1932

Abstract

L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus , it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social interests. We have performed a meta-analysis of pooled published genomics data, andwe present a comprehensive literature review on the evolutionary history of and , including medicinal and industrial applications. We demonstrate that current genome assemblies are incomplete, with ∼10% missing, 10–25% unmapped, and 45S and 5S ribosomal DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are also ordered at a low resolution, and their consensus quality clouds the accurate annotation of complete, partial, and pseudogenized gene copies. Considering the importance of genomics in the development of any crop, this analysis underlines the need for a coordinated effort to quantify the genetic and biochemical diversity of this species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-081519-040203
2020-04-29
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-081519-040203.html?itemId=/content/journals/10.1146/annurev-arplant-081519-040203&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbott JK, Nordén AK, Hansson B 2017. Sex chromosome evolution: historical insights and future perspectives. Proc. R. Soc. B 284:20162806
    [Google Scholar]
  2. 2. 
    Aghazadeh Tabrizi M, Baraldi PG 2017. Chemistry of cannabinoid receptor agonists. Handbook of Cannabis and Related Pathologies VR Preedy 592–605 London: Academic
    [Google Scholar]
  3. 3. 
    Aiello G, Fasoli E, Boschin G, Lammi C, Zanoni C et al. 2016. Proteomic characterization of hempseed (Cannabis sativa L.). J. Proteom. 147:187–96
    [Google Scholar]
  4. 4. 
    Anavi-Goffer S, Baillie G, Irving AJ, Gertsch J, Greig IR et al. 2012. Modulation of l-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J. Biol. Chem. 287:191–104
    [Google Scholar]
  5. 5. 
    Andre CM, Hausman J-F, Guerriero G 2016. Cannabis sativa: the plant of the thousand and one molecules. Front. Plant Sci. 7:19
    [Google Scholar]
  6. 6. 
    Atakan Z. 2012. Cannabis, a complex plant: different compounds and different effects on individuals. Ther. Adv. Psychopharmacol. 2:6241–54
    [Google Scholar]
  7. 7. 
    Badowski M, Yanful PK. 2018. Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer. Ther. Clin. Risk Manag. 14:643–51
    [Google Scholar]
  8. 8. 
    Behre K-E. 1999. The history of beer additives in Europe—a review. Veg. Hist. Archaeobot. 8:1–235–48
    [Google Scholar]
  9. 9. 
    Bell CD, Soltis DE, Soltis PS 2010. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 97:81296–303
    [Google Scholar]
  10. 10. 
    Bocquet L, Sahpaz S, Hilbert JL, Rambaud C, Rivière C 2018. Humulus lupulus L., a very popular beer ingredient and medicinal plant: overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem. Rev. 17:51047–90
    [Google Scholar]
  11. 11. 
    Booth JK, Page JE, Bohlmann J 2017. Terpene synthases from Cannabis sativa. PLOS ONE 12:3e0173911
    [Google Scholar]
  12. 12. 
    Boutain JR, Boutain MR. 2015. Nanopore DNA sequencing a native North American hop (Humulus lupulus var. lupuloides) with implications for research on Cannabaceae collections Presented at IV International Humulus Symposium Yakima, WA:
    [Google Scholar]
  13. 13. 
    Bouvier F, Rahier A, Camara B 2005. Biogenesis, molecular regulation and function of plant isoprenoids. Prog. Lipid Res. 44:6357–429
    [Google Scholar]
  14. 14. 
    Bowen LL, McRae-Clark AL. 2018. Therapeutic benefit of smoked cannabis in randomized placebo-controlled studies. Pharmacother. J. Hum. Pharmacol. Drug Ther. 38:180–85
    [Google Scholar]
  15. 15. 
    Burke CC, Wildung MR, Croteau R 1999. Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. PNAS 96:2313062–67
    [Google Scholar]
  16. 16. 
    Carvalho Â, EH Hansen, Kayser O, Carlsen S, Stehle F 2017. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res 17:4):fox037
    [Google Scholar]
  17. 17. 
    Charlesworth B. 1991. The evolution of sex chromosomes. Science 251:1030–33
    [Google Scholar]
  18. 18. 
    Charlesworth B, Charlesworth D. 1978. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112:988975–97
    [Google Scholar]
  19. 19. 
    Charlesworth D, Charlesworth B, Marais G 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:2118–28
    [Google Scholar]
  20. 20. 
    Chen JW, Borgelt LM, Blackmer AB 2019. Cannabidiol: a new hope for patients with Dravet or Lennox-Gastaut syndromes. Ann. Pharmacother. 53:6603–11
    [Google Scholar]
  21. 21. 
    Clark SM, Vaitheeswaran V, Ambrose SJ, Purves RW, Page JE 2013. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC Plant Biol 13:12
    [Google Scholar]
  22. 22. 
    Clarke RC. 2007. Traditional Cannabis cultivation in Darchula District, Nepal—seed, resin and textiles. J. Ind. Hemp 12:219–42
    [Google Scholar]
  23. 23. 
    Clarke RC, Merlin MD. 2013. Cannabis: Evolution and Ethnobotany Berkeley: Univ. Calif. Press
  24. 24. 
    de Meijer EPM, Hammond AKM, Sutton AA, Hammond KM, Sutton AA 2009. The inheritance of chemical phenotype in Cannabis sativa L. IV. Cannabinoid-free plants. Euphytica 168:195–112
    [Google Scholar]
  25. 25. 
    Delyser DY, Kasper WJ. 1994. Hopped beer: the case for cultivation. Econ. Bot. 48:2166–70
    [Google Scholar]
  26. 26. 
    Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI 2014. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLOS ONE 9:1e85118
    [Google Scholar]
  27. 27. 
    Duvall CS. 2017. Cannabis and tobacco in precolonial and colonial Africa. Oxford Research Encyclopedia of African History T Spear New York: Oxford Univ. Press. https://doi.org/10.1093/acrefore/9780190277734.013.44
    [Crossref] [Google Scholar]
  28. 28. 
    Faux A-M, Berhin A, Dauguet N, Bertin P 2014. Sex chromosomes and quantitative sex expression in monoecious hemp (Cannabis sativa L.). Euphytica 196:2183–97
    [Google Scholar]
  29. 29. 
    Fellermeier M, Eisenreich W, Bacher A, Zenk MH 2001. Biosynthesis of cannabinoids. Eur. J. Biochem. 268:61596–604
    [Google Scholar]
  30. 30. 
    Fellermeier M, Zenk MH. 1998. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett 427:2283–85
    [Google Scholar]
  31. 31. 
    Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE 2012. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. PNAS 109:3112811–16
    [Google Scholar]
  32. 32. 
    Gao C, Xin P, Cheng C, Tang Q, Chen P et al. 2014. Diversity analysis in Cannabis sativa based on large-scale development of expressed sequence tag-derived simple sequence repeat markers. PLOS ONE 9:10e110638
    [Google Scholar]
  33. 33. 
    Gerhäuser C. 2009. Phenolic beer compounds to prevent cancer. Beer in Health and Disease Prevention VR Preedy 669–84 Burlington, MA: Academic
    [Google Scholar]
  34. 34. 
    Gertsch J, Leonti M, Raduner S, Racz I, Chen J-Z et al. 2008. Beta-caryophyllene is a dietary cannabinoid. PNAS 105:269099–104
    [Google Scholar]
  35. 35. 
    Giacoppo S, Bramanti P, Mazzon E 2017. Sativex in the management of multiple sclerosis-related spasticity: an overview of the last decade of clinical evaluation. Mult. Scler. Relat. Disord. 17:22–31
    [Google Scholar]
  36. 36. 
    Gilmore S, Peakall R, Robertson J 2007. Organelle DNA haplotypes reflect crop-use characteristics and geographic origins of Cannabis sativa. Forensic Sci. Int 172:2–3179–90
    [Google Scholar]
  37. 37. 
    Grabowska-Joachimiak A, Śliwińska E, Pigula M, Skomra U, Joachimiak AJ 2006. Genome size in Humulus lupulus L. and H. japonicus Siebold and Zucc. (Cannabaceae) 2006. Acta Soc. Bot. Pol. 75:3207–14
    [Google Scholar]
  38. 38. 
    Grassa CJ, Wenger JP, Dabney C, Poplawski SG, Motley ST et al. 2018. A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content. bioRxiv 458083. https://doi.org/10.1101/458083
    [Crossref]
  39. 39. 
    Günnewich N, Page JE, Köllner TG, Degenhardt J, Kutchan TM 2007. Functional expression and characterization of trichome-specific (-)-limonene synthase and (+)-α-pinene synthase from Cannabis sativa. Nat. Prod. Commun 2:3223–32
    [Google Scholar]
  40. 40. 
    Happyana N. 2014. Metabolomics, proteomics, and transcriptomics of Cannabis sativa L. trichomes PhD Thesis, TU Dortmund Univ Dortmund, Ger:.
    [Google Scholar]
  41. 41. 
    Häuser W, Welsch P, Klose P, Radbruch L, Fitzcharles M-A 2019. Efficacy, tolerability and safety of cannabis-based medicines for cancer pain. Schmerz 33:5424–36
    [Google Scholar]
  42. 42. 
    Hill ST, Sudarsanam R, Henning J, Hendrix D 2017. HopBase: a unified resource for Humulus genomics. Database 2017: bax009
    [Google Scholar]
  43. 43. 
    Hillig KW. 2005. Genetic evidence for speciation in Cannabis (Cannabaceae). Genet. Resour. Crop Evol. 52:2161–80
    [Google Scholar]
  44. 44. 
    Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Słomski R, Skrzypczak-Zielińska M 2018. Pharmacogenetics of cannabinoids. Eur. J. Drug Metab. Pharmacokinet. 43:11–12
    [Google Scholar]
  45. 45. 
    Hu Z-G, Guo H-Y, Hu X-L, Chen X, Liu X-Y et al. 2012. Genetic diversity research of hemp (Cannabis sativa L) cultivar based on AFLP analysis. J. Plant Genet. Resour. 13:4555–61
    [Google Scholar]
  46. 46. 
    Izzo AA, Coutts AA. 2005. Cannabinoids and the digestive tract. Handb. Exp. Pharmacol. 168:573–98
    [Google Scholar]
  47. 47. 
    Jenkins C, Orsburn B. 2019. The first publicly available annotated genome for Cannabis plants. bioRxiv 786186. https://doi.org/10.1101/786186
    [Crossref]
  48. 48. 
    Jenkins C, Orsburn B. 2020. The Cannabis proteome draft map project. Int. J. Mol. Sci. 21:3965
    [Google Scholar]
  49. 49. 
    Jiang H-E, Li X, Zhao Y-X, Ferguson DK, Hueber F et al. 2006. A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J. Ethnopharmacol. 108:3414–22
    [Google Scholar]
  50. 50. 
    Jiang H-E, Merlin M. 2016. Ancient Cannabis burial shroud in a central Eurasian cemetery. Econ. Bot. 70:3213–21
    [Google Scholar]
  51. 51. 
    Jin J-J, Yang M-Q, Fritsch PW, van Velzen R, Li D-Z, Yi T-S 2019. Born migrators: historical biogeography of the cosmopolitan family Cannabaceae. J. System. Evol. In press. https://doi.org/10.1111/jse.12552
    [Crossref] [Google Scholar]
  52. 52. 
    Kathmann M, Flau K, Redmer A, Tränkle C, Schlicker E 2006. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn Schmiedebergs Arch. Pharmacol. 372:5354–61
    [Google Scholar]
  53. 53. 
    Keeble-Gagnère G, Rigault P, Tibbits J, Pasam R, Hayden M et al. 2018. Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biol 19:1112
    [Google Scholar]
  54. 54. 
    Kimura M, Okamoto K. 1970. Distribution of tetrahydrocannabinolic acid in fresh wild cannabis. Experientia 26:8819–20
    [Google Scholar]
  55. 55. 
    Kowal MA, Hazekamp A, Colzato LS, van Steenbergen H, van der Wee NJA et al. 2015. Cannabis and creativity: Highly potent cannabis impairs divergent thinking in regular cannabis users. Psychopharmacology 232:61123–34
    [Google Scholar]
  56. 56. 
    Laverty KU, Stout JM, Sullivan MJ, Shah H, Gill N et al. 2019. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res 29:1146–56
    [Google Scholar]
  57. 57. 
    Li H, Ban Z, Qin H, Ma L, King AJ, Wang G 2015. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol 167:3650–59
    [Google Scholar]
  58. 58. 
    Livingston SJ, Quilichini TD, Booth JK, Wong DCJ, Rensing KH et al. 2019. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant J 101:37–56
    [Google Scholar]
  59. 59. 
    Long T, Wagner M, Demske D, Leipe C, Tarasov PE 2017. Cannabis in Eurasia: origin of human use and Bronze Age trans-continental connections. Veg. Hist. Archaeobot. 26:2245–58
    [Google Scholar]
  60. 60. 
    Lowe DJE, Sasiadek JD, Coles AS, George TP 2019. Cannabis and mental illness: a review. Eur. Arch. Psychiatry Clin. Neurosci. 269:1107–20
    [Google Scholar]
  61. 61. 
    Lu H-C, Mackie K. 2016. An introduction to the endogenous cannabinoid system. Biol. Psychiatr. 79:7516–25
    [Google Scholar]
  62. 62. 
    Lynch RC, Vergara D, Tittes S, White K, Schwartz CJ et al. 2016. Genomic and chemical diversity in Cannabis. Crit. Rev. Plant Sci 35:5–6349–63
    [Google Scholar]
  63. 63. 
    Mamone G, Picariello G, Ramondo A, Nicolai MA, Ferranti P 2019. Production, digestibility and allergenicity of hemp (Cannabis sativa L.) protein isolates. Food Res. Int. 115:562–71
    [Google Scholar]
  64. 64. 
    Mandolino G, Carboni A, Forapani S, Faeti V, Ranalli P 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theor. Appl. Genet. 98:186–92
    [Google Scholar]
  65. 65. 
    Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W et al. 2009. Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J. Exp. Bot 60:133715–26
    [Google Scholar]
  66. 66. 
    Maroon J, Bost J. 2018. Review of the neurological benefits of phytocannabinoids. Surg. Neurol. Int. 9:191
    [Google Scholar]
  67. 67. 
    McKernan KJ, Helbert Y, Kane LT, Ebling H, Zhang L et al. 2020. Sequence and annotation of 42 cannabis genomes reveals extensive copy number variation in cannabinoid synthesis and pathogen resistance genes. bioRxiv 894428. https://doi.org/10.1101/2020.01.03.894428
    [Crossref]
  68. 68. 
    McPartland JM. 2018. Cannabis systematics at the levels of family, genus, and species. Cannabis Cannabinoid Res 3:1203–12
    [Google Scholar]
  69. 69. 
    McPartland JM, Hegman W, Long T 2019. Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Veg. Hist. Archaeobot. 28:6691–702
    [Google Scholar]
  70. 70. 
    Ming R, Bendahmane A, Renner SS 2011. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 62:485–514
    [Google Scholar]
  71. 71. 
    Moliterni VMC, Cattivelli L, Ranalli P, Mandolino G 2004. The sexual differentiation of Cannabis sativa L.: a morphological and molecular study. Euphytica 140:195–106
    [Google Scholar]
  72. 72. 
    Nagel J, Culley LK, Lu Y, Liu E, Matthews PD et al. 2008. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:1186–200
    [Google Scholar]
  73. 73. 
    Naraine SGU, Small E. 2017. Germplasm sources of protective glandular leaf trichomes of hop (Humulus lupulus). Genet. Resour. Crop Evol. 64:71491–97
    [Google Scholar]
  74. 74. 
    Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H et al. 2015. The draft genome of hop (Humulus lupulus), an essence for brewing. Plant Cell Physiol 56:3428–41
    [Google Scholar]
  75. 75. 
    Neve RA. 1961. Sex determination in the cultivated hop Humulus lupulus. PhD Thesis, Univ London:
  76. 76. 
    Novak P, Krofta K, Matousek J 2006. Chalcone synthase homologues from Humulus lupulus: some enzymatic properties and expression. Biol. Plant. 50:148–54
    [Google Scholar]
  77. 77. 
    Oh H, Seo B, Lee S, Ahn D-H, Jo E et al. 2015. Two complete chloroplast genome sequences of Cannabis sativa varieties. Mitochondrial DNA A 27:42835–37
    [Google Scholar]
  78. 78. 
    Okada Y, Ito K. 2001. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.). Biosci. Biotechnol. Biochem. 65:1150–55
    [Google Scholar]
  79. 79. 
    Ono T, Suzuki H. 1962. Cytological studies. The Wild Hop Native to Japan T Ono 71–110 Sendai, Jpn.: Sasaki Print.
    [Google Scholar]
  80. 80. 
    Onofri C, de Meijer EPM, Mandolino G 2015. Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry 116:57–68
    [Google Scholar]
  81. 81. 
    Page JE, Stout JM. 2015. Cannabichromenic acid synthase from Cannabis sativa US Patent 10364416B2
    [Google Scholar]
  82. 82. 
    Palmer JD. 1983. Chloroplast DNA exists in two orientations. Nature 301:589592–93
    [Google Scholar]
  83. 83. 
    Park S-K, Seo J-B, Lee M-Y 2012. Proteomic profiling of hempseed proteins from Cheungsam. Biochim. Biophys. Acta 1824:2374–82
    [Google Scholar]
  84. 84. 
    Parker JS, Clark MS. 1991. Dosage sex-chromosome system in plants. Plant Sci 80:1–279–92
    [Google Scholar]
  85. 85. 
    Peil A, Flachowsky H, Schumann E, Weber WE 2003. Sex-linked AFLP markers indicate a pseudoautosomal region in hemp (Cannabis sativa L.). Theor. Appl. Genet. 107:1102–9
    [Google Scholar]
  86. 86. 
    Pisupati R, Vergara D, Kane NC 2018. Diversity and evolution of the repetitive genomic content in Cannabis sativa. BMC Genom 19:1156
    [Google Scholar]
  87. 87. 
    Prentout D, Razumova O, Rhoné B, Badouin H, Henri H et al. 2020. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res 30:2164–72
    [Google Scholar]
  88. 88. 
    Radwan MM, ElSohly MA, El-Alfy AT, Ahmed SA, Slade D et al. 2015. Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa. J. Nat. Prod 78:61271–76
    [Google Scholar]
  89. 89. 
    Raharjo TJ, Chang W-T, Choi YH, Peltenburg-Looman AM, Verpoorte R 2004. Olivetol as product of a polyketide synthase in Cannabis sativa L. Plant Sci 166:2381–85
    [Google Scholar]
  90. 90. 
    Ren M, Tang Z, Wu X, Spengler R, Jiang H et al. 2019. The origins of cannabis smoking: chemical residue evidence from the first millennium BCE in the Pamirs. Sci. Adv. 5:6eaaw1391
    [Google Scholar]
  91. 91. 
    Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101:101588–96
    [Google Scholar]
  92. 92. 
    Ribeiro LI, Ind PW. 2016. Effect of cannabis smoking on lung function and respiratory symptoms: a structured literature review. NPJ Prim. Care Respir. Med. 26:116071
    [Google Scholar]
  93. 93. 
    Richins RD, Rodriguez-Uribe L, Lowe K, Ferral R, O'Connell MA 2018. Accumulation of bioactive metabolites in cultivated medical Cannabis. PLOS ONE 13:7e0201119
    [Google Scholar]
  94. 94. 
    Russo EB, Jiang H-E, Li X, Sutton A, Carboni A et al. 2008. Phytochemical and genetic analyses of ancient cannabis from Central Asia. J. Exp. Bot. 59:154171–82
    [Google Scholar]
  95. 95. 
    Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S 1998. Characterization; genome sizes and morphology of sex chromosomes in hemp (Cannabis sativa L.). Jpn. Mendel Soc. 63:4459–64
    [Google Scholar]
  96. 96. 
    Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S 2000. Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol. Biol 44:6723–32
    [Google Scholar]
  97. 97. 
    Sakamoto K, Shimomura K, Komeda Y, Kamada H, Satoh S 1995. A male-associated DNA sequence in a dioecious plant, Cannabis sativa L. Plant Cell Physiol 36:81549–54
    [Google Scholar]
  98. 98. 
    Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J et al. 2015. The genetic structure of marijuana and hemp. PLOS ONE 10:8e0133292
    [Google Scholar]
  99. 99. 
    Shoyama Y, Hirano H, Nishioka I 1984. Biosynthesis of propyl cannabinoid acid and its biosynthetic relationship with pentyl and methyl cannabinoid acids. Phytochemistry 23:91909–12
    [Google Scholar]
  100. 100. 
    Sirikantaramas S, Morimoto S, Shoyama YY, Ishikawa Y, Wada Y et al. 2004. The gene controlling marijuana psychoactivity. J. Biol. Chem. 279:3839767–74
    [Google Scholar]
  101. 101. 
    Sirikantaramas S, Taura F. 2017. Cannabinoids: biosynthesis and biotechnological applications. Cannabis sativa L. - Botany and Biotechnology S Chandra, H Lata, MA ElSohly 183–206 Cham, Switz.: Springer
    [Google Scholar]
  102. 102. 
    Sirikantaramas S, Taura F, Morimoto S, Shoyama Y 2007. Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr. Pharm. Biotechnol. 8:4237–43
    [Google Scholar]
  103. 103. 
    Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y 2005. Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:91578–82
    [Google Scholar]
  104. 104. 
    Small E. 1978. A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst. Bot 3:137–76
    [Google Scholar]
  105. 105. 
    Small E. 2016. Cannabis: A Complete Guide Boca Raton, FL: CRC Press
  106. 106. 
    Small E. 2018. Dwarf germplasm: the key to giant Cannabis hempseed and cannabinoid crops. Gen. Res. Crop Evol. 65:41071–107
    [Google Scholar]
  107. 107. 
    Small E, Pocock T, Cavers PB 2003. The biology of Canadian weeds. 119. Cannabis sativa L. Can. J. Plant Sci 83:1217–37
    [Google Scholar]
  108. 108. 
    Soler S, Gramazio P, Figàs MR, Vilanova S, Rosa E et al. 2017. Genetic structure of Cannabis sativa var. indica cultivars based on genomic SSR (gSSR) markers: implications for breeding and germplasm management. Ind. Crop. Prod. 104:171–78
    [Google Scholar]
  109. 109. 
    Soorni A, Fatahi R, Haak DC, Salami SA, Bombarely A 2017. Assessment of genetic diversity and population structure in Iranian Cannabis germplasm. Sci. Rep. 7:115668
    [Google Scholar]
  110. 110. 
    Stone NL, Millar SA, Herrod PJJ, Barrett DA, Ortori CA et al. 2018. An analysis of endocannabinoid concentrations and mood following singing and exercise in healthy volunteers. Front. Behav. Neurosci. 12:269
    [Google Scholar]
  111. 111. 
    Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE 2012. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:3353–65
    [Google Scholar]
  112. 112. 
    Sung B, Chung JW, Bae HR, Choi JS, Kim CM, Kim ND 2015. Humulus japonicus extract exhibits antioxidative and anti-aging effects via modulation of the AMPK-SIRT1 pathway. Exp. Ther. Med. 9:51819–26
    [Google Scholar]
  113. 113. 
    Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E et al. 2002. Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am. J. Bot. 89:91531–46
    [Google Scholar]
  114. 114. 
    Taura F, Sirikantaramas S, Shoyama YY, Yoshikai K, Shoyama YY, Morimoto S 2007. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:162929–34
    [Google Scholar]
  115. 115. 
    Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H et al. 2009. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:122061–66
    [Google Scholar]
  116. 116. 
    Törjék O, Bucherna N, Kiss E, Homoki H, Finta-Korpelová Z et al. 2002. Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127:2209–18
    [Google Scholar]
  117. 117. 
    Udoh M, Santiago M, Devenish S, McGregor IS, Connor M 2019. Cannabichromene is a cannabinoid CB2 receptor agonist. Br. J. Pharmacol. 176:234537–47
    [Google Scholar]
  118. 118. 
    U. N. Off. Drugs Crime (UNODC) 2019. World drug report 2019 Rep., U.N New York: https://doi.org/10.18356/a4dd519a-en
    [Crossref]
  119. 119. 
    Urits I, Borchart M, Hasegawa M, Kochanski J, Orhurhu V, Viswanath O 2019. An update of current Cannabis-based pharmaceuticals in pain medicine. Pain Ther 8:141–51
    [Google Scholar]
  120. 120. 
    van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG et al. 2011. The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:10R102
    [Google Scholar]
  121. 121. 
    van de Donk T, Niesters M, Kowal MA, Olofsen E, Dahan A, van Velzen M 2019. An experimental randomized study on the analgesic effects of pharmaceutical-grade cannabis in chronic pain patients with fibromyalgia. Pain 160:4860–69
    [Google Scholar]
  122. 122. 
    van Velzen R, Doyle JJ, Geurts R 2019. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci 24:149–57
    [Google Scholar]
  123. 123. 
    van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A et al. 2018. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. PNAS 115:20E4700–9
    [Google Scholar]
  124. 124. 
    Vergara D, Baker H, Clancy K, Keepers KG, Mendieta JP et al. 2016. Genetic and genomic tools for Cannabis sativa. Crit. Rev. Plant Sci 35:5–6364–77
    [Google Scholar]
  125. 125. 
    Vergara D, Huscher EL, Keepers KG, Givens RM, Cizek CG et al. 2019. Gene copy number is associated with phytochemistry in Cannabis sativa. AoB Plants 11:6):plz074
    [Google Scholar]
  126. 126. 
    Vergara D, White KH, Keepers KG, Kane NC 2016. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus. Mitochondrial DNA A 27:53793–94
    [Google Scholar]
  127. 127. 
    Vincent D, Rochfort S, Spangenberg G 2019. Optimisation of protein extraction from medicinal Cannabis mature buds for bottom-up proteomics. Molecules 24:4659
    [Google Scholar]
  128. 128. 
    Volkow ND, Baler RD, Compton WM, Weiss SRB 2014. Adverse health effects of marijuana use. N. Engl. J. Med. 370:232219–27
    [Google Scholar]
  129. 129. 
    Wang G, Dixon RA. 2009. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. PNAS 106:249914–19
    [Google Scholar]
  130. 130. 
    Wang G, Tian L, Aziz N, Broun P, Dai X et al. 2008. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148:31254–66
    [Google Scholar]
  131. 131. 
    Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z et al. 2015. Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:41241–50
    [Google Scholar]
  132. 132. 
    Welling MT, Liu L, Raymond CA, Ansari O, King GJ 2018. Developmental plasticity of the major alkyl cannabinoid chemotypes in a diverse Cannabis genetic resource collection. Front. Plant Sci. 9:1510
    [Google Scholar]
  133. 133. 
    White KH, Vergara D, Keepers KG, Kane NC 2016. The complete mitochondrial genome for Cannabis sativa. Mitochondrial DNA B 1:1715–16
    [Google Scholar]
  134. 134. 
    Winge O. 1923. On sex chromosomes, sex determination and preponderance of female in some dioecious plants. C. R. Trav. Lab. Carlsb. 15:51–25
    [Google Scholar]
  135. 135. 
    Xu H, Zhang F, Liu B, Huhman DV, Sumner LW et al. 2013. Characterization of the formation of branched short-chain fatty acid: CoAs for bitter acid biosynthesis in hop glandular trichomes. Mol. Plant 6:41301–17
    [Google Scholar]
  136. 136. 
    Yan D, Wong YF, Shellie RA, Marriott PJ, Whittock SP, Koutoulis A 2019. Assessment of the phytochemical profiles of novel hop (Humulus lupulus L.) cultivars: a potential route to beer crafting. Food Chem 275:15–23
    [Google Scholar]
  137. 137. 
    Yang M-Q, van Velzen R, Bakker FT, Sattarian A, Li D-Z, Yi T-S 2013. Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62:3473–85
    [Google Scholar]
  138. 138. 
    Yang X, Matsui T, Kodama T, Mori T, Zhou X et al. 2016. Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa. FEBS J 283:61088–106
    [Google Scholar]
  139. 139. 
    Zager JJ, Lange I, Srividya N, Smith A, Lange BM 2019. Gene networks underlying cannabinoid and terpenoid accumulation in cannabis. Plant Physiol 180:41877–97
    [Google Scholar]
  140. 140. 
    Zanoli P, Zavatti M. 2008. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116:3383–96
    [Google Scholar]
  141. 141. 
    Zendulka O, Dovrtělová G, Nosková K, Turjap M, Šulcová A et al. 2016. Cannabinoids and cytochrome P450 interactions. Curr. Drug Metab. 17:3206–26
    [Google Scholar]
  142. 142. 
    Zerega NJC, Clement WL, Datwyler SL, Weiblen GD 2005. Biogeography and divergence times in the mulberry family (Moraceae). Mol. Phylogenet. Evol. 37:2402–16
    [Google Scholar]
  143. 143. 
    Zhang D, Easterling KA, Pitra NJ, Coles MC, Buckler ES et al. 2017. Non-Mendelian single-nucleotide polymorphism inheritance and atypical meiotic configurations are prevalent in hop. Plant Genome 10:31–14
    [Google Scholar]
  144. 144. 
    Zhang H, Jin J, Moore MJ, Yi T, Li D 2018. Plastome characteristics of Cannabaceae. Plant Divers 40:3127–37
    [Google Scholar]
  145. 145. 
    Zhang Q, Chen X, Guo H, Trindade LM, Salentijn EMJ et al. 2018. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front. Plant Sci. 9:1876
    [Google Scholar]
  146. 146. 
    Zirpel B, Kayser O, Stehle F 2018. Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativa L. J. Biotechnol. 284:17–26
    [Google Scholar]
  147. 147. 
    Zonneveld BJM, Leitch IJ, Bennett MD 2005. First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. 96:2229–44
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-081519-040203
Loading
/content/journals/10.1146/annurev-arplant-081519-040203
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error