1932

Abstract

I grew up with laboratory glassware and microscopes as treasures from a young age. I was a member of the Chemistry Club in junior high school, and when I visited RIKEN with club members, I wished to become an organic chemist in the future. I received my doctoral degree through the study of the spawning inhibitor of starfish. I became a researcher at RIKEN and identified the chemical structure of a mating pheromone of a yeast. As a plant biochemist, I studied a cell-free system of gibberellins at the University of Göttingen and tried to identify the gibberellin biosynthetic pathways in plants and clone gibberellin biosynthetic enzyme genes to understand the light regulation of plant growth. I also worked on biosynthetic enzymes of abscisic acid, indole acetic acid, and brassinosteroids. I developed a special interest in the oxygenases of plant hormone biosynthesis, cytochrome P450 monooxygenases, 2-oxoglutarate-dependent dioxygenase, molybdenum cofactor–containing oxidase, and flavin-containing monooxygenase.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083023-032239
2025-05-20
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083023-032239.html?itemId=/content/journals/10.1146/annurev-arplant-083023-032239&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abe K, Kusaka I, Fukui S. 1975.. Morphological change in the early stages of the mating process of Rhodosporidium toruloides. . J. Bacteriol. 122::71018
    [Crossref] [Google Scholar]
  2. 2.
    Ait-Ali T, Frances S, Weller JL, Reid JB, Kendrick RE, Kamiya Y. 1999.. Regulation of gibberellin 20-oxidase and gibberellin 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings. . Plant Physiol. 121::78391
    [Crossref] [Google Scholar]
  3. 3.
    Ait-Ali T, Swain SM, Reid JB, Sun TP, Kamiya Y. 1997.. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. . Plant J. 11::44354
    [Crossref] [Google Scholar]
  4. 4.
    Albadí D, Sun T-P. 2025.. Green Revolution DELLA proteins: functional analysis and regulatory mechanisms. . Annu. Rev. Plant Biol. 76::373400
    [Google Scholar]
  5. 5.
    Anderegg RJ, Betz R, Carr SA, Crabb JW, Duntze W. 1988.. Structure of Saccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component. . J. Biol. Chem. 263::1823640
    [Crossref] [Google Scholar]
  6. 6.
    Barendse GWM, Koornneef M. 1982.. Biosynthesis of the gibberellin precursor ent-kaurene in cell-free enzyme preparations from gibberellin-sensitive Arabidopsis mutants. . Arabidopsis Inf. Serv. 19::2528
    [Google Scholar]
  7. 7.
    Bishop GJ, Harrison K, Jones JDG. 1996.. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. . Plant Cell 8::95969
    [Google Scholar]
  8. 8.
    Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, et al. 1999.. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. . PNAS 96::176166
    [Crossref] [Google Scholar]
  9. 9.
    Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK. 1952.. A reversible photoreaction controlling seed germination. . PNAS 38::66266
    [Crossref] [Google Scholar]
  10. 10.
    Brown RGS, Kawaide H, Yang YY, Rademacher W, Kamiya Y. 1997.. Daminozide and prohexadione have similar modes of action as inhibitors of the late stages of gibberellin metabolism. . Physiol. Plant. 101::30913
    [Crossref] [Google Scholar]
  11. 11.
    Cheng WH, Endo A, Zhou L, Penny J, Chen HC, et al. 2002.. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. . Plant Cell 14::272343
    [Crossref] [Google Scholar]
  12. 12.
    Chiang HH, Hwang I, Goodman HM. 1995.. Isolation of the Arabidopsis GA4 locus. . Plant Cell 7::195201
    [Google Scholar]
  13. 13.
    Cook RJ, Kendrick RE. 1976.. Phytochrome controlled gibberellin metabolism in chloroplast envelopes. . Planta 131::3037
    [Crossref] [Google Scholar]
  14. 14.
    Coolbaugh RC. 1983.. Early stages of gibberellin biosynthesis. . In The Biochemistry and Physiology of Gibberellins, Vol. I, ed. A Crozier, pp. 5398. New York:: Prager
    [Google Scholar]
  15. 15.
    Duntze W, MacKay V, Manney TR. 1970.. Saccharomyces cerevisiae: a diffusible sex factor. . Science 168::147273
    [Crossref] [Google Scholar]
  16. 16.
    Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, et al. 2008.. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. . Plant Physiol. 147::198493
    [Crossref] [Google Scholar]
  17. 17.
    Estevez JM, Cantero A, Romero C, Kawaide H, Jimenez LF, et al. 2000.. Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-d-erythritol-4-phosphate pathway in Arabidopsis. . Plant Physiol. 124::95103
    [Crossref] [Google Scholar]
  18. 18.
    Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CD, et al. 2003.. Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. . Plant Physiol. 132::83039
    [Crossref] [Google Scholar]
  19. 19.
    Furuya M. 2004.. An unforeseen voyage to the world of phytochromes. . Ann. Rev. Plant Biol. 55::121
    [Crossref] [Google Scholar]
  20. 20.
    Hedden P. 2020.. The current status of research on gibberellin biosynthesis. . Plant Cell Physiol. 61::183249
    [Crossref] [Google Scholar]
  21. 21.
    Hedden P, Kamiya Y. 1997.. Gibberellin biosynthesis: enzymes, genes and their regulation. . Ann. Rev. Plant Physiol. Plant Mol. Biol. 48::43160
    [Crossref] [Google Scholar]
  22. 22.
    Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, et al. 2008.. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. . Plant Cell 20::32036
    [Crossref] [Google Scholar]
  23. 23.
    Ikegami S, Kamiya Y, Tamura S. 1973.. Studies on asterosaponins-V: a novel steroid conjugate, 5α-pregn-9(11)-ene-3β,6α-diol-20-one-3-sulfate, from a starfish saponin, asterosaponin A.. Tetrahedron 29::180710
    [Crossref] [Google Scholar]
  24. 24.
    Izumi K, Kamiya Y, Sakurai A, Oshio H, Takahashi N. 1985.. Studies of site of action of a new plant growth retardant (E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol (S-3307) and comparative effects of its stereoisomers in a cell-free system from Cucurbita maxima. . Plant Cell Physiol. 26::82127
    [Google Scholar]
  25. 25.
    Kamiya Y, Garcia-Martinez J. 1999.. Regulation of gibberellin biosynthesis by light. . Curr. Opin. Plant Biol. 2::398403
    [Crossref] [Google Scholar]
  26. 26.
    Kamiya Y, Graebe JE. 1983.. The biosynthesis of all major pea gibberellins in a cell-free system from Pisum sativum. . Phytochemistry 22::68189
    [Crossref] [Google Scholar]
  27. 27.
    Kamiya Y, Sakurai A, Tamura S, Takahashi N, Tsuchiya E, et al. 1978.. Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. . Biochem. Biophys. Res. Comm. 83::107783
    [Crossref] [Google Scholar]
  28. 28.
    Kamiya Y, Sakurai A, Tamura S, Takahashi N, Tsuchiya E, et al. 1979.. Structure of rhodotorucine A, a peptidyl factor, inducing mating tube formation in Rhodosporidium toruloides. . Agric. Biol. Chem. 43::36369
    [Google Scholar]
  29. 29.
    Kamiya Y, Takahashi M, Takahashi N, Graebe JE. 1984.. Conversion of gibberellin A20 to gibberellins A1 and A5 in a cell-free system from Phaseolus vulgaris. . Planta 162::15458
    [Crossref] [Google Scholar]
  30. 30.
    Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, et al. 2012.. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. . PNAS 109::965358
    [Crossref] [Google Scholar]
  31. 31.
    Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, et al. 2010.. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. . Plant Cell Physiol. 51::19882001
    [Crossref] [Google Scholar]
  32. 32.
    Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, et al. 2016.. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. . Nat. Commun. 7::13245
    [Crossref] [Google Scholar]
  33. 33.
    Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S. 2002.. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. . J. Biol. Chem. 277::4518894
    [Crossref] [Google Scholar]
  34. 34.
    Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, et al. 2004.. Distinct isoprenoid origins of cis- and trans-zeatin biosynthesis in Arabidopsis. . J. Biol. Chem. 279::1404954
    [Crossref] [Google Scholar]
  35. 35.
    Kawaide H, Imai R, Sassa T, Kamiya Y. 1997.. ent-Kaurene synthase from the fungus Phaeosphaeria sp. L487: cDNA isolation, characterization and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis. . J. Biol. Chem. 272::2170612
    [Crossref] [Google Scholar]
  36. 36.
    Kawaide H, Sassa T, Kamiya Y. 1995.. Plant-like biosynthesis of gibberellin A1 in the fungus Phaeosphaeria sp. L487. . Phytochemistry 39::30510
    [Crossref] [Google Scholar]
  37. 37.
    Kawaide H, Sassa T, Kamiya Y. 2000.. Functional analysis of the two interacting cyclase domains in ent-kaurene synthase from the fungus, Phaeosphaeria sp. L487, and a comparison with cyclases from higher plants. . J. Biol. Chem. 275::227680
    [Crossref] [Google Scholar]
  38. 38.
    Kim DH, Yamaguchi S, Lim S, Oh E, Park J, et al. 2008.. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. . Plant Cell 20::126077
    [Crossref] [Google Scholar]
  39. 39.
    Kitada C, Fujino M, Kamiya Y, Sakurai A, Tamura S, et al. 1979.. Synthesis of rhodotorucine A, the inducing factor of mating tube formation of Rhodosporidium toruloides. . Experientia 35::127576
    [Crossref] [Google Scholar]
  40. 40.
    Kobayashi M, Kamiya Y, Sakurai A, Saka H, Takahashi N. 1990.. Metabolism of gibberellins in cell-free extracts of anthers from normal and dwarf rice. . Plant Cell Physiol. 31::28993
    [Google Scholar]
  41. 41.
    Kobayashi M, Kwak SS, Kamiya Y, Yamane H, Takahashi N, Sakurai A. 1991.. Conversion of GA5 to GA6 and GA3 in cell-free systems from Phaseolus vulgaris and Oryza sativa. . Agric. Biol. Chem. 55::24951
    [Google Scholar]
  42. 42.
    Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T. 2004.. Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. . Plant Physiol. 134::1697707
    [Crossref] [Google Scholar]
  43. 43.
    Koornneef M. 2021.. A central role for genetics in plant biology. . Annu. Rev. Plant Biol. 72::116
    [Crossref] [Google Scholar]
  44. 44.
    Koornneef M, Barbaro A, van der Veen JH. 1977.. Nongerminating, gibberellic acid responsive mutants in Arabidopsis thaliana. . Arabidopsis Inf. Serv. 14::1417
    [Google Scholar]
  45. 45.
    Koshiba T, Kamiya Y, Iino M. 1995.. Biosynthesis of indole-3-acetic acid from L-tryptophan in coleoptile tips of maize (Zea mays L.). . Plant Cell Physiol. 36::150310
    [Google Scholar]
  46. 46.
    Koshiba T, Saito E, Ono N, Yamamoto N, Sato M. 1996.. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. . Plant Physiol. 110::78189
    [Crossref] [Google Scholar]
  47. 47.
    Kurosawa E. 1926.. Experimental studies on the nature of the substance excreted by the “bakanae” fungus. . Trans. Nat. Hist. Soc. Formosa 16::21327
    [Google Scholar]
  48. 48.
    Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, et al. 2004.. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. . EMBO J. 23::164756
    [Crossref] [Google Scholar]
  49. 49.
    Kwak SS, Kamiya Y, Sakurai A, Takahashi N, Graebe JE. 1988.. Partial purification and characterization of gibberellin 3β-hydroxylase from immature seeds of Phaseolus vulgaris L. . Plant Cell Physiol. 29::93543
    [Google Scholar]
  50. 50.
    Kwak SS, Kamiya Y, Takahashi M, Sakurai A, Takahashi N. 1988.. Metabolism of [14C]GA20 in a cell-free system from developing seeds of Phaseolus vulgaris L. . Plant Cell Physiol. 29::70711
    [Google Scholar]
  51. 51.
    Lange T, Hedden P, Graebe JE. 1994.. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. . PNAS 91::855256
    [Crossref] [Google Scholar]
  52. 52.
    Lichtenthaler HK. 1999.. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. . Annu. Rev. Plant Physiol. Plant Mol. Biol. 50::4765
    [Crossref] [Google Scholar]
  53. 53.
    Lopez-Juez E, Kobayashi M, Sakurai A, Kamiya Y, Kendrick RD. 1995.. Phytochrome, gibberellins, and hypocotyl growth: a study using the cucumber (Cucumis sativus) long hypocotyl mutant. . Plant Physiol. 107::13140
    [Crossref] [Google Scholar]
  54. 54.
    MacMillan J, Takahashi N. 1968.. Proposed procedure for the allocation of trivial names to the gibberellins. . Nature 217::17071
    [Crossref] [Google Scholar]
  55. 55.
    Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, et al. 2013.. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. . PNAS 110::194752
    [Crossref] [Google Scholar]
  56. 56.
    Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. 2004.. dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. . Plant J. 37::72029
    [Crossref] [Google Scholar]
  57. 57.
    Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. 2008.. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. . Plant J. 56::61326
    [Crossref] [Google Scholar]
  58. 58.
    Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, Leon P. 1996.. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. . Plant J. 9::64958
    [Crossref] [Google Scholar]
  59. 59.
    Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, et al. 2011.. The main auxin biosynthesis pathway in Arabidopsis. . PNAS 108::1851217
    [Crossref] [Google Scholar]
  60. 60.
    Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, et al. 2009.. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. . Plant Physiol. 149::94960
    [Crossref] [Google Scholar]
  61. 61.
    Michaelis S, Barrowman J. 2012.. Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. . Microbiol. Mol. Rev. 76::626651
    [Crossref] [Google Scholar]
  62. 62.
    Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, et al. 2006.. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. . Plant J. 45::80418
    [Crossref] [Google Scholar]
  63. 63.
    Miki T, Kamiya Y, Fukazawa M, Ichikawa T, Sakurai A. 1990.. Sites of inhibition by a plant-growth regulator, 4′-chloro-2′-(α-hydroxybenzyl)-isonicotinanilide (Inabenfide), and its related compounds in the biosynthesis of gibberellins. . Plant Cell Physiol. 31::2016
    [Google Scholar]
  64. 64.
    Murakami Y. 1968.. A new rice seedling test for gibberellins, ‘microdrop method’, and its use for testing extracts of rice and morning glory. . Bot. Mag. Tokyo 81::3343
    [Crossref] [Google Scholar]
  65. 65.
    Nakaminami K, Sawada Y, Suzuki M, Kenmoku H, Kawaide H, et al. 2003.. Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds. . Biosci. Biotechnol. Biochem. 67::155158
    [Crossref] [Google Scholar]
  66. 66.
    Nakayama I, Kamiya Y, Kobayashi M, Abe H, Sakurai A. 1990.. Effects of a plant-growth regulator, prohexadione, on the biosynthesis of gibberellins in cell-free systems derived from immature seeds. . Plant Cell Physiol. 31::118390
    [Google Scholar]
  67. 67.
    Nambara E, Marion-Poll A. 2005.. Abscisic acid biosynthesis and catabolism. . Annu. Rev. Plant Biol. 56::16585
    [Crossref] [Google Scholar]
  68. 68.
    Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. 2010.. Abscisic acid and the control of seed dormancy and germination. . Seed Sci. Res. 20::5567
    [Crossref] [Google Scholar]
  69. 69.
    Nelissen H, Rymen B, Jikumaru Y, Demuynck K, Lijsebettens MV, et al. 2012.. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. . Curr. Biol. 22::118387
    [Crossref] [Google Scholar]
  70. 70.
    Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S. 2005.. The last reaction producing brassinosteroid is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. . J. Biol. Chem. 280::1787379
    [Crossref] [Google Scholar]
  71. 71.
    Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. 2003.. Gibberellin biosynthesis and response during Arabidopsis seed germination. . Plant Cell 15::1591604
    [Crossref] [Google Scholar]
  72. 72.
    Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. 2009.. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. . Plant Cell 21::40319
    [Crossref] [Google Scholar]
  73. 73.
    Oh E, Yamaguchi S, Hu J, Jikumaru Y, Jung B, et al. 2007.. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA in Arabidopsis seeds. . Plant Cell 19::1192208
    [Crossref] [Google Scholar]
  74. 74.
    Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W-I, Choi G. 2006.. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. . Plant J. 47::12439
    [Crossref] [Google Scholar]
  75. 75.
    Okada K, Kawaide H, Kuzuyama T, Seto H, Curtis IS, Kamiya Y. 2002.. Antisense and chemical suppression of the non-mevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis. . Planta 215::33944
    [Crossref] [Google Scholar]
  76. 76.
    Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, et al. 2006.. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. . Plant Physiol. 141::97107
    [Crossref] [Google Scholar]
  77. 77.
    Otsuka M, Kenmoku H, Ogawa M, Okada K, Mitsuhashi W, et al. 2004.. Emission of ent-kaurene, a diterpenoid hydrocarbon precursor for gibberellins, into the headspace from plants. . Plant Cell Physiol. 45::112938
    [Crossref] [Google Scholar]
  78. 78.
    Phillips AL, Ward DA, Uknes S, Appleford NEJ, Lange T, et al. 1995.. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. . Plant Physiol. 108::104957
    [Crossref] [Google Scholar]
  79. 79.
    Phinney BO. 1956.. Growth response of single-gene dwarf mutants in maize to gibberellic acid. . PNAS 42::18589
    [Crossref] [Google Scholar]
  80. 80.
    Phinney BO. 1983.. The history of gibberellins. . In The Biochemistry and Physiology of Gibberellins, Vol. I, ed. A Crozier , pp. 1952. New York:: Prager
    [Google Scholar]
  81. 81.
    Rebers M, Kaneta T, Kawaide H, Yamaguchi S, Yang YY, et al. 1999.. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. . Plant J. 17::24150
    [Crossref] [Google Scholar]
  82. 82.
    Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. 1993.. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. . Biochem J. 295::51724
    [Crossref] [Google Scholar]
  83. 83.
    Saito T, Abe H, Yamane H, Sakurai A, Murofushi N, et al. 1995.. Purification and properties of ent-kaurene synthase B from immature seeds of pumpkin. . Plant Physiol. 109::123945
    [Crossref] [Google Scholar]
  84. 84.
    Sakagami Y, Isogai A, Suzuki A, Tamura S, Kitada C, Fujino M. 1979.. Structure of tremerogen A-10, a peptidal hormone inducing conjugation tube formation in Tremella mesenterica. . Agric. Biol. Chem. 43::263445
    [Google Scholar]
  85. 85.
    Sakagami Y, Yoshida M, Isogai A, Suzuki A. 1981.. Peptidal sex hormones inducing conjugation tube formation in compatible mating-type cells of Tremella mesenterica. . Science 212::152527
    [Crossref] [Google Scholar]
  86. 86.
    Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, et al. 2005.. Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plants. . PNAS 102::997297
    [Crossref] [Google Scholar]
  87. 87.
    Sakurai A, Tamura S, Yanagishima N, Shimoda C. 1976.. Structure of the peptidyl factor inducing sexual agglutination in Saccharomyces cerevisiae. . Agric. Biol. Chem. 40::105758
    [Google Scholar]
  88. 88.
    Sawada Y, Aoki M, Nakaminami K, Mitsuhashi W, Tatematsu K, et al. 2008.. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. . Plant Physiol. 146::138696
    [Crossref] [Google Scholar]
  89. 89.
    Sekimoto H, Seo M, Dohmae N, Takio K, Kamiya Y, Koshiba T. 1997.. Cloning and molecular characterization of plant aldehyde oxidase. . J. Biol. Chem. 272::1528085
    [Crossref] [Google Scholar]
  90. 90.
    Sekimoto H, Seo M, Kawakami N, Komano T, Desloire S, et al. 1998.. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. . Plant Cell Physiol. 39::43342
    [Crossref] [Google Scholar]
  91. 91.
    Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T. 2004.. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. . Plant Cell Physiol. 45::1694703
    [Crossref] [Google Scholar]
  92. 92.
    Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, et al. 2006.. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. . Plant J. 48::35466
    [Crossref] [Google Scholar]
  93. 93.
    Seo M, Koshiba T. 2002.. Complex regulation of ABA biosynthesis in plants. . Trends Plant Sci. 7::4148
    [Crossref] [Google Scholar]
  94. 94.
    Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, et al. 2000.. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. . PNAS 97::1290813
    [Crossref] [Google Scholar]
  95. 95.
    Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, et al. 2001.. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. . Plant Physiol. 126::77079
    [Crossref] [Google Scholar]
  96. 96.
    Shinomura T, Nagatani A, Chory J, Furuya M. 1994.. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. . Plant Physiol. 104::36371
    [Crossref] [Google Scholar]
  97. 97.
    Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, et al. 2009.. Biochemical analyses of indole-3-acetaldoxyme-dependent auxin biosynthesis in Arabidopsis. . PNAS 106::543035
    [Crossref] [Google Scholar]
  98. 98.
    Sun TP, Goodman HM, Ausubel FM. 1992.. Cloning the Arabidopsis GA1 locus by genomic subtraction. . Plant Cell 4::11928
    [Crossref] [Google Scholar]
  99. 99.
    Sun TP, Kamiya Y. 1994.. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. . Plant Cell 6::150918
    [Google Scholar]
  100. 100.
    Swain SM, Reid JB, Kamiya Y. 1997.. Gibberellins are required for embryo growth and seed development in pea. . Plant J. 12::132938
    [Crossref] [Google Scholar]
  101. 101.
    Swain SM, Ross JJ, Reid JB, Kamiya Y. 1995.. Gibberellins and pea seed development: expression of the lhi, ls and le5839 mutations. . Planta 195::42633
    [Crossref] [Google Scholar]
  102. 102.
    Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, et al. 2008.. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. . Plant Physiol. 146::136885
    [Crossref] [Google Scholar]
  103. 103.
    Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y. 1998.. Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. . Plant Physiol. 118::151723
    [Crossref] [Google Scholar]
  104. 104.
    Toyomasu T, Kawaide H, Sekimoto H, von Numers C, Phillips AL, et al. 1997.. Cloning and characterization of a cDNA encoding gibberellin 20-oxidase from rice (Oryza sativa) seedlings. . Physiol. Plant. 99::11118
    [Crossref] [Google Scholar]
  105. 105.
    Toyomasu T, Tsuji H, Yamane H, Nakayama M, Yamaguchi I, et al. 1993.. Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. . J. Plant Growth Regul. 12::8590
    [Crossref] [Google Scholar]
  106. 106.
    Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, et al. 2010.. A small-molecule screen identifies new functions for the plant hormone strigolactone. . Nat. Chem. Biol. 6::74149
    [Crossref] [Google Scholar]
  107. 107.
    Tudzynski B, Kawaide H, Kamiya Y. 1998.. Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. . Curr. Genet. 34::23440
    [Crossref] [Google Scholar]
  108. 108.
    Tudzynski B, Mihlan M, Rojas MC, Linnemannstons P, Gaskin P, Hedden P. 2003.. Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450–3 encode GA4 desaturase and the 13-hydroxylase, respectively. . J. Biol. Chem. 278::2863543
    [Crossref] [Google Scholar]
  109. 109.
    Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, et al. 2008.. Inhibition of shoot branching by new terpenoid plant hormones. . Nature 455::195200
    [Crossref] [Google Scholar]
  110. 110.
    Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, et al. 2006.. CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. . Plant J. 46:17182
    [Crossref] [Google Scholar]
  111. 111.
    Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, et al. 2007.. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. . Plant Cell 19::3245
    [Crossref] [Google Scholar]
  112. 112.
    Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, et al. 2011.. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. . PNAS 108::1851823
    [Crossref] [Google Scholar]
  113. 113.
    Wu K, Li L, Gage DA, Zeevaart JAD. 1996.. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. . Plant Physiol. 110::54754
    [Crossref] [Google Scholar]
  114. 114.
    Xu YL, Li L, Wu K, Peeters AJM, Gage DA, Zeevaart JAD. 1995.. The GA5 locus of Arabidopsis thaliana encodes a multifunctional 20-oxidase: molecular cloning and functional expression. . PNAS 92::664044
    [Crossref] [Google Scholar]
  115. 115.
    Yamaguchi S. 2008.. Gibberellin metabolism and its regulation. . Ann. Rev. Plant Biol. 59::22551
    [Crossref] [Google Scholar]
  116. 116.
    Yamaguchi S, Kamiya Y. 2000.. Gibberellin biosynthesis: its regulation by endogenous and environmental signals. . Plant Cell Physiol. 41::25157
    [Crossref] [Google Scholar]
  117. 117.
    Yamaguchi S, Kamiya Y, Sun TP. 2001.. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. . Plant J. 28::44353
    [Crossref] [Google Scholar]
  118. 118.
    Yamaguchi S, Saito T, Abe H, Yamane H, Murofushi N, Kamiya Y. 1996.. Molecular cloning and characterization of a cDNA encoding biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.). Plant J. 10::20313
    [Crossref] [Google Scholar]
  119. 119.
    Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun TP. 1998.. Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. . Plant Cell 10::211526
    [Google Scholar]
  120. 120.
    Yamaguchi S, Sun T-p, Kawaide H, Kamiya Y. 1998.. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. . Plant Physiol. 116::127178
    [Crossref] [Google Scholar]
  121. 121.
    Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. 2004.. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. . Plant Cell 16::36778
    [Crossref] [Google Scholar]
  122. 122.
    Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, et al. 2009.. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and innate immune response in Arabidopsis. . Plant Cell 21::291427
    [Crossref] [Google Scholar]
  123. 123.
    Zeevaart JAD. 2009.. My journey from horticulture to plant biology. . Annu. Rev. Plant Biol. 60::119
    [Crossref] [Google Scholar]
  124. 124.
    Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, et al. 2006.. Elongated Uppermost Internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. . Plant Cell 18::44256
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083023-032239
Loading
/content/journals/10.1146/annurev-arplant-083023-032239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error