1932

Abstract

Immune system incompatibilities between naturally occurring genomic variants underlie many hybrid defects in plants and present a barrier for crop improvement. In this review, we approach immune system incompatibilities from pan-genomic and network perspectives. Pan-genomes offer insights into how natural variation shapes the evolutionary landscape of immune system incompatibilities, and through it, selection, polymorphisms, and recombination resistance emerge as common features that synergistically drive these incompatibilities. By contextualizing incompatibilities within the immune network, immune receptor promiscuity, complex dysregulation, and single-point failure appear to be recurrent themes of immune system defects. As geneticists break genes to investigate their function, so can we investigate broken immune systems to enrich our understanding of plant immune systems and work toward improving them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083023-041225
2025-05-20
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083023-041225.html?itemId=/content/journals/10.1146/annurev-arplant-083023-041225&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alcázar R, García AV, Parker JE, Reymond M. 2009.. Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. . PNAS 106:(1):33439
    [Crossref] [Google Scholar]
  2. 2.
    Asai S, Furzer OJ, Cevik V, Kim DS, Ishaque N, et al. 2018.. A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. . Nat. Commun. 9::5192
    [Crossref] [Google Scholar]
  3. 3.
    Auton A, McVean G. 2007.. Recombination rate estimation in the presence of hotspots. . Genome Res. 17:(8):121927
    [Crossref] [Google Scholar]
  4. 4.
    Axtell MJ, Staskawicz BJ. 2003.. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. . Cell 112:(3):36977
    [Crossref] [Google Scholar]
  5. 5.
    Baggs EL, Monroe JG, Thanki AS, O'Grady R, Schudoma C, et al. 2020.. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response. . Plant Cell 32:(7):215877
    [Crossref] [Google Scholar]
  6. 6.
    Barragan AC, Collenberg M, Schwab R, Kersten S, Kerstens MH, et al. 2024.. Deleterious phenotypes in wild Arabidopsis arenosa populations are common and linked to runs of homozygosity. . G3 Genes Genomes Genet. 14:(3):jkad290
    [Crossref] [Google Scholar]
  7. 7.
    Barragan AC, Collenberg M, Wang J, Lee RR, Cher WY, et al. 2021.. A truncated singleton NLR causes hybrid necrosis in Arabidopsis thaliana. . Mol. Biol. Evol. 38:(2):55774
    [Crossref] [Google Scholar]
  8. 8.
    Barragan AC, Weigel D. 2021.. Plant NLR diversity: the known unknowns of pan-NLRomes. . Plant Cell 33:(4):81431
    [Crossref] [Google Scholar]
  9. 9.
    Barragan CA, Wu R, Kim ST, Xi W, Habring A, et al. 2019.. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. . PLOS Genet. 15:(7):e1008313
    [Crossref] [Google Scholar]
  10. 10.
    Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, et al. 2009.. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. . Plant J. 60:(4):60213
    [Crossref] [Google Scholar]
  11. 11.
    Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, et al. 2007.. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. . PLOS Biol. 5:(9):196272
    [Crossref] [Google Scholar]
  12. 12.
    Bomblies K, Weigel D. 2007.. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. . Nat. Rev. Genet. 8:(5):38293
    [Crossref] [Google Scholar]
  13. 13.
    Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, et al. 1998.. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. . Plant Cell 10:(11):184760
    [Crossref] [Google Scholar]
  14. 14.
    Brown JK, Rant JC. 2013.. Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. . Plant Pathol. 62:(S1):8395
    [Crossref] [Google Scholar]
  15. 15.
    Cadiou L, Brunisholz F, Cesari S, Kroj T. 2023.. Molecular engineering of plant immune receptors for tailored crop disease resistance. . Curr. Opin. Plant Biol. 74::102381
    [Crossref] [Google Scholar]
  16. 16.
    Cai X, Chang L, Zhang T, Chen H, Zhang L, et al. 2021.. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. . Genome Biol. 22::166
    [Crossref] [Google Scholar]
  17. 17.
    Calvo-Baltanás V, Wang J, Chae E. 2021.. Hybrid incompatibility of the plant immune system: an opposite force to heterosis equilibrating hybrid performances. . Front. Plant Sci. 11::576796
    [Crossref] [Google Scholar]
  18. 18.
    Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, et al. 2011.. Whole-genome sequencing of multiple Arabidopsis thaliana populations. . Nat. Genet. 43:(10):95665
    [Crossref] [Google Scholar]
  19. 19.
    Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, et al. 2019.. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. . New Phytol. 222:(2):96680
    [Crossref] [Google Scholar]
  20. 20.
    Chae E, Bomblies K, Kim S-T, Karelina D, Zaidem M, et al. 2014.. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. . Cell 159::134151
    [Crossref] [Google Scholar]
  21. 21.
    Chen C, Chen H, Lin YS, Shen JB, Shan JX, et al. 2014.. A two-locus interaction causes interspecific hybrid weakness in rice. . Nat. Commun. 5::3357
    [Crossref] [Google Scholar]
  22. 22.
    Chen C, Zhiguo E, Lin HX. 2016.. Evolution and molecular control of hybrid incompatibility in plants. . Front. Plant Sci. 7::01208
    [Google Scholar]
  23. 23.
    Chen J, Zhang X, Rathjen JP, Dodds PN. 2022.. Direct recognition of pathogen effectors by plant NLR immune receptors and downstream signalling. . Essays Biochem. 66:(5):47183
    [Crossref] [Google Scholar]
  24. 24.
    Chen Y, Zhong G, Cai H, Chen R, Liu N, et al. 2021.. A truncated TIR-NBS protein TN10 pairs with two clustered TIR-NBS-LRR immune receptors and contributes to plant immunity in Arabidopsis. . Int. J. Mol. Sci. 22:(8):4004
    [Crossref] [Google Scholar]
  25. 25.
    Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. 2009.. One for all: the receptor-associated kinase BAK1. . Trends Plant Sci. 14:(10):53541
    [Crossref] [Google Scholar]
  26. 26.
    Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, et al. 2016.. Recombination rate heterogeneity within Arabidopsis disease resistance genes. . PLOS Genet. 12:(7):e1006179
    [Crossref] [Google Scholar]
  27. 27.
    Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, et al. 2007.. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. . Science 317:(5836):33842
    [Crossref] [Google Scholar]
  28. 28.
    Contreras MP, Pai H, Tumtas Y, Duggan C, Yuen ELH, et al. 2023.. Sensor NLR immune proteins activate oligomerization of their NRC helpers in response to plant pathogens. . EMBO J. 42:(5):e111519
    [Crossref] [Google Scholar]
  29. 29.
    Corbett-Detig RB, Zhou J, Clark AG, Hartl DL, Ayroles JF. 2013.. Genetic incompatibilities are widespread within species. . Nature 504:(7478):13537
    [Crossref] [Google Scholar]
  30. 30.
    Cox G. 2002.. Notes Towards the Complete Works of Shakespeare. London:: Kahve-Soc.
    [Google Scholar]
  31. 31.
    Dangl JL, Jones JDG. 2001.. Plant pathogens and integrated defence responses to infection. . Nature 411::82633
    [Crossref] [Google Scholar]
  32. 32.
    De la Concepcion JC, Benjumea JV, Bialas A, Terauchi R, Kamoun S, Banfield MJ. 2021.. Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. . eLife 10::e71662
    [Crossref] [Google Scholar]
  33. 33.
    Deng J, Fang L, Zhu X, Zhou B, Zhang T. 2019.. A CC-NBS-LRR gene induces hybrid lethality in cotton. . J. Exp. Bot. 70:(19):514556
    [Crossref] [Google Scholar]
  34. 34.
    Desai MM, Weissman D, Feldman MW. 2007.. Evolution can favor antagonistic epistasis. . Genetics 177:(2):100110
    [Crossref] [Google Scholar]
  35. 35.
    Deslandes L, Olivier J, Peeters N, Xin Feng D, Khounlotham M, et al. 2003.. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. . PNAS 100:(13):802429
    [Crossref] [Google Scholar]
  36. 36.
    Deslandes L, Olivier J, Theulières F, Hirsch J, Feng DX, et al. 2002.. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. . PNAS 99:(4):24049
    [Crossref] [Google Scholar]
  37. 37.
    Deslandes L, Pileur F, Liaubet L, Camut S, Can C, et al. 1998.. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. . Mol. Plant-Microbe Interact. 11:(7):65967
    [Crossref] [Google Scholar]
  38. 38.
    Dongus JA, Parker JE. 2021.. EDS1 signalling: at the nexus of intracellular and surface receptor immunity. . Curr. Opin. Plant Biol. 62::102039
    [Crossref] [Google Scholar]
  39. 39.
    Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LC, et al. 2015.. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. . Nat. Plants 1::15034
    [Crossref] [Google Scholar]
  40. 40.
    El Kasmi F, Chung EH, Anderson RG, Li J, Wan L, et al. 2017.. Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. . PNAS 114:(35):E738594
    [Crossref] [Google Scholar]
  41. 41.
    Ellis JG, Dodds PN, Lawrence GJ. 2007.. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. . Annu. Rev. Phytopathol. 45::289306
    [Crossref] [Google Scholar]
  42. 42.
    Foxe JP, Stift M, Tedder A, Haudry A, Wright SI, Mable BK. 2010.. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. . Evolution 64:(12):3495510
    [Crossref] [Google Scholar]
  43. 43.
    Freh M, Gao J, Petersen M, Panstruga R. 2022.. Plant autoimmunity—fresh insights into an old phenomenon. . Plant Physiol. 188:(3):141934
    [Crossref] [Google Scholar]
  44. 44.
    Gonzalez S, González-Rodríguez AP, Suárez-Álvarez B, López-Soto A, Huergo-Zapico L, Lopez-Larrea C. 2011.. Conceptual aspects of self and nonself discrimination. . Self/Nonself 2:(1):1925
    [Crossref] [Google Scholar]
  45. 45.
    Guo H, Ahn HK, Sklenar J, Huang J, Ma Y, et al. 2020.. Phosphorylation-regulated activation of the Arabidopsis RRS1-R/RPS4 immune receptor complex reveals two distinct effector recognition mechanisms. . Cell Host Microbe 27:(5):76981
    [Crossref] [Google Scholar]
  46. 46.
    He K, Wu Y. 2016.. Receptor-like kinases and regulation of plant innate immunity. . In The Enzymes, Vol.  40: Developmental Signaling in Plants, ed. C Lin, S Luan , pp. 10542. Cambridge, MA:: Academic
    [Google Scholar]
  47. 47.
    Hu Z, Yan C, Liu P, Huang Z, Ma R, et al. 2013.. Crystal structure of NLRC4 reveals its autoinhibition mechanism. . Science 341:(6142):17275
    [Crossref] [Google Scholar]
  48. 48.
    Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, et al. 2014.. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. . Plant J. 79:(6):90413
    [Crossref] [Google Scholar]
  49. 49.
    İltaş Ö, Svitok M, Cornille A, Schmickl R, Lafon Placette C. 2021.. Early evolution of reproductive isolation: a case of weak inbreeder/strong outbreeder leads to an intraspecific hybridization barrier in Arabidopsis lyrata. . Evolution 75:(6):146676
    [Crossref] [Google Scholar]
  50. 50.
    Jeuken MJ, Zhang NW, McHale LK, Pelgrom K, Den Boer E, et al. 2009.. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. . Plant Cell 21:(10):336878
    [Crossref] [Google Scholar]
  51. 51.
    Jia YX, Yuan Y, Zhang Y, Yang S, Zhang X. 2015.. Extreme expansion of NBS-encoding genes in rosaceae. . BMC Genet. 16::48
    [Crossref] [Google Scholar]
  52. 52.
    Jiao WB, Schneeberger K. 2020.. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. . Nat. Commun. 11::989
    [Crossref] [Google Scholar]
  53. 53.
    Jones JDG, Dangl JL. 2006.. The plant immune system. . Nature 444:(7117):32329
    [Crossref] [Google Scholar]
  54. 54.
    Jones JDG, Vance RE, Dangl JL. 2016.. Intracellular innate immune surveillance devices in plants and animals. . Science 354:(6316):aaf6395
    [Crossref] [Google Scholar]
  55. 55.
    Kang M, Wu H, Liu H, Liu W, Zhu M, et al. 2023.. The pan-genome and local adaptation of Arabidopsis thaliana. . Nat. Commun. 14::6259
    [Crossref] [Google Scholar]
  56. 56.
    Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, et al. 2012.. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. . Plant J. 72:(6):894907
    [Crossref] [Google Scholar]
  57. 57.
    Karasov TL, Kniskern JM, Gao L, Deyoung BJ, Ding J, et al. 2014.. The long-term maintenance of a resistance polymorphism through diffuse interactions. . Nature 512:(7515):43640
    [Crossref] [Google Scholar]
  58. 58.
    Kellogg EA. 2015.. Genome sequencing: long reads for a short plant. . Nat. Plants 1:(12):15169
    [Crossref] [Google Scholar]
  59. 59.
    Kim DS, Li Y, Ahn HK, Woods-Tör A, Cevik V, et al. 2024.. ATR2Cala2 from Arabidopsis-infecting downy mildew requires 4 TIR-NLR immune receptors for full recognition. . New Phytol. 243:(1):33044
    [Crossref] [Google Scholar]
  60. 60.
    Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL. 2005.. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. . PNAS 102:(18):6496501
    [Crossref] [Google Scholar]
  61. 61.
    Klosterman SJ, Choi JJ, Hadwiger LA. 2003.. Analysis of pea HMG-I/Y expression suggests a role in defence gene regulation. . Mol. Plant Pathol. 4:(4):24958
    [Crossref] [Google Scholar]
  62. 62.
    Kostoff D. 1930.. Ontogeny, genetics, and cytology of Nicotiana hybrids. . Genetica 12:(1):33139
    [Crossref] [Google Scholar]
  63. 63.
    Kourelis J, Contreras MP, Harant A, Pai H, Lüdke D, et al. 2022.. The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-surface receptor Cf-4. . PLOS Genet. 18:(9):e1010414
    [Crossref] [Google Scholar]
  64. 64.
    Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010.. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. . Plant Cell 22:(7):244458
    [Crossref] [Google Scholar]
  65. 65.
    Lai Y, Eulgem T. 2018.. Transcript-level expression control of plant NLR genes. . Mol. Plant Pathol. 19:(5):126781
    [Crossref] [Google Scholar]
  66. 66.
    Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari D, et al. 2019.. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. . Plant Cell 31:(10):243055 Shows that heterologous EDS1 hubs are functional, but EDS1 components are coevolved and noninterchangeable.
    [Crossref] [Google Scholar]
  67. 67.
    Lee RR, Chae E. 2020.. Variation patterns of NLR clusters in Arabidopsis thaliana genomes. . Plant Commun. 1:(4):100089
    [Crossref] [Google Scholar]
  68. 68.
    Li J, Lee CR. 2023.. The role of gene presence–absence variations on genetic incompatibility in Asian rice. . New Phytol. 239:(2):77891
    [Crossref] [Google Scholar]
  69. 69.
    Li J, Tao X. 2022.. EDS1 modules as two-tiered receptor complexes for TIR-catalyzed signaling molecules to activate plant immunity. . Stress Biol. 2::30
    [Crossref] [Google Scholar]
  70. 70.
    Li L, Habring A, Wang K, Weigel D. 2020.. Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. . Cell Host Microbe 27:(3):40517
    [Crossref] [Google Scholar]
  71. 71.
    Li L, Kim P, Yu L, Cai G, Chen S, et al. 2016.. Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. . Cell Host Microbe 20:(4):50414
    [Crossref] [Google Scholar]
  72. 72.
    Li L, Weigel D. 2021.. One hundred years of hybrid necrosis: hybrid autoimmunity as a window into the mechanisms and evolution of plant–pathogen interactions. . Annu. Rev. Phytopathol. 59::21337
    [Crossref] [Google Scholar]
  73. 73.
    Lian Q, Huettel B, Walkemeier B, Mayjonade B, Lopez-Roques C, et al. 2024.. A pan-genome of 69 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range. . Nat. Genet. 56:(5):98291
    [Crossref] [Google Scholar]
  74. 74.
    Liang W, Tong M, Li X. 2020.. SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. . Nat. Commun. 11::5190
    [Crossref] [Google Scholar]
  75. 75.
    Liang W, van Wersch S, Tong M, Li X. 2019.. TIR-NB-LRR immune receptor SOC3 pairs with truncated TIR-NB protein CHS1 or TN2 to monitor the homeostasis of E3 ligase SAUL1. . New Phytol. 221:(4):205466
    [Crossref] [Google Scholar]
  76. 76.
    Liu S, Zhu Y, Ke B, Wang J, Peng X, et al. 2023.. The diversity of NLRs in Brassica rapa Pan-genome. . bioRxiv 555307. https://doi.org/10.1101/2023.08.29.555307
  77. 77.
    Liu Y, Du H, Li P, Shen Y, Peng H, et al. 2020.. Pan-genome of wild and cultivated soybeans. . Cell 182:(1):16276
    [Crossref] [Google Scholar]
  78. 78.
    Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, et al. 2013.. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. . Nat. Genet. 45:(8):88490
    [Crossref] [Google Scholar]
  79. 79.
    Lovelace AH, Dorhmi S, Hulin MT, Li Y, Mansfield JW, Ma W. 2023.. Effector identification in plant pathogens. . Phytopathology 113:(4):63750
    [Crossref] [Google Scholar]
  80. 80.
    Ma S, An C, Lawson AW, Cao Y, Sun Y, et al. 2024.. Oligomerization-mediated autoinhibition and cofactor binding of a plant NLR. . Nature 632::86976
    [Crossref] [Google Scholar]
  81. 81.
    Ma S, Lapin D, Liu L, Sun Y, Song W, et al. 2020.. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. . Science 370:(6521):eabe3069 One of two landmark structure papers demonstrating plant NLR oligomerization upon activation.
    [Crossref] [Google Scholar]
  82. 82.
    Ma XF, Li Y, Sun JL, Wang TT, Fan J, et al. 2014.. Ectopic expression of RESISTANCE to POWDERY MILDEW8.1 confers resistance to fungal and oomycete pathogens in Arabidopsis. . Plant Cell Physiol. 55:(8):148496
    [Crossref] [Google Scholar]
  83. 83.
    Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 2003.. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. . Cell 112:(3):37989
    [Crossref] [Google Scholar]
  84. 84.
    Mackey D, Holt BF III, Wiig A, Dangl JL. 2002.. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. . Cell 108::74354
    [Crossref] [Google Scholar]
  85. 85.
    Maekawa T, Kufer TA, Schulze-Lefert P. 2011.. NLR functions in plant and animal immune systems: so far and yet so close. . Nat. Immunol. 12:(9):81826
    [Crossref] [Google Scholar]
  86. 86.
    Martel A, Ruiz-Bedoya T, Breit-McNally C, Laflamme B, Desveaux D, Guttman DS. 2021.. The ETS-ETI cycle: evolutionary processes and metapopulation dynamics driving the diversification of pathogen effectors and host immune factors. . Curr. Opin. Plant Biol. 62::102011
    [Crossref] [Google Scholar]
  87. 87.
    Matsubara K. 2020.. How hybrid breakdown can be handled in rice crossbreeding?. Front. Plant Sci. 11::575412
    [Crossref] [Google Scholar]
  88. 88.
    McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB. 2000.. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. . Plant J. 22:(6):52329
    [Crossref] [Google Scholar]
  89. 89.
    McIntire EJ, Waterway MJ. 2002.. Clonal structure and hybrid susceptibility to a smut pathogen in microscale hybrid zones of northern wetland Carex (Cyperaceae). . Am. J. Bot. 89:(4):64254
    [Crossref] [Google Scholar]
  90. 90.
    Michael TP, Jackson S. 2013.. The first 50 plant genomes. . Plant Genome 6::plantgenome2013.03.0001in
    [Crossref] [Google Scholar]
  91. 91.
    Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, et al. 2009.. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. . Plant J. 60:(2):21826
    [Crossref] [Google Scholar]
  92. 92.
    Nazarian-Firouzabadi F, Joshi S, Xue H, Kushalappa AC. 2019.. Genome-wide in silico identification of LysM-RLK genes in potato (Solanum tuberosum L.). . Mol. Biol. Rep. 46:(5):500517
    [Crossref] [Google Scholar]
  93. 93.
    Ngou BPM, Ahn HK, Ding P, Jones JD. 2021.. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. . Nature 592:(7852):11015
    [Crossref] [Google Scholar]
  94. 94.
    Orr HA. 1996.. Dobzhansky, Bateson, and the genetics of speciation. . Genetics 144:(4):133135
    [Crossref] [Google Scholar]
  95. 95.
    Pandey KK. 1980.. Evolution of incompatibility systems in plants: origin of ‘independent’ and ‘complementary’ control of incompatibility in angiosperms. . New Phytol. 84:(2):381400
    [Crossref] [Google Scholar]
  96. 96.
    Pitsili E, Phukan UJ, Coll NS. 2020.. Cell death in plant immunity. . Cold Spring Harb. Perspect. Biol. 12:(6):a036483
    [Crossref] [Google Scholar]
  97. 97.
    Postma WJ, Slootweg EJ, Rehman S, Finkers-Tomczak A, Tytgat TO, et al. 2012.. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. . Plant Physiol. 160:(2):94454
    [Crossref] [Google Scholar]
  98. 98.
    Presgraves DC. 2010.. The molecular evolutionary basis of species formation. . Nat. Rev. Genet. 11:(3):17580
    [Crossref] [Google Scholar]
  99. 99.
    Prigozhin DM, Krasileva KV. 2021.. Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. . Plant Cell 33:(4):9981015
    [Crossref] [Google Scholar]
  100. 100.
    Pruitt RN, Locci F, Wanke F, Zhang L, Saile SC, et al. 2021.. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. . Nature 598:(7881):49599
    [Crossref] [Google Scholar]
  101. 101.
    Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, et al. 2015.. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. . Sci. Adv. 1:(6):e1500245
    [Crossref] [Google Scholar]
  102. 102.
    Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, et al. 2005.. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. . Plant Cell 17::183950
    [Crossref] [Google Scholar]
  103. 103.
    Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, et al. 2008.. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. . PLOS ONE 3:(6):e2411. Correction . 2010.. PLOS ONE 5:(8):
    [Crossref] [Google Scholar]
  104. 104.
    Rowan BA, Heavens D, Feuerborn TR, Tock AJ, Henderson IR, Weigel D. 2019.. An ultra high-density Arabidopsis thaliana crossover map that refines the influences of structural variation and epigenetic features. . Genetics 213:(3):77187
    [Crossref] [Google Scholar]
  105. 105.
    Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S, et al. 2024.. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. . Plant Cell 36:(9):334461
    [Crossref] [Google Scholar]
  106. 106.
    Salman-Minkov A, Sabath N, Mayrose I. 2016.. Whole-genome duplication as a key factor in crop domestication. . Nat. Plants 2::16115
    [Crossref] [Google Scholar]
  107. 107.
    Saucet SB, Ma Y, Sarris PF, Furzer OJ, Sohn KH, Jones JD. 2015.. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. . Nat. Commun. 6::6338
    [Crossref] [Google Scholar]
  108. 108.
    Schrum AG, Gil D. 2013.. Robustness and specificity in signal transduction via physiologic protein interaction networks. . Clin. Exp. Pharmacol. S3::001. https://doi.org/10.4172/2161-1459.S3-001
    [Google Scholar]
  109. 109.
    Schulze S, Yu L, Hua C, Zhang L, Kolb D, et al. 2022.. The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. . Cell Host Microbe 30:(12):171731
    [Crossref] [Google Scholar]
  110. 110.
    Schumer M, Cui R, Rosenthal GG, Andolfatto P. 2015.. Reproductive isolation of hybrid populations driven by genetic incompatibilities. . PLOS Genet. 11:(3):e1005041
    [Crossref] [Google Scholar]
  111. 111.
    Seidel HS, Rockman MV, Kruglyak L. 2008.. Widespread genetic incompatibility in C. elegans maintained by balancing selection. . Science 319:(5863):58994
    [Crossref] [Google Scholar]
  112. 112.
    Shang L, Li X, He H, Yuan Q, Song Y, et al. 2022.. A super pan-genomic landscape of rice. . Cell Res. 32:(10):87896
    [Crossref] [Google Scholar]
  113. 113.
    Shen R, Wang L, Liu X, Wu J, Jin W, et al. 2017.. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. . Nat. Commun. 8::1310
    [Crossref] [Google Scholar]
  114. 114.
    Si Y, Zheng S, Niu J, Tian S, Gu M, et al. 2021.. Ne2, a typical CC–NBS–LRR-type gene, is responsible for hybrid necrosis in wheat. . New Phytol. 232:(1):27989
    [Crossref] [Google Scholar]
  115. 115.
    Sicard A, Kappel C, Josephs EB, Lee YW, Marona C, et al. 2015.. Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. . Nat. Commun. 6::7960
    [Crossref] [Google Scholar]
  116. 116.
    Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. 2023.. Incompatibility and interchangeability in molecular evolution. . Genome Biol. Evol. 15:(1):evac184 Proposes general principles behind genetic incompatibilities.
    [Crossref] [Google Scholar]
  117. 117.
    Smith LM, Bomblies K, Weigel D. 2011.. Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. . PLOS Genet. 7:(7):e1002164
    [Crossref] [Google Scholar]
  118. 118.
    Sperschneider J, Dodds PN. 2022.. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. . Mol. Plant-Microbe Interact. 35:(2):14656
    [Crossref] [Google Scholar]
  119. 119.
    Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. 1999.. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. . Nature 400:(6745):66771
    [Crossref] [Google Scholar]
  120. 120.
    Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, et al. 2018.. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. . Nat. Genet. 50:(2):28596
    [Crossref] [Google Scholar]
  121. 121.
    Stirnweis D, Milani SD, Brunner S, Herren G, Buchmann G, et al. 2014.. Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants. . Plant J. 79:(6):893903
    [Crossref] [Google Scholar]
  122. 122.
    Sutherland CA, Prigozhin DM, Monroe JG, Krasileva KV. 2024.. High allelic diversity in Arabidopsis NLRs is associated with distinct genomic features. . EMBO Rep. 25:(5):230622
    [Crossref] [Google Scholar]
  123. 123.
    Suzuki R, Murata MM, Manguso N, Watanabe T, Mouakkad-Montoya L, et al. 2021.. The fragility of a structurally diverse duplication block triggers recurrent genomic amplification. . Nucleic Acids Res. 49:(1):24456
    [Crossref] [Google Scholar]
  124. 124.
    Świadek M, Proost S, Sieh D, Yu J, Todesco M, et al. 2017.. Novel allelic variants in ACD6 cause hybrid necrosis in local collection of Arabidopsis thaliana. . New Phytol. 213:(2):90015
    [Crossref] [Google Scholar]
  125. 125.
    Tang B, Feng L, Hulin MT, Ding P, Ma W. 2023.. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. . Cell Host Microbe 31:(10):173247
    [Crossref] [Google Scholar]
  126. 126.
    Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. 2014.. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. . Plant Cell 26:(10):417187
    [Crossref] [Google Scholar]
  127. 127.
    Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. 2003.. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. . Nature 423:(6935):7477
    [Crossref] [Google Scholar]
  128. 128.
    Tian H, Wu Z, Chen S, Ao K, Huang W, et al. 2021.. Activation of TIR signalling boosts pattern-triggered immunity. . Nature 598:(7881):5003
    [Crossref] [Google Scholar]
  129. 129.
    Todesco M, Kim ST, Chae E, Bomblies K, Zaidem M, et al. 2014.. Activation of the Arabidopsis thaliana immune system by combinations of common ACD6 alleles. . PLOS Genet. 10:(7):e1004459
    [Crossref] [Google Scholar]
  130. 130.
    Tran DT, Chung EH, Habring-Müller A, Demar M, Schwab R, et al. 2017.. Activation of a plant NLR complex through heteromeric association with an autoimmune risk variant of another NLR. . Curr. Biol. 27:(8):114860
    [Crossref] [Google Scholar]
  131. 131.
    Traw MB, Bergelson J. 2010.. Plant immune system incompatibility and the distribution of enemies in natural hybrid zones. . Curr. Opin. Plant Biol. 13:(4):46671
    [Crossref] [Google Scholar]
  132. 132.
    Vaid N, Laitinen RA. 2019.. Diverse paths to hybrid incompatibility in Arabidopsis. . Plant J. 97:(1):199213
    [Crossref] [Google Scholar]
  133. 133.
    Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, et al. 2019.. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. . Cell 178:(5):126072 First pan-genomic sequencing project with a focus on assembling complicated NLR loci to assess intraspecific variation of NLR genes.
    [Crossref] [Google Scholar]
  134. 134.
    Van der Hoorn RAL, Kamoun S. 2008.. From guard to decoy: a new model for perception of plant pathogen effectors. . Plant Cell 20:(8):200917
    [Crossref] [Google Scholar]
  135. 135.
    Van der Hoorn RAL, Laurent F, Roth R, De Wit PJGM. 2000.. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. . Mol. Plant-Microbe Interact. 13:(4):43946
    [Crossref] [Google Scholar]
  136. 136.
    Van Poppel PMJA, Guo J, Van De Vondervoort PJI, Jung MWM, Birch PRJ, et al. 2008.. The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. . Mol. Plant-Microbe Interact. 21:(11):146070
    [Crossref] [Google Scholar]
  137. 137.
    Van Wersch S, Li X. 2019.. Stronger when together: clustering of plant NLR disease resistance genes. . Trends Plant Sci. 24:(8):68899
    [Crossref] [Google Scholar]
  138. 138.
    Vuong UT, Iswanto ABB, Nguyen QM, Kang H, Lee J, et al. 2023.. Engineering plant immune circuit: walking to the bright future with a novel toolbox. . Plant Biotechnol. J. 21:(1):1745
    [Crossref] [Google Scholar]
  139. 139.
    Wang J, Wang J, Hu M, Wu S, Qi J, et al. 2019.. Ligand-triggered allosteric ADP release primes a plant NLR complex. . Science 364:(6435):eaav5868
    [Crossref] [Google Scholar]
  140. 140.
    Wang MY, Chen JB, Wu R, Guo HL, Chen Y, et al. 2023.. The plant immune receptor SNC1 monitors helper NLRs targeted by a bacterial effector. . Cell Host Microbe 31:(11):1792803
    [Crossref] [Google Scholar]
  141. 141.
    Wang W, Devoto A, Turner JG, Xiao S. 2007.. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. . Mol. Plant-Microbe Interact. 20:(8):96676
    [Crossref] [Google Scholar]
  142. 142.
    Wired News. 2003.. Monkeys don't write Shakespeare. . Wired, May 9. https://www.wired.com/2003/05/monkeys-dont-write-shakespeare/
    [Google Scholar]
  143. 143.
    Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, et al. 2023.. Cycles of satellite and transposon evolution in Arabidopsis centromeres. . Nature 618:(7965):55765
    [Crossref] [Google Scholar]
  144. 144.
    Woodward AW, Bartel B. 2018.. Biology in bloom: a primer on the Arabidopsis thaliana model system. . Genetics 208:(4):133749
    [Crossref] [Google Scholar]
  145. 145.
    Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, et al. 2017.. NLR network mediates immunity to diverse plant pathogens. . PNAS 114:(30):811318
    [Crossref] [Google Scholar]
  146. 146.
    Wu Z, Li M, Dong OX, Xia S, Liang W, et al. 2019.. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. . New Phytol. 222:(2):93853
    [Crossref] [Google Scholar]
  147. 147.
    Xiao S, Ellwood S, Calis O, Patrick E, Li T, et al. 2001.. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. . Science 291:(5501):11820
    [Crossref] [Google Scholar]
  148. 148.
    Xiao S, Emerson B, Ratanasut K, Patrick E, O'Neill C, et al. 2004.. Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. . Mol. Biol. Evol. 21:(9):166172
    [Crossref] [Google Scholar]
  149. 149.
    Xu P, Xu J, Guo Q, Xu Z, Ji W, et al. 2023.. A recessive LRR-RLK gene causes hybrid breakdown in cotton. . Theor. Appl. Genet. 136:(9):189
    [Crossref] [Google Scholar]
  150. 150.
    Xu Z, Chen J, Meng S, Xu P, Zhai C, et al. 2022.. Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. . Plant Commun. 3:(5):100350
    [Crossref] [Google Scholar]
  151. 151.
    Yang Y, Furzer OJ, Fensterle EP, Lin S, Zheng Z, et al. 2024.. Paired plant immune CHS3-CSA1 receptor alleles form distinct hetero-oligomeric complexes. . Science 383:(6684):71930
    [Crossref] [Google Scholar]
  152. 152.
    Yang Y, Kim NH, Cevik V, Jacob P, Wan L, et al. 2022.. Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional cell-death regulatory modes. . Cell Host Microbe 30:(12):170116.e5
    [Crossref] [Google Scholar]
  153. 153.
    Yuan M, Jiang Z, Bi G, Nomura K, Liu M, et al. 2021.. Pattern-recognition receptors are required for NLR-mediated plant immunity. . Nature 592:(7852):1059
    [Crossref] [Google Scholar]
  154. 154.
    Zdrzałek R, Kamoun S, Terauchi R, Saitoh H, Banfield MJ. 2020.. The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. . PLOS ONE 15:(9):e0238616
    [Crossref] [Google Scholar]
  155. 155.
    Zdrzałek R, Stone C, De la Concepcion JC, Banfield MJ, Bentham AR. 2023.. Pathways to engineering plant intracellular NLR immune receptors. . Curr. Opin. Plant Biol. 74::102380
    [Crossref] [Google Scholar]
  156. 156.
    Zeller FJ, Lutz J, Stephan U. 1993.. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) 1. Mlk and other alleles at the Pm3 locus. . Euphytica 68:(3):22329
    [Crossref] [Google Scholar]
  157. 157.
    Zhang F, Xue H, Dong X, Li M, Zheng X, et al. 2022.. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. . Genome Res. 32:(5):85363
    [Google Scholar]
  158. 158.
    Zhang L, Hua C, Janocha D, Fliegmann J, Nürnberger T. 2023.. Plant cell surface immune receptors—novel insights into function and evolution. . Curr. Opin. Plant Biol. 74::102384
    [Crossref] [Google Scholar]
  159. 159.
    Zhang S, Li C, Si J, Han Z, Chen D. 2022.. Action mechanisms of effectors in plant-pathogen interaction. . Int. J. Mol. Sci. 23:(12):6758
    [Crossref] [Google Scholar]
  160. 160.
    Zhang X, Zhai C, He L, Guo Q, Zhang X, et al. 2014.. Morphological, cytological and molecular analyses of a synthetic hexaploid derived from an interspecific hybrid between Gossypium hirsutum and Gossypium anomalum. . Crop J. 2:(5):27277
    [Crossref] [Google Scholar]
  161. 161.
    Zhao Y, Dong Z, Miao J, Liu Q, Ma C, et al. 2024.. Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance. . Nat. Commun. 15::4796
    [Crossref] [Google Scholar]
  162. 162.
    Zhou Y, Chebotarov D, Kudrna D, Llaca V, Lee S, et al. 2020.. A platinum standard pan-genome resource that represents the population structure of Asian rice. . Sci. Data 7::113
    [Crossref] [Google Scholar]
  163. 163.
    Ziolkowski PA, Henderson IR. 2017.. Interconnections between meiotic recombination and sequence polymorphism in plant genomes. . New Phytol. 213:(3):102229
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083023-041225
Loading
/content/journals/10.1146/annurev-arplant-083023-041225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error