1932

Abstract

Methylation at the fifth position of the cytosine base (5mC) is a critical DNA modification with important functions in gene silencing, genome imprinting, and suppression of transposable elements in eukaryotes. Biochemically, DNA methylation is dynamically regulated by three critical processes: the de novo establishment of DNA methylation, the maintenance of DNA methylation by preexisting methylation patterns, and the removal of DNA methylation. In plants, DNA methylation is very complex with unique features. In past decades, a series of biochemical and structural studies, especially empowered by the recent breakthroughs of high-resolution cryogenic electron microscopy, have helped uncover the molecular mechanisms underlying the establishment, maintenance, and removal of DNA methylation in plants. This review summarizes recent research advances in these three aspects of DNA methylation and lays out a molecular view of plant DNA methylation from biochemical and structural perspectives.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083123-054357
2025-05-20
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083123-054357.html?itemId=/content/journals/10.1146/annurev-arplant-083123-054357&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abhishek S, Deeksha W, Rajakumara E. 2021.. Helical and β-turn conformations in the peptide recognition regions of the VIM1 PHD finger abrogate H3K4 peptide recognition. . Biochemistry 60::265262
    [Crossref] [Google Scholar]
  2. 2.
    Agius F, Kapoor A, Zhu JK. 2006.. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. . PNAS 103::11796801
    [Crossref] [Google Scholar]
  3. 3.
    Allard ST, Bingman CA, Johnson KA, Wesenberg GE, Bitto E, et al. 2005.. Structure at 1.6 Å resolution of the protein from gene locus At3g22680 from Arabidopsis thaliana. . Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61::64750
    [Crossref] [Google Scholar]
  4. 4.
    Ausin I, Greenberg MV, Simanshu DK, Hale CJ, Vashisht AA, et al. 2012.. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. . PNAS 109::837481
    [Crossref] [Google Scholar]
  5. 5.
    Bartee L, Malagnac F, Bender J. 2001.. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. . Genes Dev. 15::175358
    [Crossref] [Google Scholar]
  6. 6.
    Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE. 2008.. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. . PLOS ONE 3::e3156
    [Crossref] [Google Scholar]
  7. 7.
    Bewick AJ, Schmitz RJ. 2017.. Gene body DNA methylation in plants. . Curr. Opin. Plant Biol. 36::10310
    [Crossref] [Google Scholar]
  8. 8.
    Bies-Etheve N, Pontier D, Lahmy S, Picart C, Vega D, et al. 2009.. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. . EMBO Rep. 10::64954
    [Crossref] [Google Scholar]
  9. 9.
    Blevins T, Podicheti R, Mishra V, Marasco M, Wang J, et al. 2015.. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. . eLife 4::e09591
    [Crossref] [Google Scholar]
  10. 10.
    Blevins T, Pontvianne F, Cocklin R, Podicheti R, Chandrasekhara C, et al. 2014.. A two-step process for epigenetic inheritance in Arabidopsis. . Mol. Cell 54::3042
    [Crossref] [Google Scholar]
  11. 11.
    Cao X, Jacobsen SE. 2002.. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. . PNAS 99:(4):1649198
    [Crossref] [Google Scholar]
  12. 12.
    Cao X, Jacobsen SE. 2002.. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. . Curr. Biol. 12::113844
    [Crossref] [Google Scholar]
  13. 13.
    Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE. 2000.. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. . PNAS 97::497984
    [Crossref] [Google Scholar]
  14. 14.
    Chen J, Lu J, Liu J, Fang J, Zhong X, Song J. 2023.. DNA conformational dynamics in the context-dependent non-CG CHH methylation by plant methyltransferase DRM2. . J. Biol. Chem. 299::105433
    [Crossref] [Google Scholar]
  15. 15.
    Chen S, Liu W, Naganuma M, Tomari Y, Iwakawa HO. 2022.. Functional specialization of monocot DCL3 and DCL5 proteins through the evolution of the PAZ domain. . Nucleic Acids Res. 50::466984
    [Crossref] [Google Scholar]
  16. 16.
    Cheng Y. 2015.. Single-particle cryo-EM at crystallographic resolution. . Cell 161::45057
    [Crossref] [Google Scholar]
  17. 17.
    Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, et al. 2008.. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. . Nature 452::21519
    [Crossref] [Google Scholar]
  18. 18.
    Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, et al. 2000.. Architecture of RNA polymerase II and implications for the transcription mechanism. . Science 288::64049
    [Crossref] [Google Scholar]
  19. 19.
    Du J, Johnson LM, Groth M, Feng S, Hale CJ, et al. 2014.. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. . Mol. Cell 55::495504
    [Crossref] [Google Scholar]
  20. 20.
    Du J, Johnson LM, Jacobsen SE, Patel DJ. 2015.. DNA methylation pathways and their crosstalk with histone methylation. . Nat. Rev. Mol. Cell Biol. 16::51932
    [Crossref] [Google Scholar]
  21. 21.
    Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, et al. 2012.. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. . Cell 151::16780
    [Crossref] [Google Scholar]
  22. 22.
    Du X, Yang Z, Ariza AJF, Wang Q, Xie G, et al. 2022.. Structure of plant RNA-DEPENDENT RNA POLYMERASE 2, an enzyme involved in small interfering RNA production. . Plant Cell 34::214049
    [Crossref] [Google Scholar]
  23. 23.
    Du X, Yang Z, Xie G, Wang C, Zhang L, et al. 2023.. Molecular basis of the plant ROS1-mediated active DNA demethylation. . Nat. Plants 9::27179 This study revealed how the plant-specific DNA demethylase ROS1 specifically recognizes and removes 5mC.
    [Crossref] [Google Scholar]
  24. 24.
    Earley KW, Pontvianne F, Wierzbicki AT, Blevins T, Tucker S, et al. 2010.. Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. . Genes Dev. 24::111932
    [Crossref] [Google Scholar]
  25. 25.
    El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, et al. 2007.. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. . Genes Dev. 21::253944
    [Crossref] [Google Scholar]
  26. 26.
    Fang C, Huang K, Wu X, Zhang H, Gu Z, et al. 2024.. Transcription elongation of the plant RNA polymerase IV is prone to backtracking. . Sci. Adv. 10::eadq3087
    [Crossref] [Google Scholar]
  27. 27.
    Fang J, Jiang J, Leichter SM, Liu J, Biswal M, et al. 2022.. Mechanistic basis for maintenance of CHG DNA methylation in plants. . Nat. Commun. 13::3877 This study elucidated the molecular mechanism behind the sequence-specific and histone-based regulation of CHG DNA methylation by CMT3.
    [Crossref] [Google Scholar]
  28. 28.
    Fang J, Leichter SM, Jiang J, Biswal M, Lu J, et al. 2021.. Substrate deformation regulates DRM2-mediated DNA methylation in plants. . Sci. Adv. 7::eabd9224 This study revealed how the DNA MTase DRM2 binds to its substrate and mediates its catalytic activity.
    [Crossref] [Google Scholar]
  29. 29.
    Felgines L, Rymen B, Martins LM, Xu G, Matteoli C, et al. 2024.. CLSY docking to Pol IV requires a conserved domain critical for small RNA biogenesis and transposon silencing. . Nat. Commun. 15::10298
    [Crossref] [Google Scholar]
  30. 30.
    Fukudome A, Singh J, Mishra V, Reddem E, Martinez-Marquez F, et al. 2021.. Structure and RNA template requirements of Arabidopsis RNA-DEPENDENT RNA POLYMERASE 2. . PNAS 118::e2115899118
    [Crossref] [Google Scholar]
  31. 31.
    Gao Z, Liu HL, Daxinger L, Pontes O, He X, et al. 2010.. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. . Nature 465::1069
    [Crossref] [Google Scholar]
  32. 32.
    Gebert LFR, MacRae IJ. 2019.. Regulation of microRNA function in animals. . Nat. Rev. Mol. Cell Biol. 20::2137
    [Crossref] [Google Scholar]
  33. 33.
    Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, et al. 2006.. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. . Cell 124::495506
    [Crossref] [Google Scholar]
  34. 34.
    Goll MG, Bestor TH. 2005.. Eukaryotic cytosine methyltransferases. . Annu. Rev. Biochem. 74::481514
    [Crossref] [Google Scholar]
  35. 35.
    Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK. 2002.. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. . Cell 111::80314
    [Crossref] [Google Scholar]
  36. 36.
    Gouil Q, Baulcombe DC. 2016.. DNA methylation signatures of the plant chromomethyltransferases. . PLOS Genet. 12::e1006526
    [Crossref] [Google Scholar]
  37. 37.
    Haag JR, Brower-Toland B, Krieger EK, Sidorenko L, Nicora CD, et al. 2014.. Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits. . Cell Rep. 9::37890
    [Crossref] [Google Scholar]
  38. 38.
    Haag JR, Pontes O, Pikaard CS. 2009.. Metal A and metal B sites of nuclear RNA polymerases Pol IV and Pol V are required for siRNA-dependent DNA methylation and gene silencing. . PLOS ONE 4::e4110
    [Crossref] [Google Scholar]
  39. 39.
    Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, et al. 2012.. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. . Mol. Cell 48::81118
    [Crossref] [Google Scholar]
  40. 40.
    Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, et al. 2010.. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. . Plant Cell 22::32134
    [Crossref] [Google Scholar]
  41. 41.
    He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, et al. 2009.. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. . Cell 137::498508
    [Crossref] [Google Scholar]
  42. 42.
    Henderson IR, Deleris A, Wong W, Zhong X, Chin HG, et al. 2010.. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. . PLOS Genet. 6::e1001182
    [Crossref] [Google Scholar]
  43. 43.
    Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. 2005.. RNA polymerase IV directs silencing of endogenous DNA. . Science 308::11820
    [Crossref] [Google Scholar]
  44. 44.
    Holoch D, Moazed D. 2015.. RNA-mediated epigenetic regulation of gene expression. . Nat. Rev. Genet. 16::7184
    [Crossref] [Google Scholar]
  45. 45.
    Hong S, Hashimoto H, Kow YW, Zhang X, Cheng X. 2014.. The carboxy-terminal domain of ROS1 is essential for 5-methylcytosine DNA glycosylase activity. . J. Mol. Biol. 426::370312
    [Crossref] [Google Scholar]
  46. 46.
    Huang K, Wu XX, Fang CL, Xu ZG, Zhang HW, et al. 2021.. Pol IV and RDR2: a two-RNA-polymerase machine that produces double-stranded RNA. . Science 374::157986 This study reported a tunneling mechanism to connect Pol IV backtracking to RDR2 activation.
    [Crossref] [Google Scholar]
  47. 47.
    Huang L, Jones AM, Searle I, Patel K, Vogler H, et al. 2009.. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. . Nat. Struct. Mol. Biol. 16::9193
    [Crossref] [Google Scholar]
  48. 48.
    Huang Y, Ji L, Huang Q, Vassylyev DG, Chen X, Ma JB. 2009.. Structural insights into mechanisms of the small RNA methyltransferase HEN1. . Nature 461::82327
    [Crossref] [Google Scholar]
  49. 49.
    Ishiyama S, Nishiyama A, Saeki Y, Moritsugu K, Morimoto D, et al. 2017.. Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. . Mol. Cell 68::35060.e7
    [Crossref] [Google Scholar]
  50. 50.
    Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, et al. 2004.. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. . Chromosoma 112::30815
    [Crossref] [Google Scholar]
  51. 51.
    Jackson JP, Lindroth AM, Cao X, Jacobsen SE. 2002.. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. . Nature 416::55660
    [Crossref] [Google Scholar]
  52. 52.
    Jacobsen SE, Meyerowitz EM. 1997.. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. . Science 277::11003
    [Crossref] [Google Scholar]
  53. 53.
    Jamge B, Lorković ZJ, Axelsson E, Osakabe A, Shukla V, et al. 2023.. Histone variants shape chromatin states in Arabidopsis. . eLife 12::RP87714
    [Crossref] [Google Scholar]
  54. 54.
    Jiang J, Gwee J, Fang J, Leichter SM, Sanders D, et al. 2024.. Substrate specificity and protein stability drive the divergence of plant-specific DNA methyltransferases. . Sci. Adv. 10::eadr2222
    [Crossref] [Google Scholar]
  55. 55.
    Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, et al. 2007.. The SRA methyl-cytosine-binding domain links DNA and histone methylation. . Curr. Biol. 17::37984
    [Crossref] [Google Scholar]
  56. 56.
    Johnson LM, Du J, Hale CJ, Bischof S, Feng S, et al. 2014.. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. . Nature 507::12428
    [Crossref] [Google Scholar]
  57. 57.
    Johnson LM, Law JA, Khattar A, Henderson IR, Jacobsen SE. 2008.. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. . PLOS Genet. 4::e1000280
    [Crossref] [Google Scholar]
  58. 58.
    Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, et al. 2003.. Arabidopsis MET1 cytosine methyltransferase mutants. . Genetics 163::110922
    [Crossref] [Google Scholar]
  59. 59.
    Kanno T, Bucher E, Daxinger L, Huettel B, Böhmdorfer G, et al. 2008.. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. . Nat. Genet. 40::67075
    [Crossref] [Google Scholar]
  60. 60.
    Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, et al. 2005.. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. . Nat. Genet. 37::76165
    [Crossref] [Google Scholar]
  61. 61.
    Kanno T, Mette MF, Kreil DP, Aufsatz W, Matzke M, Matzke AJ. 2004.. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. . Curr. Biol. 14::8015
    [Crossref] [Google Scholar]
  62. 62.
    Kim J, Kim JH, Richards EJ, Chung KM, Woo HR. 2014.. Arabidopsis VIM proteins regulate epigenetic silencing by modulating DNA methylation and histone modification in cooperation with MET1. . Mol. Plant 7::147085
    [Crossref] [Google Scholar]
  63. 63.
    Kuhlmann M, Mette MF. 2012.. Developmentally non-redundant SET domain proteins SUVH2 and SUVH9 are required for transcriptional gene silencing in Arabidopsis thaliana. . Plant Mol. Biol. 79::62333
    [Crossref] [Google Scholar]
  64. 64.
    Lahmy S, Pontier D, Bies-Etheve N, Laudié M, Feng S, et al. 2016.. Evidence for ARGONAUTE4–DNA interactions in RNA-directed DNA methylation in plants. . Genes Dev. 30::256570
    [Crossref] [Google Scholar]
  65. 65.
    Lahmy S, Pontier D, Cavel E, Vega D, El-Shami M, et al. 2009.. PolV(PolIVb) function in RNA-directed DNA methylation requires the conserved active site and an additional plant-specific subunit. . PNAS 106::94146
    [Crossref] [Google Scholar]
  66. 66.
    Law JA, Ausin I, Johnson LM, Vashisht AA, Zhu JK, et al. 2010.. A protein complex required for polymerase V transcripts and RNA-directed DNA methylation in Arabidopsis. . Curr. Biol. 20::95156
    [Crossref] [Google Scholar]
  67. 67.
    Law JA, Du J, Hale CJ, Feng S, Krajewski K, et al. 2013.. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. . Nature 498::38589
    [Crossref] [Google Scholar]
  68. 68.
    Law JA, Jacobsen SE. 2010.. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. . Nat. Rev. Genet. 11::20420
    [Crossref] [Google Scholar]
  69. 69.
    Law JA, Vashisht AA, Wohlschlegel JA, Jacobsen SE. 2011.. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. . PLOS Genet. 7::e1002195
    [Crossref] [Google Scholar]
  70. 70.
    Lee J, Jang H, Shin H, Choi WL, Mok YG, Huh JH. 2014.. AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis. . Nucleic Acids Res. 42::1140818
    [Crossref] [Google Scholar]
  71. 71.
    Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, et al. 2023.. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation. . Cell 186::410016 This study solved the structure of the chromatin remodeler DDM1 and revealed its role in histone variant–based DNA methylation regulation.
    [Crossref] [Google Scholar]
  72. 72.
    Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, et al. 2006.. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. . Cell 126::93106
    [Crossref] [Google Scholar]
  73. 73.
    Li J, Liang W, Li Y, Qian W. 2018.. APURINIC/APYRIMIDINIC ENDONUCLEASE2 and ZINC FINGER DNA 3′-PHOSPHOESTERASE play overlapping roles in the maintenance of epigenome and genome stability. . Plant Cell 30::195470
    [Crossref] [Google Scholar]
  74. 74.
    Li J, Yang Z, Yu B, Liu J, Chen X. 2005.. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. . Curr. Biol. 15::15017
    [Crossref] [Google Scholar]
  75. 75.
    Li S, Vandivier LE, Tu B, Gao L, Won SY, et al. 2015.. Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. . Genome Res. 25::23545
    [Crossref] [Google Scholar]
  76. 76.
    Li X, Harris CJ, Zhong Z, Chen W, Liu R, et al. 2018.. Mechanistic insights into plant SUVH family H3K9 methyltransferases and their binding to context-biased non-CG DNA methylation. . PNAS 115::E8793802
    [Crossref] [Google Scholar]
  77. 77.
    Li Y, Cordoba-Canero D, Qian W, Zhu X, Tang K, et al. 2015.. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis. . PLOS Genet. 11::e1004905
    [Crossref] [Google Scholar]
  78. 78.
    Li Y, Duan CG, Zhu X, Qian W, Zhu JK. 2015.. A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis. . Cell Res. 25::75760
    [Crossref] [Google Scholar]
  79. 79.
    Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, et al. 2001.. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. . Science 292::207780
    [Crossref] [Google Scholar]
  80. 80.
    Lindroth AM, Shultis D, Jasencakova Z, Fuchs J, Johnson L, et al. 2004.. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. . EMBO J 23::428696
    [Crossref] [Google Scholar]
  81. 81.
    Lippman Z, May B, Yordan C, Singer T, Martienssen R. 2003.. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. . PLOS Biol. 1::e67
    [Crossref] [Google Scholar]
  82. 82.
    Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, et al. 2008.. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. . Cell 133::52336
    [Crossref] [Google Scholar]
  83. 83.
    Liu W, Duttke SH, Hetzel J, Groth M, Feng S, et al. 2018.. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. . Nat. Plants 4::18188
    [Crossref] [Google Scholar]
  84. 84.
    Liu X, Yu CW, Duan J, Luo M, Wang K, et al. 2012.. HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. . Plant Physiol. 158::11929
    [Crossref] [Google Scholar]
  85. 85.
    Liu Y, Zhang Z, Hu H, Chen W, Zhang F, et al. 2024.. Molecular basis of chromatin remodelling by DDM1 involved in plant DNA methylation. . Nat. Plants 10::37480 This study revealed the molecular mechanism of a full chromatin remodeling cycle of DDM1.
    [Crossref] [Google Scholar]
  86. 86.
    Liu ZW, Shao CR, Zhang CJ, Zhou JX, Zhang SW, et al. 2014.. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. . PLOS Genet. 10::e1003948
    [Crossref] [Google Scholar]
  87. 87.
    Loffer A, Singh J, Fukudome A, Mishra V, Wang F, Pikaard CS. 2022.. A DCL3 dicing code within Pol IV-RDR2 transcripts diversifies the siRNA pool guiding RNA-directed DNA methylation. . eLife 11::e73260
    [Crossref] [Google Scholar]
  88. 88.
    Malagnac F, Bartee L, Bender J. 2002.. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. . EMBO J. 21::684252
    [Crossref] [Google Scholar]
  89. 89.
    Marasco M, Li W, Lynch M, Pikaard CS. 2017.. Catalytic properties of RNA polymerases IV and V: accuracy, nucleotide incorporation and rNTP/dNTP discrimination. . Nucleic Acids Res. 45::1131526
    [Crossref] [Google Scholar]
  90. 90.
    Martínez-Macías MI, Córdoba-Cañero D, Ariza RR, Roldán-Arjona T. 2013.. The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation (5-meC) excision, gap tailoring, and DNA ligation. . J. Biol. Chem. 288::5496505
    [Crossref] [Google Scholar]
  91. 91.
    Martinez-Macias MI, Qian W, Miki D, Pontes O, Liu Y, et al. 2012.. A DNA 3′ phosphatase functions in active DNA demethylation in Arabidopsis. . Mol. Cell 45::35770
    [Crossref] [Google Scholar]
  92. 92.
    Martins LM, Law JA. 2023.. Moving targets: mechanisms regulating siRNA production and DNA methylation during plant development. . Curr. Opin. Plant Biol. 75::102435
    [Crossref] [Google Scholar]
  93. 93.
    Matzke MA, Kanno T, Matzke AJM. 2015.. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. . Annu. Rev. Plant Biol. 66::24367
    [Crossref] [Google Scholar]
  94. 94.
    Matzke MA, Mosher RA. 2014.. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. . Nat. Rev. Genet. 15::394408
    [Crossref] [Google Scholar]
  95. 95.
    Mi S, Cai T, Hu Y, Chen Y, Hodges E, et al. 2008.. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. . Cell 133::11627
    [Crossref] [Google Scholar]
  96. 96.
    Nagano H, Fukudome A, Hiraguri A, Moriyama H, Fukuhara T. 2014.. Distinct substrate specificities of Arabidopsis DCL3 and DCL4. . Nucleic Acids Res. 42::184556
    [Crossref] [Google Scholar]
  97. 97.
    Nudler E. 2012.. RNA polymerase backtracking in gene regulation and genome instability. . Cell 149::143845
    [Crossref] [Google Scholar]
  98. 98.
    Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C, et al. 2013.. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. . Plant Physiol. 162::11631
    [Crossref] [Google Scholar]
  99. 99.
    Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS. 2005.. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. . Cell 120::61322
    [Crossref] [Google Scholar]
  100. 100.
    Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldan-Arjona T. 2008.. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. . Plant Mol. Biol. 67::67181
    [Crossref] [Google Scholar]
  101. 101.
    Osakabe A, Jamge B, Axelsson E, Montgomery SA, Akimcheva S, et al. 2021.. The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A.W. . Nat. Cell Biol. 23::391400
    [Crossref] [Google Scholar]
  102. 102.
    Osakabe A, Takizawa Y, Horikoshi N, Hatazawa S, Negishi L, et al. 2024.. Molecular and structural basis of the chromatin remodeling activity by Arabidopsis DDM1. . Nat. Commun. 15::5187
    [Crossref] [Google Scholar]
  103. 103.
    Parent JS, Cahn J, Herridge RP, Grimanelli D, Martienssen RA. 2021.. Small RNAs guide histone methylation in Arabidopsis embryos. . Genes Dev. 35::84146
    [Crossref] [Google Scholar]
  104. 104.
    Ponferrada-Marin MI, Martinez-Macias MI, Morales-Ruiz T, Roldan-Arjona T, Ariza RR. 2010.. Methylation-independent DNA binding modulates specificity of Repressor of Silencing 1 (ROS1) and facilitates demethylation in long substrates. . J. Biol. Chem. 285::2303239
    [Crossref] [Google Scholar]
  105. 105.
    Ponferrada-Marin MI, Roldan-Arjona T, Ariza RR. 2012.. Demethylation initiated by ROS1 glycosylase involves random sliding along DNA. . Nucleic Acids Res. 40::1155462
    [Crossref] [Google Scholar]
  106. 106.
    Pontes O, Li CF, Costa Nunes P, Haag J, Ream T, et al. 2006.. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. . Cell 126::7992
    [Crossref] [Google Scholar]
  107. 107.
    Pontier D, Picart C, Roudier F, Garcia D, Lahmy S, et al. 2012.. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. . Mol. Cell 48::12132
    [Crossref] [Google Scholar]
  108. 108.
    Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, et al. 2005.. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. . Genes Dev. 19::203040
    [Crossref] [Google Scholar]
  109. 109.
    Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ. 2006.. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. . Nature 443::100812
    [Crossref] [Google Scholar]
  110. 110.
    Rajakumara E, Law JA, Simanshu DK, Voigt P, Johnson LM, et al. 2011.. A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. . Genes Dev. 25::13752
    [Crossref] [Google Scholar]
  111. 111.
    Rajakumara E, Nakarakanti NK, Nivya MA, Satish M. 2016.. Mechanistic insights into the recognition of 5-methylcytosine oxidation derivatives by the SUVH5 SRA domain. . Sci. Rep. 6::20161
    [Crossref] [Google Scholar]
  112. 112.
    Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, et al. 2009.. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. . Mol. Cell 33::192203
    [Crossref] [Google Scholar]
  113. 113.
    Ren W, Fan H, Grimm SA, Guo Y, Kim JJ, et al. 2020.. Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. . PNAS 117::1843947
    [Crossref] [Google Scholar]
  114. 114.
    Ren W, Fan H, Grimm SA, Kim JJ, Li L, et al. 2021.. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. . Nat. Commun. 12::2490
    [Crossref] [Google Scholar]
  115. 115.
    Rowley MJ, Avrutsky MI, Sifuentes CJ, Pereira L, Wierzbicki AT. 2011.. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. . PLOS Genet. 7::e1002120
    [Crossref] [Google Scholar]
  116. 116.
    Shen L, Song CX, He C, Zhang Y. 2014.. Mechanism and function of oxidative reversal of DNA and RNA methylation. . Annu. Rev. Biochem. 83::585614
    [Crossref] [Google Scholar]
  117. 117.
    Singh J, Mishra V, Wang F, Huang HY, Pikaard CS. 2019.. Reaction mechanisms of Pol IV, RDR2, and DCL3 drive RNA channeling in the siRNA-directed DNA methylation pathway. . Mol. Cell 75::57689
    [Crossref] [Google Scholar]
  118. 118.
    Smith LM, Pontes O, Searle I, Yelina N, Yousafzai FK, et al. 2007.. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. . Plant Cell 19::150721
    [Crossref] [Google Scholar]
  119. 119.
    Song J, Rechkoblit O, Bestor TH, Patel DJ. 2011.. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. . Science 331::103640
    [Crossref] [Google Scholar]
  120. 120.
    Song J, Teplova M, Ishibe-Murakami S, Patel DJ. 2012.. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. . Science 335::70912
    [Crossref] [Google Scholar]
  121. 121.
    Stoddard CI, Feng S, Campbell MG, Liu W, Wang H, et al. 2019.. A nucleosome bridging mechanism for activation of a maintenance DNA methyltransferase. . Mol. Cell 73::7383.e6
    [Crossref] [Google Scholar]
  122. 122.
    Stroud H, Do T, Du J, Zhong X, Feng S, et al. 2014.. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. . Nat. Struct. Mol. Biol. 21::6472
    [Crossref] [Google Scholar]
  123. 123.
    Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. 2013.. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. . Cell 152::35264
    [Crossref] [Google Scholar]
  124. 124.
    Takeshita K, Suetake I, Yamashita E, Suga M, Narita H, et al. 2011.. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). . PNAS 108::905559
    [Crossref] [Google Scholar]
  125. 125.
    Tang K, Lang Z, Zhang H, Zhu JK. 2016.. The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. . Nat. Plants 2::16169
    [Crossref] [Google Scholar]
  126. 126.
    Tang K, Zhu X, Xie S, Lang Z, Zhu JK. 2024.. Transgenerational increases in DNA methylation in Arabidopsis plants defective in active DNA demethylation. . PNAS 121::e2320468121
    [Crossref] [Google Scholar]
  127. 127.
    To TK, Kim JM, Matsui A, Kurihara Y, Morosawa T, et al. 2011.. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. . PLOS Genet. 7::e1002055
    [Crossref] [Google Scholar]
  128. 128.
    Vongs A, Kakutani T, Martienssen RA, Richards EJ. 1993.. Arabidopsis thaliana DNA methylation mutants. . Science 260::192628
    [Crossref] [Google Scholar]
  129. 129.
    Wada Y, Ohya H, Yamaguchi Y, Koizumi N, Sano H. 2003.. Preferential de novo methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants. . J. Biol. Chem. 278::4238693
    [Crossref] [Google Scholar]
  130. 130.
    Wang F, Huang HY, Huang J, Singh J, Pikaard CS. 2023.. Enzymatic reactions of AGO4 in RNA-directed DNA methylation: siRNA duplex loading, passenger strand elimination, target RNA slicing, and sliced target retention. . Genes Dev. 37::10318 This study presents a potential model representing the roles of AGO4 in RdDM.
    [Crossref] [Google Scholar]
  131. 131.
    Wang H, Zhang X, Liu J, Kiba T, Woo J, et al. 2011.. Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. . Plant J. 67::292304
    [Crossref] [Google Scholar]
  132. 132.
    Wang Q, Xue Y, Zhang L, Zhong Z, Feng S, et al. 2021.. Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. . Science 374::115257 This study revealed the molecular basis for the end-specific recognition, length measurement, and strand-biased dicing of precursor siRNAs by DCL3.
    [Crossref] [Google Scholar]
  133. 133.
    Wang Y, Le BH, Wang J, You C, Zhao Y, et al. 2022.. ZMP recruits and excludes Pol IV-mediated DNA methylation in a site-specific manner. . Sci. Adv. 8::eadc9454
    [Crossref] [Google Scholar]
  134. 134.
    Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD. 2012.. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. . Cell 151::105567
    [Crossref] [Google Scholar]
  135. 135.
    Wierzbicki AT, Haag JR, Pikaard CS. 2008.. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. . Cell 135::63548
    [Crossref] [Google Scholar]
  136. 136.
    Wierzbicki AT, Ream TS, Haag JR, Pikaard CS. 2009.. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. . Nat. Genet. 41::63034
    [Crossref] [Google Scholar]
  137. 137.
    Wongpalee SP, Liu S, Gallego-Bartolomé J, Leitner A, Aebersold R, et al. 2019.. CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation. . Nat. Commun. 10::3916
    [Crossref] [Google Scholar]
  138. 138.
    Woo HR, Pontes O, Pikaard CS, Richards EJ. 2007.. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. . Genes Dev. 21::26777
    [Crossref] [Google Scholar]
  139. 139.
    Wu L, Mao L, Qi Y. 2012.. Roles of DICER-LIKE and ARGONAUTE proteins in TAS-derived small interfering RNA-triggered DNA methylation. . Plant Physiol. 160::99099
    [Crossref] [Google Scholar]
  140. 140.
    Wu L, Zhou H, Zhang Q, Zhang J, Ni F, et al. 2010.. DNA methylation mediated by a microRNA pathway. . Mol. Cell 38::46575
    [Crossref] [Google Scholar]
  141. 141.
    Xie G, Du X, Hu H, Du J. 2024.. Molecular mechanisms of the RNA polymerases in plant RNA-directed DNA methylation. . Trends Biochem. Sci. 49::24756
    [Crossref] [Google Scholar]
  142. 142.
    Xie G, Du X, Hu H, Li S, Cao X, et al. 2023.. Structure and mechanism of the plant RNA polymerase V. . Science 379::120913 This study elucidated the structural and biochemical features of Pol V, suggesting that it has a potential chromatin retention mechanism.
    [Crossref] [Google Scholar]
  143. 143.
    Yang DL, Zhang G, Wang L, Li J, Xu D, et al. 2018.. Four putative SWI2/SNF2 chromatin remodelers have dual roles in regulating DNA methylation in Arabidopsis. . Cell Discov. 4::55
    [Crossref] [Google Scholar]
  144. 144.
    Yang Z, Ebright YW, Yu B, Chen X. 2006.. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. . Nucleic Acids Res. 34::66775
    [Crossref] [Google Scholar]
  145. 145.
    Ye R, Wang W, Iki T, Liu C, Wu Y, et al. 2012.. Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. . Mol. Cell 46::85970
    [Crossref] [Google Scholar]
  146. 146.
    Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, et al. 2013.. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. . Cell 153::193205
    [Crossref] [Google Scholar]
  147. 147.
    Zhai J, Bischof S, Wang H, Feng S, Lee TF, et al. 2015.. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. . Cell 163::44555
    [Crossref] [Google Scholar]
  148. 148.
    Zhang H, Gong Z, Zhu JK. 2022.. Active DNA demethylation in plants: 20 years of discovery and beyond. . J. Integr. Plant Biol. 64::221739
    [Crossref] [Google Scholar]
  149. 149.
    Zhang H, Gu Z, Zeng Y, Zhang Y. 2024.. Mechanism of heterochromatin remodeling revealed by the DDM1 bound nucleosome structures. . Structure 32::122230.e4
    [Crossref] [Google Scholar]
  150. 150.
    Zhang H, Lang Z, Zhu JK. 2018.. Dynamics and function of DNA methylation in plants. . Nat. Rev. Mol. Cell Biol. 19::489506
    [Crossref] [Google Scholar]
  151. 151.
    Zhang H, Ma ZY, Zeng L, Tanaka K, Zhang CJ, et al. 2013.. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. . PNAS 110::829095
    [Crossref] [Google Scholar]
  152. 152.
    Zhang HW, Huang K, Gu ZX, Wu XX, Wang JW, Zhang Y. 2023.. A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex. . Nat. Commun. 14::3118
    [Crossref] [Google Scholar]
  153. 153.
    Zhang J, Yuan J, Lin J, Chen L, You LY, et al. 2023.. Molecular basis of locus-specific H3K9 methylation catalyzed by SUVH6 in plants. . PNAS 120::e2208525120
    [Crossref] [Google Scholar]
  154. 154.
    Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, et al. 2014.. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. . Cell 157::105060
    [Crossref] [Google Scholar]
  155. 155.
    Zhong X, Hale CJ, Law JA, Johnson LM, Feng S, et al. 2012.. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. . Nat. Struct. Mol. Biol. 19::87075
    [Crossref] [Google Scholar]
  156. 156.
    Zhong Z, Feng S, Duttke SH, Potok ME, Zhang Y, et al. 2021.. DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis. . PNAS 118::e2023347118
    [Crossref] [Google Scholar]
  157. 157.
    Zhou J, Lei X, Shafiq S, Zhang W, Li Q, et al. 2023.. DDM1-mediated R-loop resolution and H2A.Z exclusion facilitates heterochromatin formation in Arabidopsis. . Sci. Adv. 9::eadg2699
    [Crossref] [Google Scholar]
  158. 158.
    Zhou M, Coruh C, Xu G, Martins LM, Bourbousse C, et al. 2022.. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. . Nat. Commun. 13::244
    [Crossref] [Google Scholar]
  159. 159.
    Zhou M, Palanca AMS, Law JA. 2018.. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. . Nat. Genet. 50::86573 This comprehensive study revealed the locus-specific regulation of Pol IV function by different CLASSY members in RdDM.
    [Crossref] [Google Scholar]
  160. 160.
    Zhu Y, Rowley MJ, Böhmdorfer G, Wierzbicki AT. 2013.. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. . Mol. Cell 49::298309
    [Crossref] [Google Scholar]
  161. 161.
    Zilberman D, Cao X, Jacobsen SE. 2003.. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. . Science 299::71619
    [Crossref] [Google Scholar]
  162. 162.
    Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE. 2004.. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. . Curr. Biol. 14::121420
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083123-054357
Loading
/content/journals/10.1146/annurev-arplant-083123-054357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error