino-terminal part of Arabidopsis phytochrome A induces constitutive photomorphogenic response. . Mol. Plant 5::62941
    [Crossref] [Google Scholar]
  145. 145.
    Viczián A, Nagy F. 2024.. Phytochrome B phosphorylation expanded: site-specific kinases are identified. . New Phytol. 241::6572
    [Crossref] [Google Scholar]
  146. 146.
    von Horsten S, Straß S, Hellwig N, Gruth V, Klasen R, et al. 2016.. Mapping light-driven conformational changes within the photosensory module of plant phytochrome B. . Sci. Rep. 6::34366
    [Crossref] [Google Scholar]
  147. 147.
    Wagner D, Quail PH. 1995.. Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. . PNAS 92::8596600
    [Crossref] [Google Scholar]
  148. 148.
    Wagner JR, Brunzelle JS, Forest KT, Vierstra RD. 2005.. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. . Nature 438::32531 148. The first 3D structural description of a BphP—in this case, of the PAS-GAF bidomain and the remarkable N-terminal knot.
    [Crossref] [Google Scholar]
  149. 149.
    Wagner JR, Zhang J, von Stetten D, Gunther M, Murgida DH, et al. 2008.. Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. . J. Biol. Chem. 283::1221226
    [Crossref] [Google Scholar]
  150. 150.
    Wahlgren WY, Claesson E, Tuure I, Trillo-Muyo S, Bodizs S, et al. 2022.. Structural mechanism of signal transduction in a phytochrome histidine kinase. . Nat. Commun. 13::7673
    [Crossref] [Google Scholar]
  151. 151.
    Wahlgren WY, Golonka D, Westenhoff S, Möglich A. 2021.. Cryo-electron microscopy of Arabidopsis thaliana phytochrome A in its Pr state reveals head-to-head homodimeric architecture. . Front. Plant Sci. 12::663751
    [Crossref] [Google Scholar]
  152. 152.
    Wang J. 2023.. Plant phytochrome A in the Pr state assembles as an asymmetric dimer. . Cell Res. 33::8025
    [Crossref] [Google Scholar]
  153. 153.
    Winkler A, Heintz U, Lindner R, Reinstein J, Shoeman RL, Schlichting I. 2013.. A ternary AppA–PpsR–DNA complex mediates light regulation of photosynthesis-related gene expression. . Nat. Struct. Mol. Biol. 20::85967
    [Crossref] [Google Scholar]
  154. 154.
    Woitowich NC, Halavaty AS, Waltz P, Kupitz C, Valera J, et al. 2018.. Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome. . IUCrJ 5::61934
    [Crossref] [Google Scholar]
  155. 155.
    Xu D, Jiang Y, Li J, Holm M, Deng XW. 2018.. The B-box domain protein BBX21 promotes photomorphogenesis. . Plant Physiol. 176::236575
    [Crossref] [Google Scholar]
  156. 156.
    Yang X, Kuk J, Moffat K. 2008.. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. . PNAS 105::1471520 156. The first structure of a photochemically functional phytochrome in the Pfr state, complimented by Reference 30 for Pr.
    [Crossref] [Google Scholar]
  157. 157.
    Yang X, Kuk J, Moffat K. 2009.. Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome. . PNAS 106::1563944
    [Crossref] [Google Scholar]
  158. 158.
    Yang X, Ren Z, Kuk J, Moffat K. 2011.. Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome. . Nature 479::42832
    [Crossref] [Google Scholar]
  159. 159.
    Yang X, Stojković EA, Kuk J, Moffat K. 2007.. Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. . PNAS 104::1257176
    [Crossref] [Google Scholar]
  160. 160.
    Yang XJ, Stojković EA, Ozarowski WB, Kuk J, Davydova E, Moffat K. 2015.. Light signaling mechanism of two tandem bacteriophytochromes. . Structure 23::117989
    [Crossref] [Google Scholar]
  161. 161.
    Yang Y, Linke M, von Haimberger T, Hahn J, Matute R, et al. 2012.. Real-time tracking of phytochrome's orientational changes during Pr photoisomerization. . J. Am. Chem. Soc. 134::140811
    [Crossref] [Google Scholar]
  162. 162.
    Yang Y, Linke M, von Haimberger T, Matute R, Gonzalez L, et al. 2014.. Active and silent chromophore isoforms for phytochrome Pr photoisomerization: an alternative evolutionary strategy to optimize photoreaction quantum yields. . Struct. Dyn. 1::014701
    [Crossref] [Google Scholar]
  163. 163.
    Yang Y, Stensitzki T, Lang C, Hughes J, Mroginski MA, Heyne K. 2023.. Ultrafast protein response in the Pfr state of Cph1 phytochrome. . Photochem. Photobiol. Sci. 22::91930
    [Crossref] [Google Scholar]
  164. 164.
    Yeh KC, Lagarias JC. 1998.. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. . PNAS 95::1397681
    [Crossref] [Google Scholar]
  165. 165.
    Yeh KC, Wu SH, Murphy JT, Lagarias JC. 1997.. A cyanobacterial phytochrome two-component light sensory system. . Science 277::15058
    [Crossref] [Google Scholar]
  166. 166.
    Zhang J, Stankey RJ, Vierstra RD. 2013.. Structure-guided engineering of plant phytochrome B with altered photochemistry and light signaling. . Plant Physiol. 161::144557
    [Crossref] [Google Scholar]
  167. 167.
    Zhang Y, Lin X, Ma C, Zhao J, Shang X, et al. 2023.. Structural insights into plant phytochrome A as a highly sensitized photoreceptor. . Cell Res. 33::8069 167. Together with References 20 and 152 describes the structures of full-length plant phyA in the inactive Pr state and as apoprotein based on cryo-EM imaging.
    [Crossref] [Google Scholar]
  168. 168.
    Zhao Y, Shi H, Pan Y, Lyu M, Yang Z, et al. 2023.. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. . Cell 186::123043.e14
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-110636
Loading
/content/journals/10.1146/annurev-arplant-070623-110636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error