1932

Abstract

Modern agricultural practices rely on high-input, intensive cultivation of a few crop varieties with limited diversity, increasing the vulnerability of our agricultural systems to biotic and abiotic stresses and the effects of climate changes. This necessitates a paradigm shift toward a more sustainable agricultural model to ensure a stable and dependable food supply for the burgeoning global population. Leveraging knowledge from crop biology, genetics, and genomics, alongside state-of-the-art biotechnologies, rational redomestication has emerged as a targeted and knowledge-driven approach to crop innovation. This strategy aims to broaden the range of species available for agriculture, restore lost genetic diversity, and further improve existing domesticated crops. We summarize how diverse plants can be exploited in rational redomestication endeavors, including wild species, underutilized plants, and domesticated crops. Equipped with rational redomestication approaches, we propose different strategies to empower the fast and slow breeding systems distinguished by plant reproduction systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083123-064726
2025-05-20
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083123-064726.html?itemId=/content/journals/10.1146/annurev-arplant-083123-064726&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. . Nature 630::493500
    [Crossref] [Google Scholar]
  2. 2.
    Abrouk M, Ahmed HI, Cubry P, Šimoníková D, Cauet S, et al. 2020.. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. . Nat. Commun. 11::4488
    [Crossref] [Google Scholar]
  3. 3.
    Aguirre L, Hendelman A, Hutton SF, McCandlish DM, Lippman ZB. 2023.. Idiosyncratic and dose-dependent epistasis drives variation in tomato fruit size. . Science 382::31520
    [Crossref] [Google Scholar]
  4. 4.
    Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, et al. 2011.. Artificial selection for a green revolution gene during japonica rice domestication. . PNAS 108::1103439
    [Crossref] [Google Scholar]
  5. 5.
    Baldet P, Mori K, Decros G, Beauvoit B, Colombié S, et al. 2024.. Multi-regulated GDP-l-galactose phosphorylase calls the tune in ascorbate biosynthesis. . J. Exp. Bot. 75::263143
    [Crossref] [Google Scholar]
  6. 6.
    Bethke PC, Nassar AMK, Kubow S, Leclerc YN, Li X-Q, et al. 2014.. History and origin of Russet Burbank (netted gem) a sport of burbank. . Am. J. Potato Res. 91::594609
    [Crossref] [Google Scholar]
  7. 7.
    Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. 2002.. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. . Plant Cell 14::173749
    [Crossref] [Google Scholar]
  8. 8.
    Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, et al. 2008.. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. . Nat. Biotechnol. 26::13018
    [Crossref] [Google Scholar]
  9. 9.
    Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023.. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. . Innovation 4::100345
    [Google Scholar]
  10. 10.
    Carrière Y, Fabrick JA, Tabashnik BE. 2016.. Can pyramids and seed mixtures delay resistance to Bt crops?. Trends Biotechnol. 34::291302
    [Crossref] [Google Scholar]
  11. 11.
    Che P, Wu E, Simon MK, Anand A, Lowe K, et al. 2022.. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. . Commun. Biol. 5::344
    [Crossref] [Google Scholar]
  12. 12.
    Chen J, Liu Y, Liu M, Guo W, Wang Y, et al. 2023.. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. . Nat. Genet. 55::224354
    [Crossref] [Google Scholar]
  13. 13.
    Chen L, Liu Y-G. 2014.. Male sterility and fertility restoration in crops. . Annu. Rev. Plant Biol. 65::579606
    [Crossref] [Google Scholar]
  14. 14.
    Chen R, Deng Y, Ding Y, Guo J, Qiu J, et al. 2022.. Rice functional genomics: decades' efforts and roads ahead. . Sci. China Life Sci. 65::3392
    [Crossref] [Google Scholar]
  15. 15.
    Chen W, Chen L, Zhang X, Yang N, Guo J, et al. 2022.. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. . Science 375::eabg7985
    [Crossref] [Google Scholar]
  16. 16.
    Covshoff S, Hibberd JM. 2012.. Integrating C4 photosynthesis into C3 crops to increase yield potential. . Curr. Opin. Biotechnol. 23::20914
    [Crossref] [Google Scholar]
  17. 17.
    Crickmore N, Berry C, Panneerselvam S, Mishra R, Connor TR, Bonning BC. 2021.. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. . J. Invertebr. Pathol. 186::107438
    [Crossref] [Google Scholar]
  18. 18.
    Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, et al. 2017.. Genomic selection in plant breeding: methods, models, and perspectives. . Trends Plant Sci. 22::96175
    [Crossref] [Google Scholar]
  19. 19.
    Crow JF. 1998.. 90 years ago: the beginning of hybrid maize. . Genetics 148::92328
    [Crossref] [Google Scholar]
  20. 20.
    Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010.. Identifying a high fraction of the human genome to be under selective constraint using GERP++. . PLOS Comput. Biol. 6::e1001025
    [Crossref] [Google Scholar]
  21. 21.
    Doebley JF, Gaut BS, Smith BD. 2006.. The molecular genetics of crop domestication. . Cell 127::130921
    [Crossref] [Google Scholar]
  22. 22.
    Dong S, Zhou S. 2022.. Potato late blight caused by Phytophthora infestans: from molecular interactions to integrated management strategies. . J. Integr. Agric. 21::345666
    [Crossref] [Google Scholar]
  23. 23.
    Dorweiler J, Stec A, Kermicle J, Doebley J. 1993.. Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. . Science 262::23335
    [Crossref] [Google Scholar]
  24. 24.
    Duvick DN. 2001.. Biotechnology in the 1930s: the development of hybrid maize. . Nat. Rev. Genet. 2::6974
    [Crossref] [Google Scholar]
  25. 25.
    Eeckhaut TGR, Werbrouck SPO, Leus LWH, Van Bockstaele EJ, Debergh PC. 2004.. Chemically induced polyploidization in Spathiphyllum wallisii Regel through somatic embryogenesis. . Plant Cell Tissue Organ Cult. 78::24146
    [Crossref] [Google Scholar]
  26. 26.
    Ermakova M, Arrivault S, Giuliani R, Danila F, Alonso-Cantabrana H, et al. 2021.. Installation of C4 photosynthetic pathway enzymes in rice using a single construct. . Plant Biotechnol. J. 19::57588
    [Crossref] [Google Scholar]
  27. 27.
    Fawcett JA, Takeshima R, Kikuchi S, Yazaki E, Katsube-Tanaka T, et al. 2023.. Genome sequencing reveals the genetic architecture of heterostyly and domestication history of common buckwheat. . Nat. Plants 9::123651
    [Crossref] [Google Scholar]
  28. 28.
    Fernie AR, Yan J. 2019.. De novo domestication: an alternative route toward new crops for the future. . Mol. Plant 12::61531
    [Crossref] [Google Scholar]
  29. 29.
    Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, et al. 2000.. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. . Science 289::8588
    [Crossref] [Google Scholar]
  30. 30.
    Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D. 2004.. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. . Science 305::178689
    [Crossref] [Google Scholar]
  31. 31.
    Gao H, Jin M, Zheng X-M, Chen J, Yuan D, et al. 2014.. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. . PNAS 111::1633742
    [Crossref] [Google Scholar]
  32. 32.
    Gaut BS, Seymour DK, Liu Q, Zhou Y. 2018.. Demography and its effects on genomic variation in crop domestication. . Nat. Plants 4::51220
    [Crossref] [Google Scholar]
  33. 33.
    Green JM, Owen MD. 2011.. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. . J. Agric. Food Chem. 59::581929
    [Crossref] [Google Scholar]
  34. 34.
    Gu Z, Gong J, Zhu Z, Li Z, Feng Q, et al. 2023.. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. . Nat. Genet. 55::174556
    [Crossref] [Google Scholar]
  35. 35.
    Guo K, Yang J, Yu N, Luo L, Wang E. 2023.. Biological nitrogen fixation in cereal crops: progress, strategies, and perspectives. . Plant Commun. 4::100499
    [Crossref] [Google Scholar]
  36. 36.
    Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, et al. 2017.. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. . PNAS 114::E999910008
    [Crossref] [Google Scholar]
  37. 37.
    He Q, Tang S, Zhi H, Chen J, Zhang J, et al. 2023.. A graph-based genome and pan-genome variation of the model plant Setaria. . Nat. Genet. 55::123242
    [Crossref] [Google Scholar]
  38. 38.
    Hu H, Xiong L, Yang Y. 2005.. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. . Planta 222::10717
    [Crossref] [Google Scholar]
  39. 39.
    Huang X, Huang S, Han B, Li J. 2022.. The integrated genomics of crop domestication and breeding. . Cell 185::282839 Reviews advances in crop genomics and population genetics to summarize the current understanding of domestication.
    [Crossref] [Google Scholar]
  40. 40.
    Hufford MB, Berny Mier y Teran JC, Gepts P. 2019.. Crop biodiversity: an unfinished magnum opus of nature. . Annu. Rev. Plant Biol. 70::72751
    [Crossref] [Google Scholar]
  41. 41.
    Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, et al. 2021.. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. . Science 373::65562
    [Crossref] [Google Scholar]
  42. 42.
    Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C, et al. 2012.. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. . PNAS 109::E191321
    [Crossref] [Google Scholar]
  43. 43.
    Islam MK, Mummadi ST, Liu S, Wei H. 2023.. Regulation of regeneration in Arabidopsis thaliana. . aBIOTECH 4::33251
    [Crossref] [Google Scholar]
  44. 44.
    Jiao Y, Wang Y, Xue D, Wang J, Yan M, et al. 2010.. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. . Nat. Genet. 42::54144
    [Crossref] [Google Scholar]
  45. 45.
    Jin J, Huang W, Gao J-P, Yang J, Shi M, et al. 2008.. Genetic control of rice plant architecture under domestication. . Nat. Genet. 40::136569
    [Crossref] [Google Scholar]
  46. 46.
    Jin M, Shan Y, Peng Y, Wang W, Zhang H, et al. 2023.. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. . PNAS 120::e2306932120
    [Crossref] [Google Scholar]
  47. 47.
    Jurat-Fuentes JL, Heckel DG, Ferré J. 2021.. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. . Annu. Rev. Entomol. 66::12140
    [Crossref] [Google Scholar]
  48. 48.
    Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. 2019.. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. . Nature 565::9195
    [Crossref] [Google Scholar]
  49. 49.
    Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, et al. 2014.. Increasing homogeneity in global food supplies and the implications for food security. . PNAS 111::40016
    [Crossref] [Google Scholar]
  50. 50.
    Kim Y-J, Zhang D. 2018.. Molecular control of male fertility for crop hybrid breeding. . Trends Plant Sci. 23::5365
    [Crossref] [Google Scholar]
  51. 51.
    Kloosterman B, Abelenda JA, Gomez MdMC, Oortwijn M, de Boer JM, et al. 2013.. Naturally occurring allele diversity allows potato cultivation in northern latitudes. . Nature 495::24650
    [Crossref] [Google Scholar]
  52. 52.
    Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, et al. 2007.. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. . PNAS 104::142429
    [Crossref] [Google Scholar]
  53. 53.
    Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, et al. 2006.. An SNP caused loss of seed shattering during rice domestication. . Science 312::139296
    [Crossref] [Google Scholar]
  54. 54.
    Kovach MJ, Sweeney MT, McCouch SR. 2007.. New insights into the history of rice domestication. . Trends Genet. 23::57887
    [Crossref] [Google Scholar]
  55. 55.
    Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, et al. 2022.. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. . Science 378::107985
    [Crossref] [Google Scholar]
  56. 56.
    Krug AS, Drummond EBM, Van Tassel DL, Warschefsky EJ. 2023.. The next era of crop domestication starts now. . PNAS 120::e2205769120 Highlights the role of a more diverse and sustainable agricultural ecosystem in the next era of crop domestication.
    [Crossref] [Google Scholar]
  57. 57.
    Landis JB, Guercio AM, Brown KE, Fiscus CJ, Morrell PL, Koenig D. 2024.. Natural selection drives emergent genetic homogeneity in a century-scale experiment with barley. . Science 385::eadl0038
    [Crossref] [Google Scholar]
  58. 58.
    Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, et al. 2018.. Rapid improvement of domestication traits in an orphan crop by genome editing. . Nat. Plants 4::76670
    [Crossref] [Google Scholar]
  59. 59.
    Lenser T, Theißen G. 2013.. Molecular mechanisms involved in convergent crop domestication. . Trends Plant Sci. 18::70414
    [Crossref] [Google Scholar]
  60. 60.
    Li B, Sun C, Li J, Gao C. 2024.. Targeted genome-modification tools and their advanced applications in crop breeding. . Nat. Rev. Genet. 25::60322 Outlines the principles, progress, and applications of precision genome editing in crop breeding.
    [Crossref] [Google Scholar]
  61. 61.
    Li C, Zhou A, Sang T. 2006.. Rice domestication by reducing shattering. . Science 311::193639
    [Crossref] [Google Scholar]
  62. 62.
    Li H, Yang X, Shang Y, Zhang Z, Huang S. 2023.. Vegetable biology and breeding in the genomics era. . Sci. China Life Sci. 66::22650
    [Crossref] [Google Scholar]
  63. 63.
    Li J, Martin C, Fernie A. 2024.. Biofortification's contribution to mitigating micronutrient deficiencies. . Nat. Food 5::1927
    [Crossref] [Google Scholar]
  64. 64.
    Li N, He Q, Wang J, Wang B, Zhao J, et al. 2023.. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. . Nat. Genet. 55::85260
    [Crossref] [Google Scholar]
  65. 65.
    Li S, Li P, Li X, Wen N, Wang Y, et al. 2023.. In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues. . aBIOTECH 4::27790
    [Crossref] [Google Scholar]
  66. 66.
    Li T, Yang X, Yu Y, Si X, Zhai X, et al. 2018.. Domestication of wild tomato is accelerated by genome editing. . Nat. Biotechnol. 36::116063
    [Crossref] [Google Scholar]
  67. 67.
    Lin T, Xu X, Ruan J, Liu S, Wu S, et al. 2017.. Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis. . Natl. Sci. Rev. 5::7887
    [Crossref] [Google Scholar]
  68. 68.
    Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, et al. 2012.. Parallel domestication of the Shattering1 genes in cereals. . Nat. Genet. 44::72024
    [Crossref] [Google Scholar]
  69. 69.
    Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, et al. 2008.. The making of a compound inflorescence in tomato and related nightshades. . PLOS Biol. 6::e288
    [Crossref] [Google Scholar]
  70. 70.
    Liu C, Li X, Meng D, Zhong Y, Chen C, et al. 2017.. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. . Mol. Plant 10::52022
    [Crossref] [Google Scholar]
  71. 71.
    Liu J, Chen J, Zheng X, Wu F, Lin Q, et al. 2017.. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. . Nat. Plants 3::17043
    [Crossref] [Google Scholar]
  72. 72.
    Luo J, Liu H, Zhou T, Gu B, Huang X, et al. 2013.. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. . Plant Cell 25::336076
    [Crossref] [Google Scholar]
  73. 73.
    Ma L, Zhang C, Zhang B, Tang F, Li F, et al. 2021.. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. . Nat. Commun. 12::4142
    [Crossref] [Google Scholar]
  74. 74.
    Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M. 2011.. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. . Process Biochem. 46::2334
    [Crossref] [Google Scholar]
  75. 75.
    Mao H, Sun S, Yao J, Wang C, Yu S, et al. 2010.. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. . PNAS 107::1957984
    [Crossref] [Google Scholar]
  76. 76.
    Meyer RS, DuVal AE, Jensen HR. 2012.. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. . New Phytol. 196::2948
    [Crossref] [Google Scholar]
  77. 77.
    Muños S, Ranc N, Botton E, Bérard A, Rolland S, et al. 2011.. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. . Plant Physiol. 156::224454
    [Crossref] [Google Scholar]
  78. 78.
    Ng PC, Henikoff S. 2003.. Sift: Predicting amino acid changes that affect protein function. . Nucleic Acids Res. 31::381214
    [Crossref] [Google Scholar]
  79. 79.
    Nogueira M, Enfissi EMA, Martínez Valenzuela ME, Menard GN, Driller RL, et al. 2017.. Engineering of tomato for the sustainable production of ketocarotenoids and its evaluation in aquaculture feed. . PNAS 114::1087681
    [Crossref] [Google Scholar]
  80. 80.
    Oakley JC, Sultmanis S, Stinson CR, Sage TL, Sage RF. 2014.. Comparative studies of C3 and C4Atriplex hybrids in the genomics era: physiological assessments. . J. Exp. Bot. 65::363747
    [Crossref] [Google Scholar]
  81. 81.
    Paluchowska P, Śliwka J, Yin Z. 2022.. Late blight resistance genes in potato breeding. . Planta 255::127
    [Crossref] [Google Scholar]
  82. 82.
    Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, et al. 2014.. Genome interplay in the grain transcriptome of hexaploid bread wheat. . Science 345::1250091
    [Crossref] [Google Scholar]
  83. 83.
    Pisias MT, Bakala HS, McAlvay AC, Mabry ME, Birchler JA, et al. 2022.. Prospects of feral crop de novo redomestication. . Plant Cell Physiol. 63::164153
    [Crossref] [Google Scholar]
  84. 84.
    Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, et al. 1998.. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. . Development 125::197989
    [Crossref] [Google Scholar]
  85. 85.
    Poncet V, Martel E, Allouis S, Devos K, Lamy F, et al. 2002.. Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. . Theor. Appl. Genet. 104::96575
    [Crossref] [Google Scholar]
  86. 86.
    Purugganan MD. 2019.. Evolutionary insights into the nature of plant domestication. . Curr. Biol. 29::R70514
    [Crossref] [Google Scholar]
  87. 87.
    Qu Y, Fernie AR, Liu J, Yan J. 2024.. Doubled haploid technology and synthetic apomixis: recent advances and applications in future crop breeding. . Mol. Plant 17::100518
    [Crossref] [Google Scholar]
  88. 88.
    Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, et al. 2011.. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. . Nat. Genet. 43::16972
    [Crossref] [Google Scholar]
  89. 89.
    Ravi M, Chan SW. 2010.. Haploid plants produced by centromere-mediated genome elimination. . Nature 464::61518
    [Crossref] [Google Scholar]
  90. 90.
    Romeis J, Naranjo SE, Meissle M, Shelton AM. 2019.. Genetically engineered crops help support conservation biological control. . Biol. Control 130::13654
    [Crossref] [Google Scholar]
  91. 91.
    Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. 2000.. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. . PNAS 97::111027
    [Crossref] [Google Scholar]
  92. 92.
    Rönspies M, Dorn A, Schindele P, Puchta H. 2021.. CRISPR–Cas-mediated chromosome engineering for crop improvement and synthetic biology. . Nat. Plants 7::56673
    [Crossref] [Google Scholar]
  93. 93.
    Schuler ML, Mantegazza O, Weber AP. 2016.. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. . Plant J. 87::5165
    [Crossref] [Google Scholar]
  94. 94.
    Shull GH. 1948.. What is “heterosis”?. Genetics 33::43946
    [Crossref] [Google Scholar]
  95. 95.
    Sigmon B, Vollbrecht E. 2010.. Evidence of selection at the ramosa1 locus during maize domestication. . Mol. Ecol. 19::1296311
    [Crossref] [Google Scholar]
  96. 96.
    Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, et al. 2006.. Molecular characterization of the major wheat domestication gene Q. . Genetics 172::54755
    [Crossref] [Google Scholar]
  97. 97.
    Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, et al. 2017.. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. . Nat. Genet. 49::16268
    [Crossref] [Google Scholar]
  98. 98.
    Stetter MG, Müller T, Schmid KJ. 2017.. Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus). . Mol. Ecol. 26::87186
    [Crossref] [Google Scholar]
  99. 99.
    Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, et al. 2010.. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. . PNAS 107::579297
    [Crossref] [Google Scholar]
  100. 100.
    Sun H, Jiao W-B, Krause K, Campoy JA, Goel M, et al. 2022.. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. . Nat. Genet. 54::34248
    [Crossref] [Google Scholar]
  101. 101.
    Taagen E, Bogdanove AJ, Sorrells ME. 2020.. Counting on crossovers: controlled recombination for plant breeding. . Trends Plant Sci. 25::45565
    [Crossref] [Google Scholar]
  102. 102.
    Tabashnik BE, Brévault T, Carrière Y. 2013.. Insect resistance to Bt crops: lessons from the first billion acres. . Nat. Biotechnol. 31::51021
    [Crossref] [Google Scholar]
  103. 103.
    Tabashnik BE, Carrière Y, Wu Y, Fabrick JA. 2023.. Global perspectives on field-evolved resistance to transgenic Bt crops: a special collection. . J. Econ. Entomol. 116::26974
    [Crossref] [Google Scholar]
  104. 104.
    Tabashnik BE, Liesner LR, Ellsworth PC, Unnithan GC, Fabrick JA, et al. 2021.. Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. . PNAS 118::e2019115118
    [Crossref] [Google Scholar]
  105. 105.
    Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. 2019.. Benefits and limitations of genome-wide association studies. . Nat. Rev. Genet. 20::46784
    [Crossref] [Google Scholar]
  106. 106.
    Tang D, Jia Y, Zhang J, Li H, Cheng L, et al. 2022.. Genome evolution and diversity of wild and cultivated potatoes. . Nature 606::53541
    [Crossref] [Google Scholar]
  107. 107.
    Tanno K-i, Willcox G. 2006.. How fast was wild wheat domesticated?. Science 311::1886
    [Crossref] [Google Scholar]
  108. 108.
    Tirnaz S, Zandberg J, Thomas WJW, Marsh J, Edwards D, Batley J. 2022.. Application of crop wild relatives in modern breeding: an overview of resources, experimental and computational methodologies. . Front. Plant Sci. 13::1008904
    [Crossref] [Google Scholar]
  109. 109.
    Touchell DH, Palmer IE, Ranney TG. 2020.. In vitro ploidy manipulation for crop improvement. . Front. Plant Sci. 11::722
    [Crossref] [Google Scholar]
  110. 110.
    Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. 2020.. Polyploidy: an evolutionary and ecological force in stressful times. . Plant Cell 33::1126
    [Crossref] [Google Scholar]
  111. 111.
    van Lieshout N, van der Burgt A, de Vries ME, Ter Maat M, Eickholt D, et al. 2020.. Solyntus, the new highly contiguous reference genome for potato (Solanum tuberosum). . G3 10::348995
    [Crossref] [Google Scholar]
  112. 112.
    VanBuren R, Man Wai C, Wang X, Pardo J, Yocca AE, et al. 2020.. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. . Nat. Commun. 11::884
    [Crossref] [Google Scholar]
  113. 113.
    Wallace JG, Rodgers-Melnick E, Buckler ES. 2018.. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. . Annu. Rev. Genet. 52::42144
    [Crossref] [Google Scholar]
  114. 114.
    Wang C, Liu Q, Shen Y, Hua Y, Wang J, et al. 2019.. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. . Nat. Biotechnol. 37::28386
    [Crossref] [Google Scholar]
  115. 115.
    Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, et al. 2005.. The origin of the naked grains of maize. . Nature 436::71419
    [Crossref] [Google Scholar]
  116. 116.
    Wang L, Huang Y, Liu Z, He J, Jiang X, et al. 2021.. Somatic variations led to the selection of acidic and acidless orange cultivars. . Nat. Plants 7::95465
    [Crossref] [Google Scholar]
  117. 117.
    Wang M, Li W, Fang C, Xu F, Liu Y, et al. 2018.. Parallel selection on a dormancy gene during domestication of crops from multiple families. . Nat. Genet. 50::143541
    [Crossref] [Google Scholar]
  118. 118.
    Wang N, Cao S, Liu Z, Xiao H, Hu J, et al. 2023.. Genomic conservation of crop wild relatives: a case study of citrus. . PLOS Genet. 19::e1010811
    [Crossref] [Google Scholar]
  119. 119.
    Wang N, Gent JI, Dawe RK. 2021.. Haploid induction by a maize cenh3 null mutant. . Sci. Adv. 7::eabe2299
    [Crossref] [Google Scholar]
  120. 120.
    Wang Y, Fuentes RR, van Rengs WMJ, Effgen S, Zaidan MWAM, et al. 2024.. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. . Nat. Genet. 56::107579 The authors used the mitosis instead of meiosis system to achieve polyploid genome design in tomato.
    [Crossref] [Google Scholar]
  121. 121.
    Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, et al. 1995.. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. . Plant J. 7::61322
    [Crossref] [Google Scholar]
  122. 122.
    Wei X, Chen M, Zhang Q, Gong J, Liu J, et al. 2024.. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. . Science 385::eadm8762
    [Crossref] [Google Scholar]
  123. 123.
    Wu Y, Li D, Hu Y, Li H, Ramstein GP, et al. 2023.. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. . Cell 186::231328.e15
    [Crossref] [Google Scholar]
  124. 124.
    Xiao H, Liu Z, Wang N, Long Q, Cao S, et al. 2023.. Adaptive and maladaptive introgression in grapevine domestication. . PNAS 120::e2222041120
    [Crossref] [Google Scholar]
  125. 125.
    Xie L, Gong X, Yang K, Huang Y, Zhang S, et al. 2024.. Technology-enabled great leap in deciphering plant genomes. . Nat. Plants 10::55166
    [Crossref] [Google Scholar]
  126. 126.
    Xiong X, Gou J, Liao Q, Li Y, Zhou Q, et al. 2021.. The Taxus genome provides insights into paclitaxel biosynthesis. . Nat. Plants 7::102636
    [Crossref] [Google Scholar]
  127. 127.
    Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu Y-H, et al. 2015.. A cascade of arabinosyltransferases controls shoot meristem size in tomato. . Nat. Genet. 47::78492
    [Crossref] [Google Scholar]
  128. 128.
    Xu J, Shen Y, Zheng Y, Smith G, Sun XS, et al. 2023.. Duckweed (Lemnaceae) for potentially nutritious human food: a review. . Food Rev. Int. 39::362034
    [Crossref] [Google Scholar]
  129. 129.
    Xu R, Liu X, Li J, Qin R, Wei P. 2021.. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. . Nat. Plants 7::88892
    [Crossref] [Google Scholar]
  130. 130.
    Xue W, Xing Y, Weng X, Zhao Y, Tang W, et al. 2008.. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. . Nat. Genet. 40::76167
    [Crossref] [Google Scholar]
  131. 131.
    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, et al. 2004.. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. . Science 303::164044
    [Crossref] [Google Scholar]
  132. 132.
    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. 2003.. Positional cloning of the wheat vernalization gene VRN1. . PNAS 100::626368
    [Crossref] [Google Scholar]
  133. 133.
    Yang J, Lan L, Jin Y, Yu N, Wang D, Wang E. 2022.. Mechanisms underlying legume–rhizobium symbioses. . J. Integr. Plant Biol. 64::24467
    [Crossref] [Google Scholar]
  134. 134.
    Yang N, Wang Y, Liu X, Jin M, Vallebueno-Estrada M, et al. 2023.. Two teosintes made modern maize. . Science 382::eadg8940
    [Crossref] [Google Scholar]
  135. 135.
    Yang W, Zhai H, Wu F, Deng L, Chao Y, et al. 2024.. Peptide REF1 is a local wound signal promoting plant regeneration. . Cell 187::P302438.E14
    [Crossref] [Google Scholar]
  136. 136.
    Ye C-Y, Fan L. 2021.. Orphan crops and their wild relatives in the genomic era. . Mol. Plant 14::2739
    [Crossref] [Google Scholar]
  137. 137.
    Ye M, Peng Z, Tang D, Yang Z, Li D, et al. 2018.. Generation of self-compatible diploid potato by knockout of S-RNase. . Nat. Plants 4::65154
    [Crossref] [Google Scholar]
  138. 138.
    Yu H, Lin T, Meng X, Du H, Zhang J, et al. 2021.. A route to de novo domestication of wild allotetraploid rice. . Cell 184::115670.e14 One of the pioneering studies on de novo domestication began with allotetraploid wild rice.
    [Crossref] [Google Scholar]
  139. 139.
    Zhang C, Wang P, Tang D, Yang Z, Lu F, et al. 2019.. The genetic basis of inbreeding depression in potato. . Nat. Genet. 51::37478
    [Crossref] [Google Scholar]
  140. 140.
    Zhang C, Yang Z, Tang D, Zhu Y, Wang P, et al. 2021.. Genome design of hybrid potato. . Cell 184::387383.e12 An important innovation in agriculture, shifting potato breeding from a slow, nonaccumulative mode to a rapid, iterative one.
    [Crossref] [Google Scholar]
  141. 141.
    Zhang D, Li YY, Zhao X, Zhang C, Liu DK, et al. 2024.. Molecular insights into self-incompatibility systems: from evolution to breeding. . Plant Commun. 5::100719
    [Crossref] [Google Scholar]
  142. 142.
    Zhang J, Yin J, Luo J, Tang D, Zhu X, et al. 2022.. Construction of homozygous diploid potato through maternal haploid induction. . aBIOTECH 3::16368
    [Crossref] [Google Scholar]
  143. 143.
    Zhang S, Huang X, Han B. 2021.. Understanding the genetic basis of rice heterosis: advances and prospects. . Crop J. 9::68892
    [Crossref] [Google Scholar]
  144. 144.
    Zhang Y, Zhou J, Xu P, Li J, Deng X, et al. 2022.. A genetic resource for rice improvement: introgression library of agronomic traits for all AA genome Oryza species. . Front. Plant Sci. 13::856514
    [Crossref] [Google Scholar]
  145. 145.
    Zheng X, Wei F, Cheng C, Qian Q. 2024.. A historical review of hybrid rice breeding. . J. Integr. Plant Biol. 66::53245
    [Crossref] [Google Scholar]
  146. 146.
    Zhong Y, Chen B, Li M, Wang D, Jiao Y, et al. 2020.. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. . Nat. Plants 6::46672
    [Crossref] [Google Scholar]
  147. 147.
    Zhong Y, Chen B, Wang D, Zhu X, Li M, et al. 2022.. In vivo maternal haploid induction in tomato. . Plant Biotechnol. J. 20::25052
    [Crossref] [Google Scholar]
  148. 148.
    Zhou Y, Minio A, Massonnet M, Solares E, Lv Y, et al. 2019.. The population genetics of structural variants in grapevine domestication. . Nat. Plants 5::96579
    [Crossref] [Google Scholar]
  149. 149.
    Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, et al. 2022.. Graph pangenome captures missing heritability and empowers tomato breeding. . Nature 606::52734
    [Crossref] [Google Scholar]
  150. 150.
    Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, et al. 2018.. De novo domestication of wild tomato using genome editing. . Nat. Biotechnol. 36::121116
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083123-064726
Loading
/content/journals/10.1146/annurev-arplant-083123-064726
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error