1932

Abstract

The target of rapamycin (TOR) is a central regulator of growth, development, and stress adaptation in plants. This review delves into the molecular intricacies of TOR signaling, highlighting its conservation and specificity across eukaryotic lineages. We explore the molecular architecture of TOR complexes, their regulation by a myriad of upstream signals, and their consequential impacts on plant physiology. The roles of TOR in orchestrating nutrient sensing, hormonal cues, and environmental signals are highlighted, illustrating its pivotal function in modulating plant growth and development. Furthermore, we examine the impact of TOR on plant responses to various biotic and abiotic stresses, underscoring its potential as a target for agricultural improvements. This synthesis of current knowledge on plant TOR signaling sheds light on the complex interplay between growth promotion and stress adaptation, offering a foundation for future research and applications in plant biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083123-050311
2025-05-20
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083123-050311.html?itemId=/content/journals/10.1146/annurev-arplant-083123-050311&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. . Nature 630::493500
    [Crossref] [Google Scholar]
  2. 2.
    Agrawal R, Singh A, Giri J, Magyar Z, Thakur JK. 2023.. MEDIATOR SUBUNIT17 is required for transcriptional optimization of root system architecture in Arabidopsis. . Plant Physiol. 192::154868
    [Crossref] [Google Scholar]
  3. 3.
    Ahn CS, Ahn H-K, Pai H-S. 2015.. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. . J. Exp. Bot. 66::82740
    [Crossref] [Google Scholar]
  4. 4.
    Ahn CS, Han JA, Lee HS, Lee S, Pai HS. 2011.. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. . Plant Cell 23::185209
    [Crossref] [Google Scholar]
  5. 5.
    Ahn CS, Lee D-H, Pai H-S. 2019.. Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway. . Planta 249::52742
    [Crossref] [Google Scholar]
  6. 6.
    Anderson GH, Veit B, Hanson MR. 2005.. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. . BMC Biol. 3::12
    [Crossref] [Google Scholar]
  7. 7.
    Angelos E, Brandizzi F. 2022.. The UPR regulator IRE1 promotes balanced organ development by restricting TOR-dependent control of cellular differentiation in Arabidopsis. . Plant J. 109::122948
    [Crossref] [Google Scholar]
  8. 8.
    Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J. 2007.. A central integrator of transcription networks in plant stress and energy signalling. . Nature 448::93842
    [Crossref] [Google Scholar]
  9. 9.
    Bakshi A, Moin M, Gayatri MB, Reddy ABM, Datla R, et al. 2023.. Involvement of target of rapamycin (TOR) signaling in the regulation of crosstalk between ribosomal protein small subunit 6 kinase-1 (RPS6K-1) and ribosomal proteins. . Plants 12::176
    [Crossref] [Google Scholar]
  10. 10.
    Bakshi A, Moin M, Kumar MU, Reddy ABM, Ren M, et al. 2017.. Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. . Sci. Rep. 7::42835
    [Crossref] [Google Scholar]
  11. 11.
    Barrada A, Djendli M, Desnos T, Mercier R, Robaglia C, et al. 2019.. A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis. . Development 146::dev171298
    [Crossref] [Google Scholar]
  12. 12.
    Belda-Palazon B, Adamo M, Valerio C, Ferreira LJ, Confraria A, et al. 2020.. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. . Nat. Plants 6::134553
    [Crossref] [Google Scholar]
  13. 13.
    Belda-Palazón B, Costa M, Beeckman T, Rolland F, Baena-González E. 2022.. ABA represses TOR and root meristem activity through nuclear exit of the SnRK1 kinase. . PNAS 119::e2204862119 Reported that ABA-SnRK2s control SnRK1’s nuclear-cytosolic translocation, thereby inhibiting TOR to restrain root growth.
    [Crossref] [Google Scholar]
  14. 14.
    Bi Y, Shrestha R, Zhang Z, Hsu CC, Reyes AV, et al. 2023.. SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis. . Plant Cell 35::131833
    [Crossref] [Google Scholar]
  15. 15.
    Brunkard JO. 2020.. Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes. . Dev. Cell 54::14255
    [Crossref] [Google Scholar]
  16. 16.
    Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, et al. 2020.. TOR dynamically regulates plant cell–cell transport. . PNAS 117::504958 Reported TTT-R2TP complex–mediated TOR signaling's role in regulating plasmodesmata transport and coordinating sugar redistribution between sink and source tissues.
    [Crossref] [Google Scholar]
  17. 17.
    Busche M, Scarpin MR, Hnasko R, Brunkard JO. 2021.. TOR coordinates nucleotide availability with ribosome biogenesis in plants. . Plant Cell 33::161532
    [Crossref] [Google Scholar]
  18. 18.
    Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, et al. 1993.. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. . Mol. Cell. Biol. 13::601223
    [Google Scholar]
  19. 19.
    Canal MV, Mansilla N, Gras DE, Ibarra A, Figueroa CM, et al. 2024.. Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy-deficient conditions. . New Phytol. 241::203958
    [Crossref] [Google Scholar]
  20. 20.
    Cao P, Kim S-J, Xing A, Schenck CA, Liu L, et al. 2019.. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. . eLife 8::e50747
    [Crossref] [Google Scholar]
  21. 21.
    Chen G-H, Liu M-J, Xiong Y, Sheen J, Wu SH. 2018.. TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. . PNAS 115::1282328
    [Crossref] [Google Scholar]
  22. 22.
    Chen Q, Zhou S, Qu M, Yang Y, Chen Q, et al. 2024.. Cucumber (Cucumis sativus L.) translationally controlled tumor protein interacts with CsRab11A and promotes activation of target of rapamycin in response to Podosphaera xanthii. . Plant J. 119::33247
    [Crossref] [Google Scholar]
  23. 23.
    Cho H, Banf M, Shahzad Z, Van Leene J, Bossi F, et al. 2023.. ARSK1 activates TORC1 signaling to adjust growth to phosphate availability in Arabidopsis. . Curr. Biol. 33::177886.e5
    [Crossref] [Google Scholar]
  24. 24.
    Coppa E, Vigani G, Aref R, Savatin D, Bigini V, et al. 2023.. Differential modulation of Target of Rapamycin activity under single and combined iron and sulfur deficiency in tomato plants. . Plant J. 115::12738
    [Crossref] [Google Scholar]
  25. 25.
    Couso I, Pérez-Pérez ME, Ford MM, Martínez-Force E, Hicks LM, et al. 2020.. Phosphorus availability regulates TORC1 signaling via LST8 in Chlamydomonas. . Plant Cell 32::6980
    [Crossref] [Google Scholar]
  26. 26.
    Dai L, Wang B, Wang T, Meyer EH, Kettel V, et al. 2022.. The TOR complex controls ATP levels to regulate actin cytoskeleton dynamics in Arabidopsis. . PNAS 119::e2122969119
    [Crossref] [Google Scholar]
  27. 27.
    D'Alessandro S, Velay F, Lebrun R, Zafirov D, Mehrez M, et al. 2024.. Posttranslational regulation of photosynthetic activity via the TOR kinase in plants. . Sci. Adv. 10::eadj3268
    [Crossref] [Google Scholar]
  28. 28.
    Dasgupta A, Urquidi Camacho RA, Enganti R, Cho SK, Tucker LL, et al. 2024.. A phosphorylation-deficient ribosomal protein eS6 is largely functional in Arabidopsis thaliana, rescuing mutant defects from global translation and gene expression to photosynthesis and growth. . Plant Direct 8::e566
    [Crossref] [Google Scholar]
  29. 29.
    David-Morrison G, Xu Z, Rui Y-N, Charng W-L, Jaiswal M, et al. 2016.. WAC regulates mTOR activity by acting as an adaptor for the TTT and Pontin/Reptin complexes. . Dev. Cell 36::13951
    [Crossref] [Google Scholar]
  30. 30.
    De Vleesschauwer D, Filipe O, Hoffman G, Seifi HS, Haeck A, et al. 2018.. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. . New Phytol. 217::30519
    [Crossref] [Google Scholar]
  31. 31.
    Deng K, Dong P, Wang W, Feng L, Xiong F, et al. 2017.. The TOR pathway is involved in adventitious root formation in Arabidopsis and potato. . Front. Plant Sci. 8::784
    [Crossref] [Google Scholar]
  32. 32.
    Deprost D, Truong H-N, Robaglia C, Meyer C. 2005.. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. . Biochem. Biophys. Res. Commun. 326::84450
    [Crossref] [Google Scholar]
  33. 33.
    Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, et al. 2007.. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. . EMBO Rep. 8::86470
    [Crossref] [Google Scholar]
  34. 34.
    Díaz-Granados VH, López-López JM, Flores-Sánchez J, Olguin-Alor R, Bedoya-López A, et al. 2020.. Glucose modulates proliferation in root apical meristems via TOR in maize during germination. . Plant Physiol. Biochem. 155::12635
    [Crossref] [Google Scholar]
  35. 35.
    Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, et al. 2016.. TOR signaling and nutrient sensing. . Annu. Rev. Plant Biol. 67::26185
    [Crossref] [Google Scholar]
  36. 36.
    Dobrenel T, Mancera-Martinez E, Forzani C, Azzopardi M, Davanture M, et al. 2016.. The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6. . Front. Plant Sci. 7::1611
    [Crossref] [Google Scholar]
  37. 37.
    Dong P, Xiong F, Que Y, Wang K, Yu L, et al. 2015.. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. . Front. Plant Sci. 6::677
    [Google Scholar]
  38. 38.
    Dong Y, Aref R, Forieri I, Schiel D, Leemhuis W, et al. 2022.. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity. . Plant Cell 34::381429
    [Crossref] [Google Scholar]
  39. 39.
    Dong Y, Srour O, Lukhovitskaya N, Makarian J, Baumberger N, et al. 2023.. Functional analogs of mammalian 4E-BPs reveal a role for TOR in global plant translation. . Cell Rep. 42::112892
    [Crossref] [Google Scholar]
  40. 40.
    Dong Y, Uslu VV, Berr A, Singh G, Papdi C, et al. 2023.. TOR represses stress responses through global regulation of H3K27 trimethylation in plants. . J. Exp. Bot. 74::142031
    [Crossref] [Google Scholar]
  41. 41.
    Du C, Bai HY, Chen JJ, Wang JH, Wang ZF, Zhang ZH. 2022.. Alternative splicing regulation of glycine-rich proteins via target of rapamycin-reactive oxygen species pathway in Arabidopsis seedlings upon glucose stress. . Front. Plant Sci. 13::830140
    [Crossref] [Google Scholar]
  42. 42.
    Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, et al. 2016.. Daily magnesium fluxes regulate cellular timekeeping and energy balance. . Nature 532::37579
    [Crossref] [Google Scholar]
  43. 43.
    Forzani C, Duarte GT, Van Leene J, Clement G, Huguet S, et al. 2019.. Mutations of the AtYAK1 kinase suppress TOR deficiency in Arabidopsis. . Cell Rep. 27::3696708.e5 Identified YAK1 as a negative regulator of TOR signaling; yak1 mutations largely suppress transcriptomic and metabolic perturbations in lst8-1-1 mutants.
    [Crossref] [Google Scholar]
  44. 44.
    Fu L, Liu Y, Qin G, Wu P, Zi H, et al. 2021.. The TOR–EIN2 axis mediates nuclear signalling to modulate plant growth. . Nature 591::28892 Uncovered that distinct phosphorylated forms of EIN2 act as a switch to precisely differentiate glucose-TOR and ethylene signaling.
    [Crossref] [Google Scholar]
  45. 45.
    Fu L, Wang P, Xiong Y. 2020.. Target of Rapamycin signaling in plant stress responses. . Plant Physiol. 182::161323
    [Crossref] [Google Scholar]
  46. 46.
    Gangloff Y-G, Mueller M, Dann SG, Svoboda P, Sticker M, et al. 2004.. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. . Mol. Cell. Biol. 24::950816
    [Crossref] [Google Scholar]
  47. 47.
    Garcia N, Messing J. 2017.. TTT and PIKK complex genes reverted to single copy following polyploidization and retain function despite massive retrotransposition in maize. . Front. Plant Sci. 8::1723
    [Crossref] [Google Scholar]
  48. 48.
    Gonzalez A, Hall MN. 2017.. Nutrient sensing and TOR signaling in yeast and mammals. . EMBO J. 36::397408
    [Crossref] [Google Scholar]
  49. 49.
    Greenwald EC, Mehta S, Zhang J. 2018.. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. . Chem. Rev. 118::1170794
    [Crossref] [Google Scholar]
  50. 50.
    Han C, Hua W, Li J, Qiao Y, Yao L, et al. 2022.. TOR promotes guard cell starch degradation by regulating the activity of β-AMYLASE1 in Arabidopsis. . Plant Cell 34::103853
    [Crossref] [Google Scholar]
  51. 51.
    Han C, Qiao Y, Yao L, Hao W, Liu Y, et al. 2022.. TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. . New Phytol. 234::10721
    [Crossref] [Google Scholar]
  52. 52.
    Heitman J, Movva NR, Hall MN. 1991.. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. . Science 253::9059
    [Crossref] [Google Scholar]
  53. 53.
    Hu J, Li G. 2022.. Recent advances in fluorescent chemosensors for protein kinases. . Chem. Asian J. 17::e202200182
    [Crossref] [Google Scholar]
  54. 54.
    Inaba JI, Nagy PD. 2018.. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants. . Virology 519::20722
    [Crossref] [Google Scholar]
  55. 55.
    Ingargiola C, Jéhanno I, Forzani C, Marmagne A, Broutin J, et al. 2023.. The Arabidopsis Target of Rapamycin kinase regulates ammonium assimilation and glutamine metabolism. . Plant Physiol. 192::294357
    [Crossref] [Google Scholar]
  56. 56.
    Jamsheer KM, Jindal S, Laxmi A. 2019.. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. . J. Exp. Bot. 70::223959
    [Crossref] [Google Scholar]
  57. 57.
    Jamsheer KM, Jindal S, Sharma M, Awasthi P, S S, et al. 2022.. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants. . Cell Rep. 39::110631
    [Crossref] [Google Scholar]
  58. 58.
    Janocha D, Pfeiffer A, Dong Y, Novák O, Strnad M, et al. 2021.. TOR kinase controls shoot development by translational regulation of cytokinin catabolic enzymes. . bioRxiv 2021.07.29.454319. https://www.biorxiv.org/content/10.1101/2021.07.29.454319v1
  59. 59.
    Kacprzak SM, Van Aken O. 2023.. FRIENDLY is required for efficient dark-induced mitophagy and controlled senescence in Arabidopsis. Free Radic. . Biol. Med. 204::17
    [Google Scholar]
  60. 60.
    Ke X, Xiao H, Peng Y, Wang J, Lv Q, Wang X. 2022.. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. . Science 378::97177
    [Crossref] [Google Scholar]
  61. 61.
    Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, et al. 2013.. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. . Mol. Cell 49::17285
    [Crossref] [Google Scholar]
  62. 62.
    Kunkowska AB, Fontana F, Betti F, Soeur R, Beckers GJM, et al. 2023.. Target of rapamycin signaling couples energy to oxygen sensing to modulate hypoxic gene expression in Arabidopsis. . PNAS 120::e2212474120
    [Crossref] [Google Scholar]
  63. 63.
    Laribee RN. 2018.. Transcriptional and epigenetic regulation by the mechanistic target of rapamycin complex 1 pathway. . J. Mol. Biol. 430::487490
    [Crossref] [Google Scholar]
  64. 64.
    Li JF, Bush J, Xiong Y, Li L, McCormack M. 2011.. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation. . PLOS ONE 6::e27364
    [Crossref] [Google Scholar]
  65. 65.
    Li K-L, Xue H, Tang R-J, Luan S. 2023.. TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in Arabidopsis. . PNAS 120::e2316011120
    [Crossref] [Google Scholar]
  66. 66.
    Li L, Liu KH, Sheen J. 2021.. Dynamic nutrient signaling networks in plants. . Annu. Rev. Cell Dev. Biol. 37::34167
    [Crossref] [Google Scholar]
  67. 67.
    Li L, Sheen J. 2016.. Dynamic and diverse sugar signaling. . Curr. Opin. Plant Biol. 33::11625
    [Crossref] [Google Scholar]
  68. 68.
    Li L, Song Y, Wang K, Dong P, Zhang X, et al. 2015.. TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis. . Front. Plant Sci. 6::861
    [Google Scholar]
  69. 69.
    Li W, Liu J, Li Z, Ye R, Chen W, et al. 2024.. Mitigating growth-stress tradeoffs via elevated TOR signaling in rice. . Mol. Plant 17::24057
    [Crossref] [Google Scholar]
  70. 70.
    Li X, Cai W, Liu Y, Li H, Fu L, et al. 2017.. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. . PNAS 114::2765
    [Crossref] [Google Scholar]
  71. 71.
    Liao C-Y, Pu Y, Nolan TM, Montes C, Guo H, et al. 2023.. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. . Autophagy 19::1293310
    [Crossref] [Google Scholar]
  72. 72.
    Linde-Garelli KY, Rogala KB. 2023.. Structural mechanisms of the mTOR pathway. . Curr. Opin. Struct. Biol. 82::102663
    [Crossref] [Google Scholar]
  73. 73.
    Liu GY, Sabatini DM. 2020.. mTOR at the nexus of nutrition, growth, ageing and disease. . Nat. Rev. Mol. Cell Biol. 21::183203
    [Crossref] [Google Scholar]
  74. 74.
    Liu Y, Duan X, Zhao X, Ding W, Wang Y, Xiong Y. 2021.. Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis. . Dev. Cell 56::128395.e5 Demonstrated that inorganic nitrate, ammonium, and organic AAs independently activate TOR signaling, irrespective of nitrogen assimilation.
    [Crossref] [Google Scholar]
  75. 75.
    Liu Y, Xiong Y. 2022.. Plant target of rapamycin signaling network: complexes, conservations, and specificities. . J. Integr. Plant Biol. 64::34270
    [Crossref] [Google Scholar]
  76. 76.
    Mahfouz MM, Kim S, Delauney AJ, Verma DP. 2006.. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. . Plant Cell 18::47790
    [Crossref] [Google Scholar]
  77. 77.
    Malinovsky FG, Thomsen MF, Nintemann SJ, Jagd LM, Bourgine B, et al. 2017.. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. . eLife 6::e29353
    [Crossref] [Google Scholar]
  78. 78.
    Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. 2022.. Photosynthetic assimilation of CO2 regulates TOR activity. . PNAS 119::e2115261119
    [Crossref] [Google Scholar]
  79. 79.
    Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. 2022.. Overview of research into mTOR inhibitors. . Molecules 27::5295
    [Crossref] [Google Scholar]
  80. 80.
    Marash I, Gupta R, Anand G, Leibman-Markus M, Lindner N, et al. 2024.. TOR coordinates cytokinin and gibberellin signals mediating development and defense. . Plant Cell Environ. 47::62950
    [Crossref] [Google Scholar]
  81. 81.
    McCready K, Spencer V, Jácome-Blásquez F, Burnett J, Viveros Sánchez IM, et al. 2022.. TARGET OF RAPAMYCIN is essential for asexual vegetative reproduction in Kalanchoë. . Plant Physiol. 189::24863
    [Crossref] [Google Scholar]
  82. 82.
    Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, et al. 2002.. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. . PNAS 99::642227 Identified the first plant TOR gene in Arabidopsis and revealed that the tor mutant is embryo lethal.
    [Crossref] [Google Scholar]
  83. 83.
    Montane MH, Menand B. 2013.. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. . J. Exp. Bot. 64::436174
    [Crossref] [Google Scholar]
  84. 84.
    Morales-Herrera S, Jourquin J, Coppé F, Lopez-Galvis L, De Smet T, et al. 2023.. Trehalose-6-phosphate signaling regulates lateral root formation in Arabidopsis thaliana. . PNAS 120::e2302996120
    [Crossref] [Google Scholar]
  85. 85.
    Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, et al. 2012.. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the Target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. . Plant Cell 24::46381
    [Crossref] [Google Scholar]
  86. 86.
    Mubeen U, Juppner J, Alpers J, Hincha DK, Giavalisco P. 2018.. Target of Rapamycin inhibition in Chlamydomonas reinhardtii triggers de novo amino acid synthesis by enhancing nitrogen assimilation. . Plant Cell 30::224054
    [Crossref] [Google Scholar]
  87. 87.
    Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, et al. 2003.. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. . J. Biol. Chem. 278::1546164
    [Crossref] [Google Scholar]
  88. 88.
    O'Leary BM, Oh GGK, Lee CP, Millar AH. 2020.. Metabolite regulatory interactions control plant respiratory metabolism via Target of Rapamycin (TOR) kinase activation. . Plant Cell 32::66682
    [Crossref] [Google Scholar]
  89. 89.
    Pacheco JM, Song L, Kuběnová L, Ovečka M, Berdion Gabarain V, et al. 2023.. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. . New Phytol. 238::16985
    [Crossref] [Google Scholar]
  90. 90.
    Pal M, Muñoz-Hernandez H, Bjorklund D, Zhou L, Degliesposti G, et al. 2021.. Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone. . Cell Rep. 36::109317
    [Crossref] [Google Scholar]
  91. 91.
    Panvert M, Dubiez E, Arnold L, Perez J, Mechulam Y, et al. 2015.. Cdc123, a cell cycle regulator needed for eIF2 assembly, is an ATP-grasp protein with unique features. . Structure 23::1596608
    [Crossref] [Google Scholar]
  92. 92.
    Perdoux R, Barrada A, Boulaiz M, Garau C, Belbachir C, et al. 2024.. A drug-resistant mutation in plant target of rapamycin validates the specificity of ATP-competitive TOR inhibitors in vivo. . Plant J. 117::134455
    [Crossref] [Google Scholar]
  93. 93.
    Pereyra CM, Aznar NR, Rodriguez MS, Salerno GL, Martinez-Noel GMA. 2019.. Target of rapamycin signaling is tightly and differently regulated in the plant response under distinct abiotic stresses. . Planta 251::21
    [Crossref] [Google Scholar]
  94. 94.
    Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, et al. 2016.. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. . eLife 5::e17023
    [Crossref] [Google Scholar]
  95. 95.
    Pooggin MM, Ryabova LA. 2018.. Ribosome shunting, polycistronic translation, and evasion of antiviral defenses in plant pararetroviruses and beyond. . Front. Microbiol. 9::644
    [Crossref] [Google Scholar]
  96. 96.
    Popa C, Li L, Gil S, Tatjer L, Hashii K, et al. 2016.. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. . Sci. Rep. 6::27058
    [Crossref] [Google Scholar]
  97. 97.
    Primo C, Navarre C, Chaumont F, André B. 2022.. Plasma membrane H+-ATPases promote TORC1 activation in plant suspension cells. . iScience 25::104238
    [Crossref] [Google Scholar]
  98. 98.
    Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, et al. 2018.. The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. . Plant J. 94::9911009
    [Crossref] [Google Scholar]
  99. 99.
    Ren M, Qiu S, Venglat P, Xiang D, Feng L, et al. 2011.. Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. . Plant Physiol. 155::136782
    [Crossref] [Google Scholar]
  100. 100.
    Ren M, Venglat P, Qiu S, Feng L, Cao Y, et al. 2012.. Target of Rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. . Plant Cell 24::485074
    [Crossref] [Google Scholar]
  101. 101.
    Riegler S, Servi L, Scarpin MR, Godoy Herz MA, Kubaczka MG, et al. 2021.. Light regulates alternative splicing outcomes via the TOR kinase pathway. . Cell Rep. 36::109676
    [Crossref] [Google Scholar]
  102. 102.
    Roustan V, Weckwerth W. 2018.. Quantitative phosphoproteomic and system-level analysis of TOR inhibition unravel distinct organellar acclimation in Chlamydomonas reinhardtii. . Front. Plant Sci. 9::1590
    [Crossref] [Google Scholar]
  103. 103.
    Safi A, Smagghe W, Gonçalves A, Wang Q, Xu K, et al. 2023.. Phase separation-based visualization of protein–protein interactions and kinase activities in plants. . Plant Cell 35::3280302
    [Crossref] [Google Scholar]
  104. 104.
    Saile J, Wießner-Kroh T, Erbstein K, Obermüller DM, Pfeiffer A, et al. 2023.. SNF1-RELATED KINASE 1 and TARGET OF RAPAMYCIN control light-responsive splicing events and developmental characteristics in etiolated Arabidopsis seedlings. . Plant Cell 35::341328
    [Crossref] [Google Scholar]
  105. 105.
    Salazar-Diaz K, Dong Y, Papdi C, Ferruzca-Rubio EM, Olea-Badillo G, et al. 2021.. TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. . iScience 24::103260
    [Crossref] [Google Scholar]
  106. 106.
    Salem MA, Giavalisco P. 2019.. Regulatory-associated protein of TOR 1B (RAPTOR1B) regulates hormonal switches during seed germination in Arabidopsis thaliana. . Plant Signal. Behav. 14::1613130
    [Crossref] [Google Scholar]
  107. 107.
    Salem MA, Li Y, Wiszniewski A, Giavalisco P. 2017.. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. . Plant J. 92::52545
    [Crossref] [Google Scholar]
  108. 108.
    Scarpin MR, Leiboff S, Brunkard JO. 2020.. Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation. . eLife 9::e58795
    [Crossref] [Google Scholar]
  109. 109.
    Schaufelberger M, Galbier F, Herger A, de Brito Francisco R, Roffler S, et al. 2019.. Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. . J. Exp. Bot. 70::231323
    [Crossref] [Google Scholar]
  110. 110.
    Schepetilnikov M, Kobayashi K, Geldreich A, Caranta C, Robaglia C, et al. 2011.. Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. . EMBO J. 30::134356
    [Crossref] [Google Scholar]
  111. 111.
    Schepetilnikov M, Makarian J, Srour O, Geldreich A, Yang Z, et al. 2017.. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. . EMBO J. 36::886903 Reported that auxin promotes ROP2 binding and activation of TOR to facilitate translation reinitiation of uORF-containing mRNAs.
    [Crossref] [Google Scholar]
  112. 112.
    Schepetilnikov M, Ryabova LA. 2018.. Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants. . Plant Physiol. 176::1095105
    [Crossref] [Google Scholar]
  113. 113.
    Sehgal SN, Baker H, Vézina C. 1975.. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. . J. Antibiot. 28::72732
    [Crossref] [Google Scholar]
  114. 114.
    Shapiro JS, Chang H-C, Tatekoshi Y, Zhao Z, Waxali ZS, et al. 2023.. Iron drives anabolic metabolism through active histone demethylation and mTORC1. . Nat. Cell Biol. 25::147894
    [Crossref] [Google Scholar]
  115. 115.
    Sharma M, Banday ZZ, Shukla BN, Laxmi A. 2019.. Glucose-regulated HLP1 acts as a key molecule in governing thermomemory. . Plant Physiol. 180::1081100
    [Crossref] [Google Scholar]
  116. 116.
    Sharma M, Jamsheer KM, Shukla BN, Sharma M, Awasthi P, et al. 2021.. Arabidopsis target of rapamycin coordinates with transcriptional and epigenetic machinery to regulate thermotolerance. . Front. Plant Sci. 12::741965
    [Crossref] [Google Scholar]
  117. 117.
    Sharma M, Sharma M, Jamsheer KM, Laxmi A. 2022.. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. . Plant Cell Environ. 45::155472
    [Crossref] [Google Scholar]
  118. 118.
    Shokrian Hajibehzad S, Silva SS, Peeters N, Stouten E, Buijs G, et al. 2023.. Arabidopsis thaliana rosette habit is controlled by combined light and energy signaling converging on transcriptional control of the TALE homeobox gene ATH1. . New Phytol. 239::105167
    [Crossref] [Google Scholar]
  119. 119.
    Signorelli S, Tarkowski LP, Van den Ende W, Bassham DC. 2019.. Linking autophagy to abiotic and biotic stress responses. . Trends Plant Sci. 24::41330
    [Crossref] [Google Scholar]
  120. 120.
    Smailov B, Alybayev S, Smekenov I, Mursalimov A, Saparbaev M, et al. 2020.. Wheat germination is dependent on plant target of rapamycin signaling. . Front. Cell Dev. Biol. 8::606685
    [Crossref] [Google Scholar]
  121. 121.
    Son O, Kim S, Kim D, Hur YS, Kim J, Cheon CI. 2018.. Involvement of TOR signaling motif in the regulation of plant autophagy. . Biochem. Biophys. Res. Commun. 501::64347
    [Crossref] [Google Scholar]
  122. 122.
    Song L, Xu G, Li T, Zhou H, Lin Q, et al. 2022.. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. . Mol. Plant 15::112036
    [Crossref] [Google Scholar]
  123. 123.
    Song Y, Zhao G, Zhang X, Li L, Xiong F, et al. 2017.. The crosstalk between Target of Rapamycin (TOR) and Jasmonic Acid (JA) signaling existing in Arabidopsis and cotton. . Sci. Rep. 7::45830
    [Crossref] [Google Scholar]
  124. 124.
    Stitz M, Kuster D, Reinert M, Schepetilnikov M, Berthet B, et al. 2023.. TOR acts as a metabolic gatekeeper for auxin-dependent lateral root initiation in Arabidopsis thaliana. . EMBO J. 42::e111273
    [Crossref] [Google Scholar]
  125. 125.
    Sun L, Yu Y, Hu W, Min Q, Kang H, et al. 2016.. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861::63949
    [Crossref] [Google Scholar]
  126. 126.
    Tatebe H, Shiozaki K. 2017.. Evolutionary conservation of the components in the TOR signaling pathways. . Biomolecules 7::77
    [Crossref] [Google Scholar]
  127. 127.
    Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, et al. 2019.. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. . Nat. Plants 5::31627 Established the phosphorylation and protein interaction map of Arabidopsis TOR for discovering upstream and downstream components of TOR signaling.
    [Crossref] [Google Scholar]
  128. 128.
    Wang L, Li H, Zhao C, Li S, Kong L, et al. 2017.. The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. . Plant Cell Environ. 40::5668
    [Crossref] [Google Scholar]
  129. 129.
    Wang P, Clark NM, Nolan TM, Song G, Whitham OG, et al. 2022.. FERONIA functions through Target of Rapamycin (TOR) to negatively regulate autophagy. . Front. Plant Sci. 13::961096
    [Crossref] [Google Scholar]
  130. 130.
    Wang P, Zhao Y, Li Z, Hsu CC, Liu X, et al. 2018.. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. . Mol. Cell 69::10012.e6
    [Crossref] [Google Scholar]
  131. 131.
    Wang Q, Qin Q, Su M, Li N, Zhang J, et al. 2022.. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. . Plant Cell 34::453153
    [Crossref] [Google Scholar]
  132. 132.
    Wullschleger S, Loewith R, Hall MN. 2006.. TOR signaling in growth and metabolism. . Cell 124::47184
    [Crossref] [Google Scholar]
  133. 133.
    Xie L, Gong X, Yang K, Huang Y, Zhang S, et al. 2024.. Technology-enabled great leap in deciphering plant genomes. . Nat. Plants 10::55166
    [Crossref] [Google Scholar]
  134. 134.
    Xiong F, Zhang R, Meng Z, Deng K, Que Y, et al. 2017.. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis. . New Phytol. 213::23349
    [Crossref] [Google Scholar]
  135. 135.
    Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013.. Glucose–TOR signalling reprograms the transcriptome and activates meristems. . Nature 496::18186 Revealed that glucose-activated TOR phosphorylates E2Fa, rapidly reprogramming the transcriptome to activate the root meristem.
    [Crossref] [Google Scholar]
  136. 136.
    Xiong Y, Sheen J. 2012.. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. . J. Biol. Chem. 287::283642
    [Crossref] [Google Scholar]
  137. 137.
    Xiong Y, Sheen J. 2014.. The role of target of rapamycin signaling networks in plant growth and metabolism. . Plant Physiol. 164::499512
    [Crossref] [Google Scholar]
  138. 138.
    Xu C, Pan X, Wang D, Guan Y, Yang W, et al. 2023.. O-GlcNAcylation of Raptor transduces glucose signals to mTORC1. . Mol. Cell 83::302740.e11
    [Crossref] [Google Scholar]
  139. 139.
    Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. 2013.. mTOR kinase structure, mechanism and regulation. . Nature 497::21723
    [Crossref] [Google Scholar]
  140. 140.
    Ye R, Wang M, Du H, Chhajed S, Koh J, et al. 2022.. Glucose-driven TOR-FIE-PRC2 signalling controls plant development. . Nature 609::98693 Revealed glucose-activated TOR's role in phosphorylating FIE to regulate cell fate and development via genome-wide H3K27me3 control.
    [Crossref] [Google Scholar]
  141. 141.
    Yu Y, Zhong Z, Ma L, Xiang C, Chen J, et al. 2022.. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation. . New Phytol. 236::132638
    [Crossref] [Google Scholar]
  142. 142.
    Yuan X, Xu P, Yu Y, Xiong Y. 2020.. Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root. . PNAS 117::3222325
    [Crossref] [Google Scholar]
  143. 143.
    Zhang H, Guo L, Li Y, Zhao D, Liu L, et al. 2022.. TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars. . Nat. Plants 8::792801
    [Crossref] [Google Scholar]
  144. 144.
    Zhang N, Meng Y, Li X, Zhou Y, Ma L, et al. 2019.. Metabolite-mediated TOR signaling regulates the circadian clock in Arabidopsis. . PNAS 116::2539597
    [Crossref] [Google Scholar]
  145. 145.
    Zhang Y, Zhang Y, McFarlane HE, Obata T, Richter AS, et al. 2018.. Inhibition of TOR represses nutrient consumption, which improves greening after extended periods of etiolation. . Plant Physiol. 178::10117
    [Crossref] [Google Scholar]
  146. 146.
    Zhang Z, Zhu JY, Roh J, Marchive C, Kim SK, et al. 2016.. TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis. . Curr. Biol. 26::185460
    [Crossref] [Google Scholar]
  147. 147.
    Zhong Y, Zhou X, Guan KL, Zhang J. 2022.. Rheb regulates nuclear mTORC1 activity independent of farnesylation. . Cell Chem. Biol. 29::103745.e4
    [Crossref] [Google Scholar]
  148. 148.
    Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J. 2015.. Dynamic visualization of mTORC1 activity in living cells. . Cell Rep. 10::176777
    [Crossref] [Google Scholar]
  149. 149.
    Zhu T, Li L, Feng L, Mo H, Ren M. 2020.. Target of rapamycin regulates genome methylation reprogramming to control plant growth in Arabidopsis. . Front. Genet. 11::186
    [Crossref] [Google Scholar]
  150. 150.
    Zhuo F, Xiong F, Deng K, Li Z, Ren M. 2020.. Target of rapamycin (TOR) negatively regulates ethylene signals in Arabidopsis. . Int. J. Mol. Sci. 21::2680
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083123-050311
Loading
/content/journals/10.1146/annurev-arplant-083123-050311
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error