1932

Abstract

Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-114005
2024-07-22
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-114005.html?itemId=/content/journals/10.1146/annurev-arplant-070623-114005&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdella R, Talyzina A, Chen S, Inouye CJ, Tjian R, He Y. 2021.. Structure of the human Mediator-bound transcription preinitiation complex. . Science 372::5256 1. Determined the cryo-electron microscopy structure of the hMed bound to a preinitiation complex.
    [Crossref] [Google Scholar]
  2. 2.
    Agrawal R, Jiri F, Thakur JK. 2021.. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. . J. Exp. Bot. 72::22440
    [Crossref] [Google Scholar]
  3. 3.
    An C, Li L, Zhai Q, You Y, Deng L, et al. 2017.. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. . PNAS 114::E893039 3. Shows that MED25 integrates jasmonic acid signals at the promoters of MYC2 targets.
    [Google Scholar]
  4. 4.
    Anandhakumar J, Moustafa YW, Chowdhary S, Kainth AS, Gross DS. 2016.. Evidence for multiple Mediator complexes in yeast independently recruited by activated heat shock factor. . Mol. Cell. Biol. 36::194360
    [Crossref] [Google Scholar]
  5. 5.
    Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD. 1999.. Conserved structures of mediator and RNA polymerase II holoenzyme. . Science 283::98587
    [Crossref] [Google Scholar]
  6. 6.
    Autran D, Jonak C, Belcram K, Beemster GTS, Kronenberger J, et al. 2002.. Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. . EMBO J. 21::603649
    [Crossref] [Google Scholar]
  7. 7.
    Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S. 2007.. Purification of a plant Mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. . Mol. Cell 26::71729 7. First purification of a plant Mediator complex.
    [Crossref] [Google Scholar]
  8. 8.
    Baek I, Friedman LJ, Gelles J, Buratowski S. 2021.. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. . Mol. Cell 81::357688.e6 8. Shows that Pol II, TFIIF, and TFIIE preassemble on UASs before loading into PICs.
    [Crossref] [Google Scholar]
  9. 9.
    Baidoobonso SM, Guidi BW, Myers LC. 2007.. Med19(Rox3) regulates intermodule interactions in the Saccharomyces cerevisiae Mediator complex. . J. Biol. Chem. 282::555159
    [Crossref] [Google Scholar]
  10. 10.
    Bajracharya A, Xi J, Grace KF, Bayer EE, Grant CA, et al. 2022.. PHYTOCHROME-INTERACTING FACTOR 4/HEMERA-mediated thermosensory growth requires the Mediator subunit MED14. . Plant Physiol. 190::270621
    [Crossref] [Google Scholar]
  11. 11.
    Ballare CL. 2014.. Light regulation of plant defense. . Annu. Rev. Plant Biol. 65::33563
    [Crossref] [Google Scholar]
  12. 12.
    Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, et al. 2014.. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. . Nature 509::37680
    [Crossref] [Google Scholar]
  13. 13.
    Bonawitz ND, Soltau WL, Blatchley MR, Powers BL, Hurlock AK, et al. 2012.. REF4 and RFR1, subunits of the transcriptional coregulatory complex Mediator, are required for phenylpropanoid homeostasis in Arabidopsis. . J. Biol. Chem. 287::543445
    [Crossref] [Google Scholar]
  14. 14.
    Bourbon H-M. 2008.. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. . Nucleic Acids Res. 36::39934008
    [Crossref] [Google Scholar]
  15. 15.
    Boyce JM, Knight H, Deyholos M, Openshaw MR, Galbraith DW, et al. 2003.. The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. . Plant J. 34::395406
    [Crossref] [Google Scholar]
  16. 16.
    Caillaud M-C, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JDG. 2013.. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. . PLOS Biol. 11::e1001732. Erratum . 2016.. PLOS Biol. 14::e1002408
    [Google Scholar]
  17. 17.
    Canet JV, Dobon A, Tornero P. 2012.. Non-recognition-of-BTH4, an Arabidopsis Mediator subunit homolog, is necessary for development and response to salicylic acid. . Plant Cell 24::422035
    [Crossref] [Google Scholar]
  18. 18.
    Cerdán PD, Chory J. 2003.. Regulation of flowering time by light quality. . Nature 423::88185
    [Crossref] [Google Scholar]
  19. 19.
    Cevher MA, Shi Y, Li D, Chait BT, Malik S, Roeder RG. 2014.. Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit. . Nat. Struct. Mol. Biol. 21::102834
    [Crossref] [Google Scholar]
  20. 20.
    Chen J, Mohan R, Zhang Y, Li M, Chen H, et al. 2019.. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. . Plant Physiol. 181::289304
    [Crossref] [Google Scholar]
  21. 21.
    Chen X, Xu Y. 2022.. Structural insights into assembly of transcription preinitiation complex. . Curr. Opin. Struct. Biol. 75::102404
    [Crossref] [Google Scholar]
  22. 22.
    Chen X, Yin X, Li J, Wu Z, Qi Y, et al. 2021.. Structures of the human Mediator and Mediator-bound preinitiation complex. . Science 372::eabg0635 22. Determined the cryo-electron microscopy structure of the TFIID-based PIC-hMed complex.
    [Crossref] [Google Scholar]
  23. 23.
    Cheng SLH, Wu HW, Xu H, Singh RM, Yao T, et al. 2022.. Nutrient status regulates MED19a phase separation for ORESARA1-dependent senescence. . New Phytol. 236::177995
    [Crossref] [Google Scholar]
  24. 24.
    Cheng SLH, Xu H, Ng JHT, Chua NH. 2023.. Systemic movement of long non-coding RNA ELENA1 attenuates leaf senescence under nitrogen deficiency. . Nat. Plants 9::1598606
    [Crossref] [Google Scholar]
  25. 25.
    Chhun T, Chong SY, Park BS, Wong ECC, Yin J-L, et al. 2016.. HSI2 repressor recruits MED13 and HDA6 to down-regulate seed maturation gene expression directly during Arabidopsis early seedling growth. . Plant Cell Physiol. 57::1689706
    [Crossref] [Google Scholar]
  26. 26.
    Crawford T, Karamat F, Lehotai N, Rentoft M, Blomberg J, et al. 2020.. Specific functions for Mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress. . Sci. Rep. 10::5073
    [Crossref] [Google Scholar]
  27. 27.
    Davis JA, Takagi Y, Kornberg RD, Asturias FA. 2002.. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. . Mol. Cell 10::40915
    [Crossref] [Google Scholar]
  28. 28.
    Davoine C, Abreu IN, Khajeh K, Blomberg J, Kidd BN, et al. 2017.. Functional metabolomics as a tool to analyze Mediator function and structure in plants. . PLOS ONE 12::e0179640
    [Crossref] [Google Scholar]
  29. 29.
    Dhawan R, Luo H, Foerster AM, AbuQamar S, Du H-N, et al. 2009.. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. . Plant Cell 21::100019
    [Crossref] [Google Scholar]
  30. 30.
    Dolan WL, Chapple C. 2018.. Transcriptome analysis of four Arabidopsis thaliana Mediator tail mutants reveals overlapping and unique functions in gene regulation. . G3 8::3093108
    [Crossref] [Google Scholar]
  31. 31.
    Dolan WL, Dilkes BP, Stout JM, Bonawitz ND, Chapple C. 2017.. Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis. . Plant Cell 29::326985
    [Crossref] [Google Scholar]
  32. 32.
    Dotson MR, Yuan CX, Roeder RG, Myers LC, Gustafsson CM, et al. 2000.. Structural organization of yeast and mammalian mediator complexes. . PNAS 97::1430710
    [Crossref] [Google Scholar]
  33. 33.
    El Khattabi L, Zhao H, Kalchschmidt J, Young N, Jung S, et al. 2019.. A pliable Mediator acts as a functional rather than an architectural bridge between promoters and enhancers. . Cell 178::114558.e20
    [Crossref] [Google Scholar]
  34. 34.
    Elmlund H, Baraznenok V, Lindahl M, Samuelsen CO, Koeck PJB, et al. 2006.. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. . PNAS 103::1578893
    [Crossref] [Google Scholar]
  35. 35.
    Feng Q, Li L, Liu Y, Shao X, Li X. 2021.. Jasmonate regulates the FAMA/mediator complex subunit 8-THIOGLUCOSIDE GLUCOHYDROLASE 1 cascade and myrosinase activity. . Plant Physiol. 187::96380
    [Crossref] [Google Scholar]
  36. 36.
    Flanagan PM, Kelleher RJ, Sayre MH, Tschochner H, Kornberg RD. 1991.. A mediator required for activation of RNA polymerase II transcription in vitro. . Nature 350::43638
    [Crossref] [Google Scholar]
  37. 37.
    Fornero C, Rickerd T, Kirik V. 2019.. Papillae formation on Arabidopsis leaf trichomes requires the function of Mediator tail subunits 2, 14, 15a, 16, and 25. . Planta 249::106371
    [Crossref] [Google Scholar]
  38. 38.
    Freytes SN, Canelo M, Cerdán PD. 2021.. Regulation of flowering time: when and where?. Curr. Opin. Plant Biol. 63::102049
    [Crossref] [Google Scholar]
  39. 39.
    Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS. 2010.. The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. . Development 137::11322
    [Crossref] [Google Scholar]
  40. 40.
    Gillmor CS, Silva-Ortega CO, Willmann MR, Buendía-Monreal M, Poethig RS. 2014.. The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions. . Development 141::458089
    [Crossref] [Google Scholar]
  41. 41.
    Giustozzi M, Freytes SN, Jaskolowski A, Lichy M, Mateos J, et al. 2022.. Arabidopsis mediator subunit 17 connects transcription with DNA repair after UV-B exposure. . Plant J. 110::104767
    [Crossref] [Google Scholar]
  42. 42.
    Gonzalez D, Bowen AJ, Carroll TS, Conlan RS. 2007.. The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. . Mol. Cell. Biol. 27::530615
    [Crossref] [Google Scholar]
  43. 43.
    Gonzalez D, Hamidi N, Del Sol R, Benschop JJ, Nancy T, et al. 2014.. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. . PNAS 111::25005
    [Crossref] [Google Scholar]
  44. 44.
    Gromoller A, Lehming N. 2000.. Srb7p is a physical and physiological target of Tup1p. . EMBO J. 19::684552
    [Crossref] [Google Scholar]
  45. 45.
    Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, et al. 2004.. A high resolution protein interaction map of the yeast Mediator complex. . Nucleic Acids Res. 32::537991
    [Crossref] [Google Scholar]
  46. 46.
    Guo J, Wei L, Chen S-S, Cai X-W, Su Y-N, et al. 2021.. The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. . J. Integr. Plant Biol. 63::75571 46. Describes the purification of an almost complete plant Mediator complex.
    [Crossref] [Google Scholar]
  47. 47.
    Guo P, Chong L, Wu F, Hsu CC, Li C, et al. 2021.. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. . J. Integr. Plant Biol. 63::80215
    [Crossref] [Google Scholar]
  48. 48.
    Haffner E, Konietzki S, Diederichsen E. 2015.. Keeping control: the role of senescence and development in plant pathogenesis and defense. . Plants 4::44988
    [Crossref] [Google Scholar]
  49. 49.
    Hallberg M, Hu GZ, Tronnersjo S, Adler D, Balciunas D, et al. 2006.. Functional and physical interactions within the middle domain of the yeast mediator. . Mol. Genet. Genom. 276::197210
    [Crossref] [Google Scholar]
  50. 50.
    Hasan ASMM, Vander Schoor JK, Hecht V, Weller JL. 2020.. The CYCLIN-DEPENDENT KINASE module of the Mediator complex promotes flowering and reproductive development in pea. . Plant Physiol. 182::137586
    [Crossref] [Google Scholar]
  51. 51.
    He H, Denecker J, Van Der Kelen K, Willems P, Pottie R, et al. 2021.. The Arabidopsis mediator complex subunit 8 regulates oxidative stress responses. . Plant Cell 33::203257
    [Crossref] [Google Scholar]
  52. 52.
    Hemsley PA, Hurst CH, Kaliyadasa E, Lamb R, Knight MR, et al. 2014.. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. . Plant Cell 26::46584
    [Crossref] [Google Scholar]
  53. 53.
    Hetherington FM, Kakkar M, Topping JF, Lindsey K. 2021.. Gibberellin signaling mediates lateral root inhibition in response to K+-deprivation. . Plant Physiol. 185::1198215
    [Crossref] [Google Scholar]
  54. 54.
    Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, et al. 1998.. Dissecting the regulatory circuitry of a eukaryotic genome. . Cell 95::71728
    [Crossref] [Google Scholar]
  55. 55.
    Huerta-Venegas PI, Raya-González J, López-García CM, Barrera-Ortiz S, Ruiz-Herrera LF, López-Bucio J. 2022.. Mutation of MEDIATOR16 promotes plant biomass accumulation and root growth by modulating auxin signaling. . Plant Sci. 314::111117
    [Crossref] [Google Scholar]
  56. 56.
    Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G. 2016.. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. . Dev. Cell 37::25466
    [Crossref] [Google Scholar]
  57. 57.
    Imasaki T, Calero G, Cai G, Tsai KL, Yamada K, et al. 2011.. Architecture of the Mediator head module. . Nature 475::24043
    [Crossref] [Google Scholar]
  58. 58.
    Iñigo S, Giraldez AN, Chory J, Cerdán PD. 2012.. Proteasome-mediated turnover of Arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription. . Plant Physiol. 160::166273
    [Crossref] [Google Scholar]
  59. 59.
    Ito J, Fukaki H, Onoda M, Li L, Li C, et al. 2016.. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. . PNAS 113::656267 59. Shows that auxin signaling at UASs causes the dissociation of CKM to promote auxin-inducible transcription.
    [Crossref] [Google Scholar]
  60. 60.
    Ito J, Sono T, Tasaka M, Furutani M. 2011.. MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. . Plant Cell Physiol. 52::53952
    [Crossref] [Google Scholar]
  61. 61.
    Ito M, Okano HJ, Darnell RB, Roeder RG. 2002.. The TRAP100 component of the TRAP/Mediator complex is essential in broad transcriptional events and development. . EMBO J. 21::346475
    [Crossref] [Google Scholar]
  62. 62.
    Jaskolowski A, Iñigo S, Arellano SM, Arias LA, Fiol DF, et al. 2019.. The MED30 subunit of mediator complex is essential for early plant development and promotes flowering in Arabidopsis thaliana. . Development 146::dev175224
    [Crossref] [Google Scholar]
  63. 63.
    Jeronimo C, Langelier M-F, Bataille AR, Pascal JM, Pugh BF, Robert F. 2016.. Tail and kinase modules differently regulate core mediator recruitment and function in vivo. . Mol. Cell 64::45566
    [Crossref] [Google Scholar]
  64. 64.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  65. 65.
    Kazan K. 2017.. The multitalented MEDIATOR25. . Front. Plant Sci. 8::999
    [Crossref] [Google Scholar]
  66. 66.
    Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, et al. 2009.. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. . Plant Cell 21::223752
    [Crossref] [Google Scholar]
  67. 67.
    Kim JI, Zhang X, Pascuzzi PE, Liu C-J, Chapple C. 2020.. Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL. . New Phytol. 225::15468
    [Crossref] [Google Scholar]
  68. 68.
    Kim MJ, Jang I-C, Chua N-H. 2016.. The Mediator complex MED15 subunit mediates activation of downstream lipid-related genes by the WRINKLED1 transcription factor. . Plant Physiol. 171::195164
    [Crossref] [Google Scholar]
  69. 69.
    Kim S, Gross DS. 2013.. Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and mediator tail subunits Med15 and Med16. . J. Biol. Chem. 288::12197213
    [Crossref] [Google Scholar]
  70. 70.
    Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD. 1994.. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. . Cell 77::599608
    [Crossref] [Google Scholar]
  71. 71.
    Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X. 2011.. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. . EMBO J. 30::81422
    [Crossref] [Google Scholar]
  72. 72.
    Klose C, Buche C, Fernandez AP, Schafer E, Zwick E, Kretsch T. 2012.. The mediator complex subunit PFT1 interferes with COP1 and HY5 in the regulation of Arabidopsis light signaling. . Plant Physiol. 160::289307
    [Crossref] [Google Scholar]
  73. 73.
    Knight H, Mugford SG, Ülker B, Gao D, Thorlby G, Knight MR. 2009.. Identification of SFR6, a key component in cold acclimation acting post-translationally on CBF function. . Plant J. 58::97108
    [Crossref] [Google Scholar]
  74. 74.
    Knight H, Thomson AJW, McWatters HG. 2008.. SENSITIVE TO FREEZING6 integrates cellular and environmental inputs to the plant circadian clock. . Plant Physiol. 148::293303
    [Crossref] [Google Scholar]
  75. 75.
    Knight H, Veale EL, Warren GJ, Knight MR. 1999.. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. . Plant Cell 11::87586
    [Crossref] [Google Scholar]
  76. 76.
    Koschubs T, Lorenzen K, Baumli S, Sandstrom S, Heck AJ, Cramer P. 2010.. Preparation and topology of the Mediator middle module. . Nucleic Acids Res. 38::318695
    [Crossref] [Google Scholar]
  77. 77.
    Kumar KRR, Blomberg J, Bjorklund S. 2018.. The MED7 subunit paralogs of Mediator function redundantly in development of etiolated seedlings in Arabidopsis. . Plant J. 96::57894
    [Crossref] [Google Scholar]
  78. 78.
    Lariviere L, Plaschka C, Seizl M, Petrotchenko EV, Wenzeck L, et al. 2013.. Model of the Mediator middle module based on protein cross-linking. . Nucleic Acids Res. 41::926673
    [Crossref] [Google Scholar]
  79. 79.
    Lariviere L, Plaschka C, Seizl M, Wenzeck L, Kurth F, Cramer P. 2012.. Structure of the Mediator head module. . Nature 492::44851
    [Crossref] [Google Scholar]
  80. 80.
    Lee M, Dominguez-Ferreras A, Kaliyadasa E, Huang WJ, Antony E, et al. 2021.. Mediator subunits MED16, MED14, and MED2 are required for activation of ABRE-dependent transcription in Arabidopsis. . Front. Plant Sci. 12::649720
    [Crossref] [Google Scholar]
  81. 81.
    Leydon AR, Wang W, Gala HP, Gilmour S, Juarez-Solis S, et al. 2021.. Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. . eLife 10::e66739
    [Crossref] [Google Scholar]
  82. 82.
    Li HJ, Zhu SS, Zhang MX, Wang T, Liang L, et al. 2015.. Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. . Plant Cell 27::288093
    [Crossref] [Google Scholar]
  83. 83.
    Li W, Yoshida A, Takahashi M, Maekawa M, Kojima M, et al. 2015.. SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. . Plant J. 81::28291
    [Crossref] [Google Scholar]
  84. 84.
    Li X, Yang R, Chen H. 2018.. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. . PLOS ONE 13::e0193458
    [Crossref] [Google Scholar]
  85. 85.
    Li Y-C, Chao T-C, Kim HJ, Cholko T, Chen S-F, et al. 2021.. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. . Sci. Adv. 7::eabd4484 85. Determined the cryo-electron microscopy structure of the yeast CKM.
    [Crossref] [Google Scholar]
  86. 86.
    Liu Q, Bischof S, Harris CJ, Zhong Z, Zhan L, et al. 2020.. The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. . Nat. Commun. 11::2798 86. Proposes a role for plant CKM in the induction of light-responsive gene expression.
    [Crossref] [Google Scholar]
  87. 87.
    Liu Z, Chen G, Gao F, Xu R, Li N, et al. 2019.. Transcriptional repression of the APC/C activator genes CCS52A1/A2 by the Mediator complex subunit MED16 controls endoreduplication and cell growth in Arabidopsis. . Plant Cell 31::1899912 87. Shows interdependent MED16 and DEL1 binding to the CCS52A2 promoter to repress anaphase.
    [Crossref] [Google Scholar]
  88. 88.
    Ma M, Li M, Zhou R, Yu J-B, Wu Y, et al. 2023.. CPR5 positively regulates pattern-triggered immunity via a mediator protein. . J. Integr. Plant Biol. 65::161319
    [Crossref] [Google Scholar]
  89. 89.
    Maji S, Dahiya P, Waseem M, Dwivedi N, Bhat DS, et al. 2019.. Interaction map of Arabidopsis Mediator complex expounding its topology. . Nucleic Acids Res. 47::390420
    [Crossref] [Google Scholar]
  90. 90.
    Mao X, Kim JI, Wheeler MT, Heintzelman AK, Weake VM, Chapple C. 2019.. Mutation of Mediator subunit CDK8 counteracts the stunted growth and salicylic acid hyperaccumulation phenotypes of an Arabidopsis MED5 mutant. . New Phytol. 223::23345
    [Crossref] [Google Scholar]
  91. 91.
    Mathur S, Vyas S, Kapoor S, Tyagi AK. 2011.. The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. . Plant Physiol. 157::160927
    [Crossref] [Google Scholar]
  92. 92.
    Monté D, Clantin B, Dewitte F, Lens Z, Rucktooa P, et al. 2018.. Crystal structure of human Mediator subunit MED23. . Nat. Commun. 9::3389
    [Crossref] [Google Scholar]
  93. 93.
    Nagulapalli M, Maji S, Dwivedi N, Dahiya P, Thakur JK. 2016.. Evolution of disorder in Mediator complex and its functional relevance. . Nucleic Acids Res. 44::1591612
    [Crossref] [Google Scholar]
  94. 94.
    Nguyen VQ, Ranjan A, Liu S, Tang X, Ling YH, et al. 2021.. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. . Mol. Cell 81::356075.e6 94. The authors track single molecules during PIC assembly in yeast cells, revealing their spatiotemporal coordination.
    [Crossref] [Google Scholar]
  95. 95.
    Nonet ML, Young RA. 1989.. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. . Genetics 123::71524
    [Crossref] [Google Scholar]
  96. 96.
    Nozawa K, Schneider TR, Cramer P. 2017.. Core Mediator structure at 3.4 A extends model of transcription initiation complex. . Nature 545::24851 96. Reports the crystal structure of the cMed from Schizosaccharomyces pombe at 3.4 Å resolution.
    [Crossref] [Google Scholar]
  97. 97.
    Osman S, Mohammad E, Lidschreiber M, Stuetzer A, Bazso FL, et al. 2021.. The Cdk8 kinase module regulates interaction of the mediator complex with RNA polymerase II. . J. Biol. Chem. 296::100734
    [Crossref] [Google Scholar]
  98. 98.
    Peng S, Guo D, Guo Y, Zhao H, Mei J, et al. 2022.. CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 is an RNA-binding protein controlling plant immunity via an RNA processing complex. . Plant Cell 34::172444
    [Crossref] [Google Scholar]
  99. 99.
    Petrenko N, Jin Y, Wong KH, Struhl K. 2016.. Mediator undergoes a compositional change during transcriptional activation. . Mol. Cell 64::44354
    [Crossref] [Google Scholar]
  100. 100.
    Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M, et al. 2015.. Architecture of the RNA polymerase II–Mediator core initiation complex. . Nature 518::37680
    [Crossref] [Google Scholar]
  101. 101.
    Raya-González J, Ojeda-Rivera JO, Mora-Macias J, Oropeza-Aburto A, Ruiz-Herrera LF, et al. 2021.. MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots. . New Phytol. 229::127888
    [Crossref] [Google Scholar]
  102. 102.
    Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, et al. 2009.. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. . Mol. Cell 33::192203
    [Crossref] [Google Scholar]
  103. 103.
    Rengachari S, Schilbach S, Aibara S, Dienemann C, Cramer P. 2021.. Structure of the human Mediator–RNA polymerase II pre-initiation complex. . Nature 594::12933 103. Reveals the proximal tail module in the hMed cryo-electron microscopy structure.
    [Crossref] [Google Scholar]
  104. 104.
    Richter WF, Nayak S, Iwasa J, Taatjes DJ. 2022.. The Mediator complex as a master regulator of transcription by RNA polymerase II. . Nat. Rev. Mol. Cell Biol. 23::73249
    [Crossref] [Google Scholar]
  105. 105.
    Robinson PJJ, Bushnell DA, Trnka MJ, Burlingame AL, Kornberg RD. 2012.. Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II. . PNAS 109::1793135
    [Crossref] [Google Scholar]
  106. 106.
    Robinson PJ, Trnka MJ, Bushnell DA, Davis RE, Mattei PJ, et al. 2016.. Structure of a complete Mediator-RNA polymerase II pre-initiation complex. . Cell 166::141122.e16
    [Crossref] [Google Scholar]
  107. 107.
    Robinson PJ, Trnka MJ, Pellarin R, Greenberg CH, Bushnell DA, et al. 2015.. Molecular architecture of the yeast Mediator complex. . eLife 4::e08719
    [Crossref] [Google Scholar]
  108. 108.
    Sato S, Tomomori-Sato C, Banks CA, Parmely TJ, Sorokina I, et al. 2003.. A mammalian homolog of Drosophila melanogaster transcriptional coactivator intersex is a subunit of the mammalian Mediator complex. . J. Biol. Chem. 278::4967174
    [Crossref] [Google Scholar]
  109. 109.
    Sato S, Tomomori-Sato C, Banks CA, Sorokina I, Parmely TJ, et al. 2003.. Identification of mammalian Mediator subunits with similarities to yeast Mediator subunits Srb5, Srb6, Med11, and Rox3. . J. Biol. Chem. 278::1512327
    [Crossref] [Google Scholar]
  110. 110.
    Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, et al. 2004.. A set of consensus mammalian Mediator subunits identified by multidimensional protein identification technology. . Mol. Cell 14::68591
    [Crossref] [Google Scholar]
  111. 111.
    Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C, et al. 2017.. Structures of transcription pre-initiation complex with TFIIH and Mediator. . Nature 551::2049
    [Crossref] [Google Scholar]
  112. 112.
    Shaikhali J, Davoine C, Bjorklund S, Wingsle G. 2016.. Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence. . Protoplasma 253::95763
    [Crossref] [Google Scholar]
  113. 113.
    Shapulatov U, van Zanten M, van Hoogdalem M, Meisenburg M, van Hall A, et al. 2023.. The Mediator complex subunit MED25 interacts with HDA9 and PIF4 to regulate thermomorphogenesis. . Plant Physiol. 192::582600
    [Crossref] [Google Scholar]
  114. 114.
    Stevens JL, Cantin GT, Wang G, Shevchenko A, Shevchenko A, Berk AJ. 2002.. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. . Science 296::75558
    [Crossref] [Google Scholar]
  115. 115.
    Stout J, Romero-Severson E, Ruegger MO, Chapple C. 2008.. Semidominant mutations in Reduced Epidermal Fluorescence 4 reduce phenylpropanoid content in Arabidopsis. . Genetics 178::223751
    [Crossref] [Google Scholar]
  116. 116.
    Sun W, Han H, Deng L, Sun C, Xu Y, et al. 2020.. Mediator subunit MED25 physically interacts with PHYTOCHROME INTERACTING FACTOR4 to regulate shade-induced hypocotyl elongation in tomato. . Plant Physiol. 184::154962
    [Crossref] [Google Scholar]
  117. 117.
    Taatjes DJ, Näär AM, Andel F 3rd, Nogales E, Tjian R. 2002.. Structure, function, and activator-induced conformations of the CRSP coactivator. . Science 295::105862
    [Crossref] [Google Scholar]
  118. 118.
    Takagi Y, Calero G, Komori H, Brown JA, Ehrensberger AH, et al. 2006.. Head module control of mediator interactions. . Mol. Cell 23::35564
    [Crossref] [Google Scholar]
  119. 119.
    Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CA, et al. 2011.. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. . Cell 146::92104
    [Crossref] [Google Scholar]
  120. 120.
    Thakur JK, Agarwal P, Parida S, Bajaj D, Pasrija R. 2013.. Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis. . Mol. Genet. Genom. 288::32946
    [Crossref] [Google Scholar]
  121. 121.
    Thompson CM, Koleske AJ, Chao DM, Young RA. 1993.. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. . Cell 73::136175
    [Crossref] [Google Scholar]
  122. 122.
    Thompson CM, Young RA. 1995.. General requirement for RNA polymerase II holoenzymes in vivo. . PNAS 92::458790
    [Crossref] [Google Scholar]
  123. 123.
    Tsai K-L, Yu X, Gopalan S, Chao T-C, Zhang Y, et al. 2017.. Mediator structure and rearrangements required for holoenzyme formation. . Nature 544::196201
    [Crossref] [Google Scholar]
  124. 124.
    Tsai K-L, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ. 2014.. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex. . Cell 157::143044
    [Crossref] [Google Scholar]
  125. 125.
    van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn TT, van Leenen D, Holstege FC. 2005.. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. . Mol. Cell 19::51122
    [Crossref] [Google Scholar]
  126. 126.
    Verger A, Monte D, Villeret V. 2019.. Twenty years of Mediator complex structural studies. . Biochem. Soc. Trans. 47::399410
    [Crossref] [Google Scholar]
  127. 127.
    Wang C, Du X, Mou Z. 2016.. The Mediator complex subunits MED14, MED15, and MED16 are involved in defense signaling crosstalk in Arabidopsis. . Front. Plant Sci. 7::1947
    [Google Scholar]
  128. 128.
    Wang C, Yao J, Du X, Zhang Y, Sun Y, et al. 2015.. The Arabidopsis Mediator complex subunit16 is a key component of basal resistance against the necrotrophic fungal pathogen Sclerotinia sclerotiorum. . Plant Physiol. 169::85672
    [Crossref] [Google Scholar]
  129. 129.
    Wang X, Sun Q, Ding Z, Ji J, Wang J, et al. 2014.. Redefining the modular organization of the core Mediator complex. . Cell Res. 24::796808
    [Crossref] [Google Scholar]
  130. 130.
    Wathugala DL, Hemsley PA, Moffat CS, Cremelie P, Knight MR, Knight H. 2012.. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. . New Phytol. 195::21730
    [Crossref] [Google Scholar]
  131. 131.
    Wu Q, Tong C, Chen Z, Huang S, Zhao X, et al. 2023.. NLRs derepress MED10b- and MED7-mediated repression of jasmonate-dependent transcription to activate immunity. . PNAS 120::e2302226120
    [Crossref] [Google Scholar]
  132. 132.
    Xu J, Zhu J, Liu J, Wang J, Ding Z, Tian H. 2021.. SIZ1 negatively regulates aluminum resistance by mediating the STOP1–ALMT1 pathway in Arabidopsis. . J. Integr. Plant Biol. 63::114760
    [Crossref] [Google Scholar]
  133. 133.
    Yang Y, Ou B, Zhang J, Si W, Gu H, et al. 2014.. The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25. . Plant J. 77::83851
    [Crossref] [Google Scholar]
  134. 134.
    Yao T, Park BS, Mao HZ, Seo JS, Ohama N, et al. 2019.. Regulation of flowering time by SPL10/MED25 module in Arabidopsis. . New Phytol. 224::493504
    [Crossref] [Google Scholar]
  135. 135.
    Zhai Q, Deng L, Li C. 2020.. Mediator subunit MED25: at the nexus of jasmonate signaling. . Curr. Opin. Plant Biol. 57::7886
    [Crossref] [Google Scholar]
  136. 136.
    Zhai Z, Blanford JK, Cai Y, Sun J, Liu H, et al. 2023.. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription. . New Phytol. 238::72436 136. Shows that CKM plays a positive role in the transcription of seed-storage lipid biosynthesis genes.
    [Crossref] [Google Scholar]
  137. 137.
    Zhang F, Sumibcay L, Hinnebusch AG, Swanson MJ. 2004.. A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p. . Mol. Cell. Biol. 24::687186
    [Crossref] [Google Scholar]
  138. 138.
    Zhang H, Chen DH, Mattoo RUH, Bushnell DA, Wang Y, et al. 2021.. Mediator structure and conformation change. . Mol. Cell 81::178188.e4
    [Crossref] [Google Scholar]
  139. 139.
    Zhang X, Wang C, Zhang Y, Sun Y, Mou Z. 2012.. The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. . Plant Cell 24::4294309
    [Crossref] [Google Scholar]
  140. 140.
    Zhang X, Yao J, Zhang Y, Sun Y, Mou Z. 2013.. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. . Plant J. 75::48497
    [Crossref] [Google Scholar]
  141. 141.
    Zhang X, Zhou W, Chen Q, Fang M, Zheng S, et al. 2018.. Mediator subunit MED31 is required for radial patterning of Arabidopsis roots. . PNAS 115::E562433
    [Crossref] [Google Scholar]
  142. 142.
    Zhang Y, Wu H, Wang N, Fan H, Chen C, et al. 2014.. Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis. . New Phytol. 203::77083
    [Crossref] [Google Scholar]
  143. 143.
    Zhao H, Young N, Kalchschmidt J, Lieberman J, El Khattabi L, et al. 2021.. Structure of mammalian Mediator complex reveals Tail module architecture and interaction with a conserved core. . Nat. Commun. 12::1355
    [Crossref] [Google Scholar]
  144. 144.
    Zhu Y, Huang P, Guo P, Chong L, Yu G, et al. 2020.. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. . New Phytol. 228::157390
    [Crossref] [Google Scholar]
  145. 145.
    Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, et al. 2014.. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. . Plant Cell 26::414970
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-114005
Loading
/content/journals/10.1146/annurev-arplant-070623-114005
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error