1932

Abstract

Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants. We highlight recent advances in understanding the structure–function relationships of pectin-modifying enzymes and their products and how these advances point toward new approaches to bridging key knowledge gaps and manipulating pectin dynamics to control plant development. Finally, we discuss how a deeper understanding of pectin dynamics might enable innovations in agronomy and biotechnology, unlocking new benefits from these ubiquitous but complex polysaccharides.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083023-034055
2025-05-20
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083023-034055.html?itemId=/content/journals/10.1146/annurev-arplant-083023-034055&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbott DW, Boraston AB. 2007.. The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. . J. Mol. Biol. 368::121522
    [Crossref] [Google Scholar]
  2. 2.
    Agüero CB, Uratsu SL, Greve C, Powell AL, Labavitch JM, et al. 2005.. Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. . Mol. Plant Pathol. 6::4351
    [Crossref] [Google Scholar]
  3. 3.
    Al-Hinai TZS, Mackay CL, Fry SC. 2024.. Fruit softening: evidence for rhamnogalacturonan lyase action in vivo in ripe fruit cell walls. . Ann. Bot. 133::54758
    [Crossref] [Google Scholar]
  4. 4.
    Ali S, Søndergaard CR, Teixeira S, Pickersgill RW. 2015.. Structural insights into the loss of catalytic competence in pectate lyase activity at low pH. . FEBS Lett. 589::324246
    [Crossref] [Google Scholar]
  5. 5.
    Amos RA, Atmodjo MA, Huang C, Gao Z, Venkat A, et al. 2022.. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. . Nat. Plants 8::1289303 This study used a combination of purified enzymes to recapitulate the synthesis of the RG-I backbone in vitro and could be extended to generate more complex glycans in vitro.
    [Crossref] [Google Scholar]
  6. 6.
    Anderson CT. 2019.. Pectic polysaccharides in plants: structure, biosynthesis, functions, and applications. . In Extracellular Sugar-Based Biopolymers Matrices, ed. E Cohen, H Merzendorfer , pp. 487514. Cham, Switz:.: Springer
    [Google Scholar]
  7. 7.
    Anderson CT, Kieber JJ. 2020.. Dynamic construction, perception, and remodeling of plant cell walls. . Annu. Rev. Plant Biol. 71::3969
    [Crossref] [Google Scholar]
  8. 8.
    André-Leroux G, Tessier D, Bonnin E. 2005.. Action pattern of Fusarium moniliforme endopolygalacturonase towards pectin fragments: comprehension and prediction. . Biochim. Biophys. Acta Proteins Proteom. 1749::5364
    [Crossref] [Google Scholar]
  9. 9.
    Armand S, Wagemaker MJ, Sánchez-Torres P, Kester HC, van Santen Y, et al. 2000.. The active site topology of Aspergillus niger endopolygalacturonase II as studied by site-directed mutagenesis. . J. Biol. Chem. 275::69196
    [Crossref] [Google Scholar]
  10. 10.
    Atmodjo MA, Hao Z, Mohnen D. 2013.. Evolving views of pectin biosynthesis. . Annu. Rev. Plant Biol. 64::74779
    [Crossref] [Google Scholar]
  11. 11.
    Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, et al. 2011.. Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. . PNAS 108::2022530
    [Crossref] [Google Scholar]
  12. 12.
    Babu Y, Bayer M. 2014.. Plant polygalacturonases involved in cell elongation and separation—the same but different?. Plants 3::61323
    [Crossref] [Google Scholar]
  13. 13.
    Bai Y, Tian D, Chen P, Wu D, Du K, et al. 2023.. A pectate lyase gene plays a critical role in xylem vascular development in Arabidopsis. . Int. J. Mol. Sci. 24::10883
    [Crossref] [Google Scholar]
  14. 14.
    Bai Y, Wu D, Liu F, Li Y, Chen P, et al. 2017.. Characterization and functional analysis of the poplar Pectate lyase-like gene PtPL1–18 reveal its role in the development of vascular tissues. . Front. Plant Sci. 8::1123
    [Crossref] [Google Scholar]
  15. 15.
    Banerjee R, Kumar KJ, Kennedy JF. 2023.. Structure and drug delivery relationship of acidic polysaccharides: a review. . Int. J. Biol. Macromol. 243::125092
    [Crossref] [Google Scholar]
  16. 16.
    Barnes WJ, Zelinsky E, Anderson CT. 2022.. Polygalacturonase activity promotes aberrant cell separation in the quasimodo2 mutant of Arabidopsis thaliana. . Cell Surf. 8::100069
    [Crossref] [Google Scholar]
  17. 17.
    Benedetti M, Mattei B, Pontiggia D, Salvi G, Savatin DV, Ferrari S. 2017.. Methods of isolation and characterization of oligogalacturonide elicitors. . Methods Mol. Biol. 1578::2538
    [Crossref] [Google Scholar]
  18. 18.
    Benen JA, Kester HC, Visser J. 1999.. Kinetic characterization of Aspergillus niger N400 endopolygalacturonases I, II and C. . Eur. J. Biochem. 259::57785
    [Crossref] [Google Scholar]
  19. 19.
    Bian Y, Zeng H, Tao H, Huang L, Du Z, et al. 2020.. A pectin-like polysaccharide from Polygala tenuifolia inhibits pancreatic cancer cell growth in vitro and in vivo by inducing apoptosis and suppressing autophagy. . Int. J. Biol. Macromol. 162::10715
    [Crossref] [Google Scholar]
  20. 20.
    Bidhendi AJ, Lampron O, Gosselin FP, Geitmann A. 2023.. Cell geometry regulates tissue fracture. . Nat. Commun. 14::8275
    [Crossref] [Google Scholar]
  21. 21.
    Bigini V, Sillo F, Giulietti S, Pontiggia D, Giovannini L, et al. 2024.. Oligogalacturonide application increases resistance to Fusarium head blight in durum wheat. . J. Exp. Bot. 75::307091
    [Crossref] [Google Scholar]
  22. 22.
    Bonivento D, Pontiggia D, Matteo AD, Fernandez-Recio J, Salvi G, et al. 2008.. Crystal structure of the endopolygalacturonase from the phytopathogenic fungus Colletotrichum lupini and its interaction with polygalacturonase-inhibiting proteins. . Proteins Struct. Funct. Bioinformat. 70::29499
    [Crossref] [Google Scholar]
  23. 23.
    Bou Daher F, Braybrook SA. 2015.. How to let go: pectin and plant cell adhesion. . Front. Plant Sci. 6::523
    [Google Scholar]
  24. 24.
    Branca C, Lorenzo GD, Cervone F. 1988.. Competitive inhibition of the auxin-induced elongation by α-d-oligogalacturonides in pea stem segments. . Physiol. Plant. 72::499504
    [Crossref] [Google Scholar]
  25. 25.
    Brummell DA, Bowen JK, Gapper NE. 2022.. Biotechnological approaches for controlling postharvest fruit softening. . Curr. Opin. Biotechnol. 78::102786
    [Crossref] [Google Scholar]
  26. 26.
    Bush M, Sethi V, Sablowski R. 2022.. A phloem-expressed PECTATE LYASE-LIKE gene promotes cambium and xylem development. . Front. Plant Sci. 13::888201
    [Crossref] [Google Scholar]
  27. 27.
    Cabrera JC, Boland A, Messiaen J, Cambier P, Van Cutsem P. 2008.. Egg box conformation of oligogalacturonides: the time-dependent stabilization of the elicitor-active conformation increases its biological activity. . Glycobiology 18::47382
    [Crossref] [Google Scholar]
  28. 28.
    Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, et al. 2008.. Self-assembly of the plant cell wall requires an extensin scaffold. . PNAS 105::222631
    [Crossref] [Google Scholar]
  29. 29.
    Cao J. 2012.. The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. . PLOS ONE 7::e46944
    [Crossref] [Google Scholar]
  30. 30.
    Carroll S, Amsbury S, Durney CH, Smith RS, Morris RJ, et al. 2022.. Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening. . Curr. Biol. 32::317079.e4
    [Crossref] [Google Scholar]
  31. 31.
    Carton C, Safran J, Lemaire A, Domon J-M, Poelmans W, et al. 2024.. Structural and biochemical characterization of SmoPG1, an exo-polygalacturonase from Selaginella moellendorffii. . Int. J. Biol. Macromol. 269::131918 This study combined protein modeling and biochemical characterization, including product profiling, to analyze the structure–function relationship of a novel exo-PG.
    [Crossref] [Google Scholar]
  32. 32.
    Chan J, Coen E. 2020.. Interaction between autonomous and microtubule guidance systems controls cellulose synthase trajectories. . Curr. Biol. 30::94147.e2
    [Crossref] [Google Scholar]
  33. 33.
    Chebli Y, Geitmann A. 2023.. Pectate lyase-like lubricates the male gametophyte's path toward its mating partner. . Plant Physiol. 194::12436
    [Crossref] [Google Scholar]
  34. 34.
    Chen C-H, Sheu M-T, Chen T-F, Wang Y-C, Hou W-C, et al. 2006.. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. . Biochem. Pharmacol. 72::10019
    [Crossref] [Google Scholar]
  35. 35.
    Chen Y, Li W, Turner JA, Anderson CT. 2021.. PECTATE LYASE LIKE12 patterns the guard cell wall to coordinate turgor pressure and wall mechanics for proper stomatal function in Arabidopsis. . Plant Cell 33::313450
    [Crossref] [Google Scholar]
  36. 36.
    Cherian E, Khadeeja TS, Saheersha KN, Ashitha KS, Poothicote NG. 2024.. Investigation into pectin extraction and technological implementations in the food industry. . J. Sci. Food Agric. 104::910210
    [Crossref] [Google Scholar]
  37. 37.
    Cho SW, Lee S, Shin W. 2001.. The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. . J. Mol. Biol. 311::86378
    [Crossref] [Google Scholar]
  38. 38.
    Chotigeat W, Duangchu S, Wititsuwannakun R, Phongdara A. 2009.. Cloning and characterization of pectate lyase from Hevea brasiliensis. . Plant Physiol. Biochem. 47::24347
    [Crossref] [Google Scholar]
  39. 39.
    Chou F-C, Chen H-Y, Kuo C-C, Sytwu H-K. 2018.. Role of galectins in tumors and in clinical immunotherapy. . Int. J. Mol. Sci. 19::430
    [Crossref] [Google Scholar]
  40. 40.
    Chourasia A, Sane VA, Nath P. 2006.. Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari). . Physiol. Plant. 128::54655
    [Crossref] [Google Scholar]
  41. 41.
    Cosgrove DJ. 2024.. Structure and growth of plant cell walls. . Nat. Rev. Mol. Cell Biol. 25::34058
    [Crossref] [Google Scholar]
  42. 42.
    Cosgrove DJ, Anderson CT. 2020.. Plant cell growth: Do pectins drive lobe formation in Arabidopsis pavement cells?. Curr. Biol. 30::R66062
    [Crossref] [Google Scholar]
  43. 43.
    Creze C, Castang S, Derivery E, Haser R, Hugouvieux-Cotte-Pattat N, et al. 2008.. The crystal structure of pectate lyase PelI from soft rot pathogen Erwinia chrysanthemi in complex with its substrate. . J. Biol. Chem. 283::1826068
    [Crossref] [Google Scholar]
  44. 44.
    Czerwinski EW, Midoro-Horiuti T, White MA, Brooks EG, Goldblum RM. 2005.. Crystal structure of Jun α 1, the major cedar pollen allergen from Juniperus ashei, reveals a parallel β-helical core. . J. Biol. Chem. 280::374046
    [Crossref] [Google Scholar]
  45. 45.
    Davidsson P, Broberg M, Kariola T, Sipari N, Pirhonen M, Palva ET. 2017.. Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana. . BMC Plant Biol. 17::19
    [Crossref] [Google Scholar]
  46. 46.
    de Freitas Pedrosa L, Lopes RG, Fabi JP. 2020.. The acid and neutral fractions of pectins isolated from ripe and overripe papayas differentially affect galectin-3 inhibition and colon cancer cell growth. . Int. J. Biol. Macromol. 164::268190
    [Crossref] [Google Scholar]
  47. 47.
    Decreux A, Messiaen J. 2005.. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. . Plant Cell Physiol. 46::26878
    [Crossref] [Google Scholar]
  48. 48.
    Delphi L, Sepehri H. 2016.. Apple pectin: a natural source for cancer suppression in 4T1 breast cancer cells in vitro and express p53 in mouse bearing 4T1 cancer tumors, in vivo. . Biomed. Pharmacother. 84::63744
    [Crossref] [Google Scholar]
  49. 49.
    Deng H, Chen Y, Liu Z, Liu Z, Shu P, et al. 2022.. SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. . Plant Cell 34::125072
    [Crossref] [Google Scholar]
  50. 50.
    Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, et al. 2008.. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. . Mol. Plant 1::42345
    [Crossref] [Google Scholar]
  51. 51.
    Deshpande AB, Anamika K, Jha V, Chidley HG, Oak PS, et al. 2017.. Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics. . Sci. Rep. 7::8711
    [Crossref] [Google Scholar]
  52. 52.
    Domingo C, Roberts K, Stacey NJ, Connerton I, Ruíz-Teran F, McCann MC. 1998.. A pectate lyase from Zinnia elegans is auxin inducible. . Plant J. 13::1728
    [Crossref] [Google Scholar]
  53. 53.
    Domozych DS, Sørensen I, Popper ZA, Ochs J, Andreas A, et al. 2014.. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. . Plant Physiol. 165::10518
    [Crossref] [Google Scholar]
  54. 54.
    Domozych DS, Sørensen I, Sacks C, Brechka H, Andreas A, et al. 2014.. Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum. . J. Exp. Bot. 65::46579
    [Crossref] [Google Scholar]
  55. 55.
    Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, et al. 2012.. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. . Cell Res. 22::41324
    [Crossref] [Google Scholar]
  56. 56.
    Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B, Terrapon N. 2022.. The carbohydrate-active enzyme database: functions and literature. . Nucleic Acids Res. 50::D57177
    [Crossref] [Google Scholar]
  57. 57.
    Du J, Anderson CT, Xiao C. 2022.. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. . Nat. Plants 8::33240
    [Crossref] [Google Scholar]
  58. 58.
    Du J, Kirui A, Huang S, Wang L, Barnes WJ, et al. 2020.. Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. . Plant Cell 32::357697
    [Crossref] [Google Scholar]
  59. 59.
    Ebert B, Orellana A. 2025.. Nucleotide sugar transporters: orchestrating luminal glycosylation in plants. . Annu. Rev. Plant Biol. 76::85113
    [Google Scholar]
  60. 60.
    Elliott L, Moore I, Kirchhelle C. 2020.. Spatio-temporal control of post-Golgi exocytic trafficking in plants. . J. Cell Sci. 133::jcs237065
    [Crossref] [Google Scholar]
  61. 61.
    Elshahed MS, Miron A, Aprotosoaie AC, Farag MA. 2021.. Pectin in diet: interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. . Carbohydr. Polym. 255::117388
    [Crossref] [Google Scholar]
  62. 62.
    Engle KA, Amos RA, Yang J-Y, Glushka J, Atmodjo MA, et al. 2022.. Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor-dependent or de novo synthesis. . Plant J. 109::144156
    [Crossref] [Google Scholar]
  63. 63.
    Espejo F. 2021.. Role of commercial enzymes in wine production: a critical review of recent research. . J. Food Sci. Technol. 58::921
    [Crossref] [Google Scholar]
  64. 64.
    Favaretto DPC, Rempel A, Lanzini JR, Silva ACM, Lazzari T, et al. 2023.. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. . World J. Microbiol. Biotechnol. 39::144
    [Crossref] [Google Scholar]
  65. 65.
    Federici L, Caprari C, Mattei B, Savino C, Di Matteo A, et al. 2001.. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). . PNAS 98::1342530
    [Crossref] [Google Scholar]
  66. 66.
    Feijao C, Morreel K, Anders N, Tryfona T, Busse-Wicher M, et al. 2022.. Hydroxycinnamic acid-modified xylan side chains and their cross-linking products in rice cell walls are reduced in the Xylosyl arabinosyl substitution of xylan 1 mutant. . Plant J. 109::115267
    [Crossref] [Google Scholar]
  67. 67.
    Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. 2007.. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. . Plant Physiol. 144::36779
    [Crossref] [Google Scholar]
  68. 68.
    Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G. 2006.. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. . Mol. Plant Microbe Interact. 19::93136
    [Crossref] [Google Scholar]
  69. 69.
    Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD. 2013.. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. . Front. Plant Sci. 4::49
    [Crossref] [Google Scholar]
  70. 70.
    Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D'Ovidio R. 2012.. Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. . Plant Biol. 14::3138
    [Crossref] [Google Scholar]
  71. 71.
    Francis KE, Lam SY, Copenhaver GP. 2006.. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. . Plant Physiol. 142::100413
    [Crossref] [Google Scholar]
  72. 72.
    Francoz E, Ranocha P, Le Ru A, Martinez Y, Fourquaux I, et al. 2019.. Pectin demethylesterification generates platforms that anchor peroxidases to remodel plant cell wall domains. . Dev. Cell 48::26176.e8 This study revealed the ability of a particular pattern of pectin methylesterification to bind to a cell wall–localized peroxidase.
    [Crossref] [Google Scholar]
  73. 73.
    Freitas CMP, Coimbra JSR, Souza VGL, Sousa RCS. 2021.. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: a review. . Coatings 11::922
    [Crossref] [Google Scholar]
  74. 74.
    Gaikwad D, Shewale R, Patil V, Mali D, Gaikwad U, Jadhav N. 2017.. Enhancement in in vitro anti-angiogenesis activity and cytotoxicity in lung cancer cell by pectin-PVP based curcumin particulates. . Int. J. Biol. Macromol. 104::65664
    [Crossref] [Google Scholar]
  75. 75.
    Gallego-Giraldo L, Liu C, Pose-Albacete S, Pattathil S, Peralta AG, et al. 2020.. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. . PNAS 117::328190
    [Crossref] [Google Scholar]
  76. 76.
    Gamir J, Minchev Z, Berrio E, García JM, De Lorenzo G, Pozo MJ. 2021.. Roots drive oligogalacturonide-induced systemic immunity in tomato. . Plant Cell Environ. 44::27589
    [Crossref] [Google Scholar]
  77. 77.
    Garcia-Romera I, Fry SC. 1993.. Absence of transglycosylation with oligogalacturonides in plant cells. . Phytochemistry 35::6772
    [Crossref] [Google Scholar]
  78. 78.
    Garrido G, Garrido-Suárez BB, Mieres-Arancibia M, Valdes-Gonzalez M, Ardiles-Rivera A. 2024.. Modified pectin with anticancer activity in breast cancer: A systematic review. . Int. J. Biol. Macromol. 254::127692
    [Crossref] [Google Scholar]
  79. 79.
    Gonzalez-Carranza ZH, Elliott KA, Roberts JA. 2007.. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. . J. Exp. Bot. 58::371930
    [Crossref] [Google Scholar]
  80. 80.
    Gunaseelan K, Schröder R, Rebstock R, Ninan AS, Deng C, et al. 2024.. Constitutive expression of apple endo-POLYGALACTURONASE1 in fruit induces early maturation, alters skin structure and accelerates softening. . Plant J. 117::141331
    [Crossref] [Google Scholar]
  81. 81.
    Gunning A, Pin C, Morris V. 2013.. Galectin 3–β-galactobiose interactions. . Carbohydr. Polym. 92::52933
    [Crossref] [Google Scholar]
  82. 82.
    Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. 2020.. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. . Science 367::10037
    [Crossref] [Google Scholar]
  83. 83.
    Habrylo O, Evangelista DE, Castilho PV, Pelloux J, Henrique-Silva F. 2018.. The pectinases from Sphenophorus levis: potential for biotechnological applications. . Int. J. Biol. Macromol. 112::499508
    [Crossref] [Google Scholar]
  84. 84.
    Hamai-Amara H, Abdoun-Ouallouche K, Nacer-Khodja A, Abdelhafid K, Benmouloud A, Djefal-Kerrar A. 2020.. Optimization of the extraction of orange peel pectin and evaluation of its antiproliferative activity towards HEp2 cancer cells. . Euro-Mediterr. J. Environ. Integr. 5::43
    [Crossref] [Google Scholar]
  85. 85.
    Harholt J, Jensen JK, Sørensen SO, Orfila C, Pauly M, Scheller HV. 2006.. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. . Plant Physiol. 140::4958
    [Crossref] [Google Scholar]
  86. 86.
    Harholt J, Moestrup O, Ulvskov P. 2016.. Why plants were terrestrial from the beginning. . Trends Plant Sci. 21::96101
    [Crossref] [Google Scholar]
  87. 87.
    Harris FM, Mou Z. 2024.. Damage-associated molecular patterns and systemic signaling. . Phytopathology 114::30827
    [Crossref] [Google Scholar]
  88. 88.
    Hassan S, Shevchik VE, Robert X, Hugouvieux-Cotte-Pattat N. 2013.. PelN is a new pectate lyase of Dickeya dadantii with unusual characteristics. . J. Bacteriol. 195::2197206
    [Crossref] [Google Scholar]
  89. 89.
    Hocq L, Guinand S, Habrylo O, Voxeur A, Tabi W, et al. 2020.. The exogenous application of AtPGLR, an endo-polygalacturonase, triggers pollen tube burst and repair. . Plant J. 103::61733
    [Crossref] [Google Scholar]
  90. 90.
    Huang X, Sun G, Wu Z, Jiang Y, Li Q, et al. 2023.. Genome-wide identification and expression analyses of the pectate lyase (PL) gene family in Fragaria vesca. . BMC Genom. 24::435
    [Crossref] [Google Scholar]
  91. 91.
    Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, et al. 2023.. The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. . Mol. Plant 16::86581
    [Crossref] [Google Scholar]
  92. 92.
    Jackson CL, Dreaden TM, Theobald LK, Tran NM, Beal TL, et al. 2007.. Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. . Glycobiology 17::80519
    [Crossref] [Google Scholar]
  93. 93.
    Jiang J, Yao L, Miao Y, Cao J. 2013.. Genome-wide characterization of the pectate lyase-like (PLL) genes in Brassica rapa. . Mol. Genet. Genom. 288::60114
    [Crossref] [Google Scholar]
  94. 94.
    Jiménez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, López-Aranda JM, et al. 2002.. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. . Plant Physiol. 128::75159
    [Crossref] [Google Scholar]
  95. 95.
    Jobert F, Soriano A, Brottier L, Casset C, Divol F, et al. 2022.. Auxin triggers pectin modification during rootlet emergence in white lupin. . Plant J. 112::112740
    [Crossref] [Google Scholar]
  96. 96.
    Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markovič O, Eklund H. 2002.. Crystal structure of plant pectin methylesterase. . FEBS Lett. 514::24349
    [Crossref] [Google Scholar]
  97. 97.
    John J, Ray D, Aswal VK, Deshpande AP, Varughese S. 2022.. Pectin self-assembly and its disruption by water: insights into plant cell wall mechanics. . Phys. Chem. Chem. Phys. 24::2269198
    [Crossref] [Google Scholar]
  98. 98.
    Joubert DA, Slaughter AR, Kemp G, Becker JVW, Krooshof GH, et al. 2006.. The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. . Transgen. Res. 15::687702
    [Crossref] [Google Scholar]
  99. 99.
    Kaczmarska A, Pieczywek PM, Cybulska J, Zdunek A. 2022.. Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: a review. . Carbohydr. Polym. 278::118909
    [Crossref] [Google Scholar]
  100. 100.
    Kalmbach L, Bourdon M, Belevich I, Safran J, Lemaire A, et al. 2023.. Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis. . Curr. Biol. 33::92639.e9
    [Crossref] [Google Scholar]
  101. 101.
    Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D'Ovidio R. 2015.. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. . Front. Plant Sci. 6::146
    [Crossref] [Google Scholar]
  102. 102.
    Kamiya M, Higashio S-Y, Isomoto A, Kim J-M, Seki M, et al. 2016.. Control of root cap maturation and cell detachment by BEARSKIN transcription factors in Arabidopsis. . Development 143::406372
    [Crossref] [Google Scholar]
  103. 103.
    Khotimchenko M. 2020.. Pectin polymers for colon-targeted antitumor drug delivery. . Int. J. Biol. Macromol. 158::111024
    [Crossref] [Google Scholar]
  104. 104.
    Kim J, Patterson SE. 2006.. Expression divergence and functional redundancy of polygalacturonases in floral organ abscission. . Plant Signal. Behav. 1::28183
    [Crossref] [Google Scholar]
  105. 105.
    Kluskens LD, van Alebeek G-JWM, Walther J, Voragen AGJ, de Vos WM, van der Oost J. 2005.. Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. . FEBS J. 272::546473
    [Crossref] [Google Scholar]
  106. 106.
    Kohorn BD, Hoon D, Minkoff BB, Sussman MR, Kohorn SL. 2016.. Rapid oligo-galacturonide induced changes in protein phosphorylation in Arabidopsis. . Mol. Cell. Proteom. 15::135159
    [Crossref] [Google Scholar]
  107. 107.
    Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R, et al. 2009.. Pectin activation of MAP kinase and gene expression is WAK2 dependent. . Plant J. 60::97482
    [Crossref] [Google Scholar]
  108. 108.
    Kohorn BD, Kohorn SL. 2012.. The cell wall-associated kinases, WAKs, as pectin receptors. . Front. Plant Sci. 3::88
    [Crossref] [Google Scholar]
  109. 109.
    Krieger EK, Allen E, Gilbertson LA, Roberts JK, Hiatt W, Sanders RA. 2008.. The Flavr Savr tomato, an early example of RNAi technology. . HortScience 43::96264
    [Crossref] [Google Scholar]
  110. 110.
    Kumar R, Meghwanshi GK, Marcianò D, Ullah SF, Bulone V, et al. 2023.. Sequence, structure and functionality of pectin methylesterases and their use in sustainable carbohydrate bioproducts: a review. . Int. J. Biol. Macromol. 244::125385
    [Crossref] [Google Scholar]
  111. 111.
    Kumpf RP, Shi C-L, Larrieu A, Stø IM, Butenko MA, et al. 2013.. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. . PNAS 110::523540
    [Crossref] [Google Scholar]
  112. 112.
    Leclere L, Fransolet M, Cote F, Cambier P, Arnould T, et al. 2015.. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. . PLOS ONE 10::e0115831
    [Crossref] [Google Scholar]
  113. 113.
    Lee HW, Cho C, Kim J. 2015.. Lateral Organ Boundaries Domain16 and 18 act downstream of the AUXIN1 and LIKE-AUXIN3 auxin influx carriers to control lateral root development in Arabidopsis. . Plant Physiol. 168::1792806
    [Crossref] [Google Scholar]
  114. 114.
    Leng Y, Yang Y, Ren D, Huang L, Dai L, et al. 2017.. A rice PECTATE LYASE-LIKE gene is required for plant growth and leaf senescence. . Plant Physiol. 174::115166
    [Crossref] [Google Scholar]
  115. 115.
    Lerouge P, Carlier M, Mollet J-C, Lehner A. 2021.. The cell wall pectic rhamnogalacturonan II, an enigma in plant glycobiology. . In Carbohydrate Chemistry: Chemical and Biological Approaches, Vol. 45, ed. AP Rauter, TK Lindhorst, Y Queneau , pp. 55371. London:: R. Soc. Chem.
    [Google Scholar]
  116. 116.
    Leso M, Kokla A, Feng M, Melnyk CW. 2024.. Pectin modifications promote haustoria development in the parasitic plant Phtheirospermum japonicum. . Plant Physiol. 194::22942
    [Crossref] [Google Scholar]
  117. 117.
    Li L-F, Olsen K. 2016.. To have and to hold: selection for seed and fruit retention during crop domestication. . Curr. Top. Dev. Biol. 119::63109
    [Crossref] [Google Scholar]
  118. 118.
    Li M, Zhang Y, Zhang Z, Ji X, Zhang R, et al. 2013.. Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence. . PLOS ONE 8::e58745
    [Crossref] [Google Scholar]
  119. 119.
    Lietzke SE, Scavetta RD, Yoder MD, Jurnak F. 1996.. The refined three-dimensional structure of pectate lyase E from Erwinia chrysanthemi at 2.2 Å resolution. . Plant Physiol. 111::7392
    [Crossref] [Google Scholar]
  120. 120.
    Lin W, Tang W, Pan X, Huang A, Gao X, et al. 2022.. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. . Curr. Biol. 32::497507.e4
    [Crossref] [Google Scholar]
  121. 121.
    Lin Y, He H, Wen Y, Cao S, Wang Z, et al. 2023.. Comprehensive analysis of the pectate lyase gene family and the role of FaPL1 in strawberry softening. . Int. J. Mol. Sci. 24::13217
    [Crossref] [Google Scholar]
  122. 122.
    Liu M-CJ, Yeh F-LJ, Yvon R, Simpson K, Jordan S, et al. 2024.. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. . Cell 187::31230.e22
    [Crossref] [Google Scholar]
  123. 123.
    Liwanag AJ, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, et al. 2012.. Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. . Plant Cell 24::502436
    [Crossref] [Google Scholar]
  124. 124.
    Lyu M, Iftikhar J, Guo R, Wu B, Cao J. 2020.. Patterns of expansion and expression divergence of the polygalacturonase gene family in Brassica oleracea. . Int. J. Mol. Sci. 21::5706
    [Crossref] [Google Scholar]
  125. 125.
    Ma X, Wang D, Chen W, Ismail BB, Wang W, et al. 2018.. Effects of ultrasound pretreatment on the enzymolysis of pectin: kinetic study, structural characteristics and anti-cancer activity of the hydrolysates. . Food Hydrocoll. 79::9099
    [Crossref] [Google Scholar]
  126. 126.
    Maiti S, Maji B, Yadav H. 2024.. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. . Carbohydr. Polym. 326::121584
    [Crossref] [Google Scholar]
  127. 127.
    Marín-Rodríguez M, Smith D, Manning K, Orchard J, Seymour G. 2003.. Pectate lyase gene expression and enzyme activity in ripening banana fruit. . Plant Mol. Biol. 51::85157
    [Crossref] [Google Scholar]
  128. 128.
    Markovič O, Janeček Š. 2001.. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. . Protein Eng. 14::61531
    [Crossref] [Google Scholar]
  129. 129.
    Martín MC, López OV, Ciolino AE, Morata VI, Villar MA, Ninago MD. 2019.. Immobilization of enological pectinase in calcium alginate hydrogels: a potential biocatalyst for winemaking. . Biocatal. Agric. Biotechnol. 18::101091
    [Crossref] [Google Scholar]
  130. 130.
    Martínez-Gómez S, Fernández-Bautista M, Rivas S, Yáñez R, Alonso JL. 2023.. Recent advances in the production of oligogalacturonides and their biological properties. . Food Funct. 14::450721
    [Crossref] [Google Scholar]
  131. 131.
    Martínez-Lapuente L, Guadalupe Z, Ayestarán B. 2020.. Properties of wine polysaccharides. . In Pectins—Extraction, Purification, Characterization and Applications, ed. M Masuelli . London:: IntechOpen. https://doi.org/10.5772/intechopen.85629
    [Google Scholar]
  132. 132.
    Maxwell EG, Colquhoun IJ, Chau HK, Hotchkiss AT, Waldron KW, et al. 2015.. Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression. . Carbohydr. Polym. 132::54653
    [Crossref] [Google Scholar]
  133. 133.
    Maxwell EG, Colquhoun IJ, Chau HK, Hotchkiss AT, Waldron KW, et al. 2016.. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. . Carbohydr. Polym. 136::92329
    [Crossref] [Google Scholar]
  134. 134.
    Mayans O, Scott M, Connerton I, Gravesen T, Benen J, et al. 1997.. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. . Structure 5::67789
    [Crossref] [Google Scholar]
  135. 135.
    McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT. 2014.. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. . BMC Plant Biol. 14::79
    [Crossref] [Google Scholar]
  136. 136.
    Meents MJ, Watanabe Y, Samuels AL. 2018.. The cell biology of secondary cell wall biosynthesis. . Ann. Bot. 121::110725
    [Crossref] [Google Scholar]
  137. 137.
    Mihajlovski K, Buntić A, Milić M, Rajilić-Stojanović M, Dimitrijević-Branković S. 2021.. From agricultural waste to biofuel: enzymatic potential of a bacterial isolate Streptomyces fulvissimus CKS7 for bioethanol production. . Waste Biomass Valorizat. 12::16574
    [Crossref] [Google Scholar]
  138. 138.
    Milioni D, Sado P-E, Stacey NJ, Domingo C, Roberts K, McCann MC. 2001.. Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. . Plant Mol. Biol. 47::22138
    [Crossref] [Google Scholar]
  139. 139.
    Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, et al. 2020.. Phenolic cross-links: building and de-constructing the plant cell wall. . Nat. Prod. Rep. 37::91961
    [Crossref] [Google Scholar]
  140. 140.
    Mohnen D, Atmodjo MA, Jayawardhane P. 2023.. Reconsidering pectin structure: a historical perspective informed by studies of the biosynthetic enzymes. . In Plant Cell Walls, ed. A Geitmann , pp. 94126. Boca Raton, FL:: CRC Press
    [Google Scholar]
  141. 141.
    Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, et al. 2017.. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. . Nature 544::6570
    [Crossref] [Google Scholar]
  142. 142.
    Nunan KJ, Davies C, Robinson SP, Fincher GB. 2001.. Expression patterns of cell wall-modifying enzymes during grape berry development. . Planta 214::25764
    [Crossref] [Google Scholar]
  143. 143.
    Ogawa M, Kay P, Wilson S, Swain SM. 2009.. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. . Plant Cell 21::21633
    [Crossref] [Google Scholar]
  144. 144.
    Ohashi T, Sari N, Misaki R, Fujiyama K. 2022.. Biochemical characterization of Arabidopsis clade F polygalacturonase shows a substrate preference toward oligogalacturonic acids. . J. Biosci. Bioeng. 133::17
    [Crossref] [Google Scholar]
  145. 145.
    Orellana A. 2023.. Nucleotide sugars and the transporters that put them at the right place. . In Plant Cell Walls, ed. A Geitmann , pp. 6174. Boca Raton, FL:: CRC Press
    [Google Scholar]
  146. 146.
    Osborne DJ. 1958.. Changes in the distribution of pectin methylesterase across leaf abscission zones of Phaseolus vulgaris. . J. Exp. Bot. 9::44657
    [Crossref] [Google Scholar]
  147. 147.
    Ouattara HG, Reverchon S, Niamke SL, Nasser W. 2010.. Biochemical properties of pectate lyases produced by three different Bacillus strains isolated from fermenting cocoa beans and characterization of their cloned genes. . Appl. Environ. Microbiol. 76::521420
    [Crossref] [Google Scholar]
  148. 148.
    Ouyang Y, Zhao J, Wang S. 2023.. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: a review. . Int. J. Biol. Macromol. 227::50523
    [Crossref] [Google Scholar]
  149. 149.
    Pagés S, Heijne WHM, Kester HCM, Visser J, Benen JAE. 2000.. Subsite mapping of Aspergillus niger endopolygalacturonase II by site-directed mutagenesis. . J. Biol. Chem. 275::2934853
    [Crossref] [Google Scholar]
  150. 150.
    Palusa SG, Golovkin M, Shin SB, Richardson DN, Reddy AS. 2007.. Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis. . New Phytol. 174::53750
    [Crossref] [Google Scholar]
  151. 151.
    Pandey M, Choudhury H, Segar Singh SKDO, Chetty Annan N, Bhattamisra SK, et al. 2021.. Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery: fabrication, characterization and in vitro release kinetics. . Molecules 26::2704
    [Crossref] [Google Scholar]
  152. 152.
    Pathak N, Mishra S, Sanwal G. 2000.. Purification and characterization of polygalacturonase from banana fruit. . Phytochemistry 54::14752
    [Crossref] [Google Scholar]
  153. 153.
    Patidar MK, Nighojkar S, Kumar A, Nighojkar A. 2018.. Pectinolytic enzymes—solid state fermentation, assay methods and applications in fruit juice industries: a review. . 3 Biotech 8::199
    [Crossref] [Google Scholar]
  154. 154.
    Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. 2011.. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. . Curr. Biol. 21::172026
    [Crossref] [Google Scholar]
  155. 155.
    Peaucelle A, Wightman R, Hofte H. 2015.. The control of growth symmetry breaking in the Arabidopsis hypocotyl. . Curr. Biol. 25::174652
    [Crossref] [Google Scholar]
  156. 156.
    Philippe F, Pelloux J, Rayon C. 2017.. Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. . BMC Genom. 18::456
    [Crossref] [Google Scholar]
  157. 157.
    Phyo P, Wang T, Xiao C, Anderson CT, Hong M. 2017.. Effects of pectin molecular weight changes on the structure, dynamics, and polysaccharide interactions of primary cell walls of Arabidopsis thaliana: insights from solid-state NMR. . Biomacromolecules 18::293750
    [Crossref] [Google Scholar]
  158. 158.
    Pickersgill R, Jenkins J, Harris G, Nasser W, Robert-Baudouy J. 1994.. The structure of Bacillus subtilis pectate lyase in complex with calcium. . Nat. Struct. Biol. 1::71723
    [Crossref] [Google Scholar]
  159. 159.
    Pickersgill R, Smith D, Worboys K, Jenkins J. 1998.. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. . J. Biol. Chem. 273::2466064
    [Crossref] [Google Scholar]
  160. 160.
    Picot-Allain MCN, Neergheen VS. 2023.. Pectin a multifaceted biopolymer in the management of cancer: a review. . Heliyon 9::e22236
    [Crossref] [Google Scholar]
  161. 161.
    Pijning T, van Pouderoyen G, Kluskens L, van der Oost J, Dijkstra BW. 2009.. The crystal structure of a hyperthermoactive exopolygalacturonase from Thermotoga maritima reveals a unique tetramer. . FEBS Lett. 583::366570
    [Crossref] [Google Scholar]
  162. 162.
    Popov SV, Markov PA, Popova GY, Nikitina IR, Efimova L, Ovodov YS. 2013.. Anti-inflammatory activity of low and high methoxylated citrus pectins. . Biomed. Prev. Nutr. 3::5963
    [Crossref] [Google Scholar]
  163. 163.
    Popper ZA, Fry SC. 2008.. Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. . Planta 227::78194
    [Crossref] [Google Scholar]
  164. 164.
    Popper ZA, Michel G, Herve C, Domozych DS, Willats WG, et al. 2011.. Evolution and diversity of plant cell walls: from algae to flowering plants. . Annu. Rev. Plant Biol. 62::56790
    [Crossref] [Google Scholar]
  165. 165.
    Poulhazan A, Arnold AA, Mentink-Vigier F, Muszyński A, Azadi P, et al. 2024.. Molecular-level architecture of Chlamydomonas reinhardtii's glycoprotein-rich cell wall. . Nat. Commun. 15::986
    [Crossref] [Google Scholar]
  166. 166.
    Prakash H, Chauhan PS, General T, Sharma A. 2018.. Development of eco-friendly process for the production of bioethanol from banana peel using inhouse developed cocktail of thermo-alkali-stable depolymerizing enzymes. . Bioprocess Biosyst. Eng. 41::100316
    [Crossref] [Google Scholar]
  167. 167.
    Quesada MA, Blanco-Portales R, Posé S, García-Gago JA, Jiménez-Bermúdez S, et al. 2009.. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. . Plant Physiol. 150::102232
    [Crossref] [Google Scholar]
  168. 168.
    Raafi SM, Arju SN, Asaduzzaman M, Khan HH, Rokonuzzaman M. 2023.. Eco-friendly scouring of cotton knit fabrics with enzyme and soapnut: an alternative to conventional NaOH and synthetic surfactant based scouring. . Heliyon 9::e15236
    [Crossref] [Google Scholar]
  169. 169.
    Rahman MS, Choi YS, Kim YK, Park C, Yoo JC. 2019.. Production of novel polygalacturonase from Bacillus paralicheniformis CBS32 and application to depolymerization of ramie fiber. . Polymers 11::1525
    [Crossref] [Google Scholar]
  170. 170.
    Ric-Varas P, Paniagua C, López-Casado G, Molina-Hidalgo FJ, Schückel J, et al. 2024.. Suppressing the rhamnogalacturonan lyase gene FaRGLyase1 preserves RGI pectin degradation and enhances strawberry fruit firmness. . Plant Physiol. Biochem. 206::108294
    [Crossref] [Google Scholar]
  171. 171.
    Ropitaux M, Hays Q, Baron A, Fourmois L, Boulogne I, et al. 2022.. Dynamic imaging of cell wall polysaccharides by metabolic click-mediated labeling of pectins in living elongating cells. . Plant J. 110::91624
    [Crossref] [Google Scholar]
  172. 172.
    Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ, et al. 2017.. POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. . Plant Cell 29::241332
    [Crossref] [Google Scholar]
  173. 173.
    Sabbadin F, Urresti S, Henrissat B, Avrova AO, Welsh LR, et al. 2021.. Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. . Science 373::77479
    [Crossref] [Google Scholar]
  174. 174.
    Safran J, Habrylo O, Cherkaoui M, Lecomte S, Voxeur A, et al. 2021.. New insights into the specificity and processivity of two novel pectinases from Verticillium dahliae. . Int. J. Biol. Macromol. 176::16576
    [Crossref] [Google Scholar]
  175. 175.
    Safran J, Tabi W, Ung V, Lemaire A, Habrylo O, et al. 2023.. Plant polygalacturonase structures specify enzyme dynamics and processivities to fine-tune cell wall pectins. . Plant Cell 35::307391 This article reported the first structures of two plant polygalacturonases, highlighting their substrate specificity.
    [Crossref] [Google Scholar]
  176. 176.
    Safran J, Ung V, Bouckaert J, Habrylo O, Molinié R, et al. 2023.. The specificity of pectate lyase VdPelB from Verticilium dahliae is highlighted by structural, dynamical and biochemical characterizations. . Int. J. Biol. Macromol. 231::123137
    [Crossref] [Google Scholar]
  177. 177.
    Said NS, Olawuyi IF, Lee WY. 2023.. Pectin hydrogels: gel-forming behaviors, mechanisms, and food applications. . Gels 9::732
    [Crossref] [Google Scholar]
  178. 178.
    Sandri IG, Fontana RC, Barfknecht DM, da Silveira MM. 2011.. Clarification of fruit juices by fungal pectinases. . LWT Food Sci. Technol. 44::221722
    [Crossref] [Google Scholar]
  179. 179.
    Santiago-Doménech N, Jiménez-Bemudez S, Matas AJ, Rose JK, Munoz-Blanco J, et al. 2008.. Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. . J. Exp. Bot. 59::276979
    [Crossref] [Google Scholar]
  180. 180.
    Savatin DV, Ferrari S, Sicilia F, De Lorenzo G. 2011.. Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis. . Plant Physiol. 157::116374
    [Crossref] [Google Scholar]
  181. 181.
    Scavetta RD, Herron SR, Hotchkiss AT, Kita N, Keen NT, et al. 1999.. Structure of a plant cell wall fragment complexed to pectate lyase C. . Plant Cell 11::108192
    [Crossref] [Google Scholar]
  182. 182.
    Senechal F, Wattier C, Rusterucci C, Pelloux J. 2014.. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. . J. Exp. Bot. 65::512560
    [Crossref] [Google Scholar]
  183. 183.
    Shahin L, Zhang L, Mohnen D, Urbanowicz BR. 2023.. Insights into pectin O-acetylation in the plant cell wall: structure, synthesis, and modification. . Cell Surface 9::100099
    [Crossref] [Google Scholar]
  184. 184.
    Sherry CL, Kim SS, Dilger RN, Bauer LL, Moon ML, et al. 2010.. Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization. . Brain Behav. Immun. 24::63140
    [Crossref] [Google Scholar]
  185. 185.
    Shimizu T, Nakatsu T, Miyairi K, Okuno T, Kato H. 2002.. Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. . Biochemistry 41::665159
    [Crossref] [Google Scholar]
  186. 186.
    Sicilia F, Fernandez-Recio J, Caprari C, De Lorenzo G, Tsernoglou D, et al. 2005.. The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. . Plant Physiol. 139::138088
    [Crossref] [Google Scholar]
  187. 187.
    Silva-Sanzana C, Zavala D, Moraga F, Herrera-Vásquez A, Blanco-Herrera F. 2022.. Oligogalacturonides enhance resistance against aphids through pattern-triggered immunity and activation of salicylic acid signaling. . Int. J. Mol. Sci. 23::9753
    [Crossref] [Google Scholar]
  188. 188.
    Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, et al. 2017.. Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal. . Curr. Biol. 27::340318.e7
    [Crossref] [Google Scholar]
  189. 189.
    Singh A, Varghese LM, Battan B, Patra AK, Mandhan RP, Mahajan R. 2020.. Eco-friendly scouring of ramie fibers using crude xylano-pectinolytic enzymes for textile purpose. . Environ. Sci. Pollut. Res. 27::670110
    [Crossref] [Google Scholar]
  190. 190.
    Smith C, Watson C, Ray J, Bird C, Morris P, et al. 1988.. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. . Nature 334::72426
    [Crossref] [Google Scholar]
  191. 191.
    Suganya KU, Govindaraju K, Kumar VG, Karthick V, Parthasarathy K. 2016.. Pectin mediated gold nanoparticles induces apoptosis in mammary adenocarcinoma cell lines. . Int. J. Biol. Macromol. 93::103040
    [Crossref] [Google Scholar]
  192. 192.
    Sun H, Hao P, Ma Q, Zhang M, Qin Y, et al. 2018.. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton (Gossypium hirsutum L.). . BMC Genom. 19::661
    [Crossref] [Google Scholar]
  193. 193.
    Sun L, van Nocker S. 2010.. Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. . BMC Plant Biol. 10::152
    [Crossref] [Google Scholar]
  194. 194.
    Swarup K, Benková E, Swarup R, Casimiro I, Péret B, et al. 2008.. The auxin influx carrier LAX3 promotes lateral root emergence. . Nat. Cell Biol. 10::94654
    [Crossref] [Google Scholar]
  195. 195.
    Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, et al. 2010.. The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. . Plant Physiol. 153::294305
    [Crossref] [Google Scholar]
  196. 196.
    Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, et al. 2013.. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. . Plant Cell 25::27087
    [Crossref] [Google Scholar]
  197. 197.
    Tan L, Zhang L, Black I, Glushka J, Urbanowicz B, et al. 2023.. Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. . Carbohydr. Polym. 301::120340
    [Crossref] [Google Scholar]
  198. 198.
    Tang X, Liu J, Yan R, Peng Q. 2023.. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: a review. . Int. J. Biol. Macromol. 242::124902
    [Crossref] [Google Scholar]
  199. 199.
    Taniguchi Y, Ono A, Sawatani M, Nanba M, Kohno K, et al. 1995.. Cry j I, a major allergen of Japanese cedar pollen, has pectate lyase enzyme activity. . Allergy 50::9093
    [Crossref] [Google Scholar]
  200. 200.
    Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarria-Poza A, et al. 2022.. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. . Nat. Plants 8::65669
    [Crossref] [Google Scholar]
  201. 201.
    Turcich MP, Hamilton DA, Mascarenhas JP. 1993.. Isolation and characterization of pollen-specific maize genes with sequence homology to ragweed allergens and pectate lyases. . Plant Mol. Biol. 23::106165
    [Crossref] [Google Scholar]
  202. 202.
    van Alebeek G-JWM, Christensen TMIE, Schols HA, Mikkelsen JD, Voragen AGJ. 2002.. Mode of action of pectin lyase A of Aspergillus nigeron differently C6-substituted oligogalacturonides. . J. Biol. Chem. 277::2592936
    [Crossref] [Google Scholar]
  203. 203.
    van Santen Y, Benen JA, Schröter K-H, Kalk KH, Armand S, et al. 1999.. 1.68-Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. . J. Biol. Chem. 274::3047480
    [Crossref] [Google Scholar]
  204. 204.
    Verger S, Chabout S, Gineau E, Mouille G. 2016.. Cell adhesion in plants is under the control of putative O-fucosyltransferases. . Development 143::253640
    [Google Scholar]
  205. 205.
    Verlent I, Smout C, Duvetter T, Hendrickx M, Van Loey A. 2005.. Effect of temperature and pressure on the activity of purified tomato polygalacturonase in the presence of pectins with different patterns of methyl esterification. . Innov. Food Sci. Emerg. Technol. 6::293303
    [Crossref] [Google Scholar]
  206. 206.
    Verlent I, Van Loey A, Smout C, Duvetter T, Hendrickx M. 2004.. Purified tomato polygalacturonase activity during thermal and high-pressure treatment. . Biotechnol. Bioeng. 86::6371
    [Crossref] [Google Scholar]
  207. 207.
    Vitali J, Schick B, Kester HC, Visser J, Jurnak F. 1998.. The three-dimensional structure of Aspergillus niger pectin lyase B at 1.7-Å resolution. . Plant Physiol. 116::6980
    [Crossref] [Google Scholar]
  208. 208.
    Voxeur A, Habrylo O, Guenin S, Miart F, Soulie MC, et al. 2019.. Oligogalacturonide production upon Arabidopsis thalianaBotrytis cinerea interaction. . PNAS 116::1974352 This article reported a new, highly sensitive method for analyzing pectin degradation products.
    [Crossref] [Google Scholar]
  209. 209.
    Wachananawat B, Kuroha T, Takenaka Y, Kajiura H, Naramoto S, et al. 2020.. Diversity of pectin rhamnogalacturonan I rhamnosyltransferases in glycosyltransferase family 106. . Front. Plant Sci. 11::997
    [Crossref] [Google Scholar]
  210. 210.
    Wang D, Yeats TH, Uluisik S, Rose JK, Seymour GB. 2018.. Fruit softening: revisiting the role of pectin. . Trends Plant Sci. 23::30210
    [Crossref] [Google Scholar]
  211. 211.
    Wang H, Guo Y, Lv F, Zhu H, Wu S, et al. 2010.. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton. . Plant Mol. Biol. 72::397406
    [Crossref] [Google Scholar]
  212. 212.
    Wang J, Chio C, Chen X, Su E, Cao F, et al. 2019.. Efficient saccharification of agave biomass using Aspergillus niger produced low-cost enzyme cocktail with hyperactive pectinase activity. . Bioresour. Technol. 272::2633
    [Crossref] [Google Scholar]
  213. 213.
    Wang T, Hong M. 2016.. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. . J. Exp. Bot. 67::50314
    [Crossref] [Google Scholar]
  214. 214.
    Wang X, Wilson L, Cosgrove DJ. 2020.. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. . J. Exp. Bot. 71::262940
    [Crossref] [Google Scholar]
  215. 215.
    Wang Y, Fan Z, Zhai Y, Huang H, Vainstein A, Ma H. 2023.. Polygalacturonase gene family analysis identifies FcPG12 as a key player in fig (Ficus carica L.) fruit softening. . BMC Plant Biol. 23::320
    [Crossref] [Google Scholar]
  216. 216.
    Wang Z, Xu B, Luo H, Meng K, Wang Y, et al. 2020.. Production pectin oligosaccharides using Humicola insolens Y1-derived unusual pectate lyase. . J. Biosci. Bioeng. 129::1622
    [Crossref] [Google Scholar]
  217. 217.
    Wang Z-Y, MacRae EA, Wright MA, Bolitho KM, Ross GS, Atkinson RG. 2000.. Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. . Plant Mol. Biol. 42::31728
    [Crossref] [Google Scholar]
  218. 218.
    Watson CF, Zheng L, DellaPenna D. 1994.. Reduction of tomato polygalacturonase beta subunit expression affects pectin solubilization and degradation during fruit ripening. . Plant Cell 6::162334
    [Google Scholar]
  219. 219.
    Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W, et al. 2019.. A hybrid approach enabling large-scale glycomic analysis of post-Golgi vesicles reveals a transport route for polysaccharides. . Plant Cell 31::62744
    [Crossref] [Google Scholar]
  220. 220.
    Willats WG, Knox JP, Mikkelsen JD. 2006.. Pectin: new insights into an old polymer are starting to gel. . Trends Food Sci. Technol. 17::97104
    [Crossref] [Google Scholar]
  221. 221.
    Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT. 2017.. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. . Plant J. 89::115973
    [Crossref] [Google Scholar]
  222. 222.
    Xiao C, Somerville C, Anderson CT. 2014.. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. . Plant Cell 26::101835
    [Crossref] [Google Scholar]
  223. 223.
    Xiao Y, Sun G, Yu Q, Gao T, Zhu Q, et al. 2024.. A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity. . Science 383::73239 This article revealed how a plant PGIP interacts with a fungal PG to enhance immune responses to fungal attack.
    [Crossref] [Google Scholar]
  224. 224.
    Yadav PK, Singh VK, Yadav S, Yadav KDS, Yadav D. 2009.. In silico analysis of pectin lyase and pectinase sequences. . Biochemistry 74::104955
    [Google Scholar]
  225. 225.
    Yang G, Chen W, Tan H, Li K, Li J, Yin H. 2020.. Biochemical characterization and evolutionary analysis of a novel pectate lyase from Aspergillus parasiticus. . Int. J. Biol. Macromol. 152::18088
    [Crossref] [Google Scholar]
  226. 226.
    Yang Y, Anderson CT. 2020.. Biosynthesis, localisation, and function of pectins in plants. . In Pectin: Technological and Physiological Properties, ed. V Kontogiorgos , pp. 115. Cham, Switz:.: Springer
    [Google Scholar]
  227. 227.
    Yang Y, Anderson CT, Cao J. 2021.. Polygalacturonase45 cleaves pectin and links cell proliferation and morphogenesis to leaf curvature in Arabidopsis thaliana. . Plant J. 106::1493508
    [Crossref] [Google Scholar]
  228. 228.
    Yang Y, Yu Y, Liang Y, Anderson CT, Cao J. 2018.. A profusion of molecular scissors for pectins: classification, expression, and functions of plant polygalacturonases. . Front. Plant Sci. 9::1208
    [Crossref] [Google Scholar]
  229. 229.
    Yang Z-L, Liu H-J, Wang X-R, Zeng Q-Y. 2013.. Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants. . New Phytol. 197::135365
    [Crossref] [Google Scholar]
  230. 230.
    Yeung YK, Kang Y-R, So BR, Jung SK, Chang YH. 2021.. Structural, antioxidant, prebiotic and anti-inflammatory properties of pectic oligosaccharides hydrolyzed from okra pectin by Fenton reaction. . Food Hydrocoll. 118::106779
    [Crossref] [Google Scholar]
  231. 231.
    Yin M, Wang R, Li S, Luo M, Wei W, et al. 2022.. High Sclerotinia sclerotiorum resistance in rapeseed plant has been achieved by OsPGIP6. Front. . Plant Sci. 13::970716
    [Google Scholar]
  232. 232.
    Yoder MD, Jurnak F. 1995.. The refined three-dimensional structure of pectate lyase C from Erwinia chrysanthemi at 2.2 Ångstrom resolution (implications for an enzymatic mechanism). . Plant Physiol. 107::34964
    [Crossref] [Google Scholar]
  233. 233.
    Yoder MD, Keen NT, Jurnak F. 1993.. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. . Science 260::15037
    [Crossref] [Google Scholar]
  234. 234.
    Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. 2023.. Thiolated polymeric hydrogels for biomedical applications: a review. . Curr. Pharm. Des. 29::317286
    [Crossref] [Google Scholar]
  235. 235.
    Zamil MS, Yi H, Puri VM. 2014.. Mechanical characterization of outer epidermal middle lamella of onion under tensile loading. . Am. J. Bot. 101::77887
    [Crossref] [Google Scholar]
  236. 236.
    Zeuner B, Thomsen TB, Stringer MA, Krogh KB, Meyer AS, Holck J. 2020.. Comparative characterization of Aspergillus pectin lyases by discriminative substrate degradation profiling. . Front. Bioeng. Biotechnol. 8::873
    [Crossref] [Google Scholar]
  237. 237.
    Zhang F, Liu N, Chen T, Xu H, Li R, et al. 2024.. Genome-wide identification of GH28 family and insight into its contributions to pod shattering resistance in Brassica napus L. . BMC Genom. 25::492
    [Crossref] [Google Scholar]
  238. 238.
    Zhang L, Liu J, Cheng J, Sun Q, Zhang Y, et al. 2022.. lncRNA7 and lncRNA2 modulate cell wall defense genes to regulate cotton resistance to Verticillium wilt. . Plant Physiol. 189::26484
    [Crossref] [Google Scholar]
  239. 239.
    Zhang T, Zheng Y, Cosgrove DJ. 2016.. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. . Plant J. 85::17992
    [Crossref] [Google Scholar]
  240. 240.
    Zhang YY, Mu TH, Zhang M. 2013.. Optimisation of acid extraction of pectin from sweet potato residues by response surface methodology and its antiproliferation effect on cancer cells. . Int. J. Food Sci. Technol. 48::77885
    [Crossref] [Google Scholar]
  241. 241.
    Zhao C, Wu C, Li K, Kennedy JF, Wisniewski M, et al. 2022.. Effect of oligogalacturonides on seed germination and disease resistance of sugar beet seedling and root. . J. Fungi 8::716
    [Crossref] [Google Scholar]
  242. 242.
    Zhao Q, Yuan S, Wang X, Zhang Y, Zhu H, Lu C. 2008.. Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. . Plant Physiol. 147::187485
    [Crossref] [Google Scholar]
  243. 243.
    Zhao Z, Pei X, Li Q, Zhang H, Wang Y, et al. 2024.. Pectin-based double network hydrogels as local depots of celastrol for enhanced antitumor therapy. . Int. J. Biol. Macromol. 256::128442
    [Crossref] [Google Scholar]
  244. 244.
    Zheng Y, Huang C-H, Liu W, Ko T-P, Xue Y, et al. 2012.. Crystal structure and substrate-binding mode of a novel pectate lyase from alkaliphilic Bacillus sp. N16-5. . Biochem. Biophys. Res. Commun. 420::26974
    [Crossref] [Google Scholar]
  245. 245.
    Zheng Y, Yan J, Wang S, Xu M, Huang K, et al. 2018.. Genome-wide identification of the pectate lyase-like (PLL) gene family and functional analysis of two PLL genes in rice. . Mol. Genet. Genom. 293::131731
    [Crossref] [Google Scholar]
  246. 246.
    Zykwinska A, Thibault JF, Ralet MC. 2008.. Competitive binding of pectin and xyloglucan with primary cell wall cellulose. . Carbohydr. Polym. 74::95761
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083023-034055
Loading
/content/journals/10.1146/annurev-arplant-083023-034055
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error