1932

Abstract

Histones are far more than just the basic units of chromatin. Posttranslational modifications of histone tails have emerged as important regulatory mechanisms for diverse biological processes, including genome organization, gene expression, transposable element suppression, development, and environmental responses. This field is expanding rapidly with the development of new technologies and growing interest from both the basic and translational research communities. The past two decades have witnessed tremendous progress in our understanding of the complex, multilayered regulation and actions of histone modifications in plants. This review summarizes the characteristics, localization, and molecular functions of histone modifications with an emphasis on the well-studied marks in . We further discuss their functions in developmental transitions and environmental responses as well as their contributions to epigenomic diversity and plasticity. By highlighting the functions and fundamental mechanisms of epigenetic modifications in model plants, this review underscores the potential to harness epigenetic regulation for agricultural improvement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083123-070919
2025-05-20
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083123-070919.html?itemId=/content/journals/10.1146/annurev-arplant-083123-070919&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aichinger E, Villar CBR, Mambro RD, Sabatini S, Köhler C. 2011.. The CHD3 chromatin remodeler PICKLE and Polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. . Plant Cell 23:(3):104760
    [Crossref] [Google Scholar]
  2. 2.
    Airoldi CA, Rovere FD, Falasca G, Marino G, Kooiker M, et al. 2009.. The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. . Plant Physiol. 152:(3):132034
    [Crossref] [Google Scholar]
  3. 3.
    An Z, Yin L, Liu Y, Peng M, Shen W, Dong A. 2020.. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. . Plant J. 103:(3):101024
    [Crossref] [Google Scholar]
  4. 4.
    Bergamin E, Sarvan S, Malette J, Eram MS, Yeung S, et al. 2017.. Molecular basis for the methylation specificity of ATXR5 for histone H3. . Nucleic Acids Res. 45:(11):637587
    [Crossref] [Google Scholar]
  5. 5.
    Berr A, Shafiq S, Pinon V, Dong A, Shen W. 2015.. The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway. . Plant J. 81:(2):31628
    [Crossref] [Google Scholar]
  6. 6.
    Berry S, Rosa S, Howard M, Bühler M, Dean C. 2017.. Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression. . Genes Dev. 31:(21):211520
    [Crossref] [Google Scholar]
  7. 7.
    Bieluszewski T, Xiao J, Yang Y, Wagner D. 2021.. PRC2 activity, recruitment, and silencing: a comparative perspective. . Trends Plant Sci. 26:(11):118698
    [Crossref] [Google Scholar]
  8. 8.
    Bloomer RH, Hutchison CE, Bäurle I, Walker J, Fang X, et al. 2020.. The Arabidopsis epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2. . PNAS 117:(28):1666066
    [Crossref] [Google Scholar]
  9. 9.
    Bollier N, Sicard A, Leblond J, Latrasse D, Gonzalez N, et al. 2018.. At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and tomato. . Plant Cell 30:(1):83100
    [Crossref] [Google Scholar]
  10. 10.
    Boycheva I, Vassileva V, Iantcheva A. 2014.. Histone acetyltransferases in plant development and plasticity. . Curr. Genom. 15:(1):2837
    [Crossref] [Google Scholar]
  11. 11.
    Bu Z, Yu Y, Li Z, Liu Y, Jiang W, et al. 2014.. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. . PLOS Genet. 10:(9):e1004617
    [Crossref] [Google Scholar]
  12. 12.
    Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, et al. 2008.. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. . Dev. Biol. 315:(2):35568
    [Crossref] [Google Scholar]
  13. 13.
    Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ. 1997.. Fertilization-independent seed development in Arabidopsis thaliana. . PNAS 94:(8):422328
    [Crossref] [Google Scholar]
  14. 14.
    Chen K, Du K, Shi Y, Yin L, Shen W-H, et al. 2021.. H3K36 methyltransferase SDG708 enhances drought tolerance by promoting abscisic acid biosynthesis in rice. . New Phytol. 230:(5):196784
    [Crossref] [Google Scholar]
  15. 15.
    Chen L-Q, Luo J-H, Cui Z-H, Xue M, Wang L, et al. 2017.. ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development. . Plant Physiol. 174:(3):1795806
    [Crossref] [Google Scholar]
  16. 16.
    Chen L-T, Luo M, Wang Y-Y, Wu K. 2010.. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. . J. Exp. Bot. 61:(12):334553
    [Crossref] [Google Scholar]
  17. 17.
    Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. 2020.. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. . New Phytol. 227:(3):84056
    [Crossref] [Google Scholar]
  18. 18.
    Chen X, Ding AB, Zhong X. 2020.. Functions and mechanisms of plant histone deacetylases. . Sci. China Life Sci. 63:(2):20616
    [Crossref] [Google Scholar]
  19. 19.
    Chen X, Lu L, Mayer KS, Scalf M, Qian S, et al. 2016.. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. . eLife 5::e17214
    [Crossref] [Google Scholar]
  20. 20.
    Choi K, Kim J, Hwang H-J, Kim S, Park C, et al. 2011.. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. . Plant Cell 23:(1):289303
    [Crossref] [Google Scholar]
  21. 21.
    Chung Y, Zhu Y, Wu M-F, Simonini S, Kuhn A, et al. 2019.. Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. . Nat. Commun. 10:(1):886
    [Crossref] [Google Scholar]
  22. 22.
    Coleman-Derr D, Zilberman D. 2012.. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. . PlOS Genet. 8:(10):e1002988
    [Crossref] [Google Scholar]
  23. 23.
    Coursey T, Milutinovic M, Regedanz E, Brkljacic J, Bisaro DM. 2018.. Arabidopsis histone reader EMSY-LIKE 1 binds H3K36 and suppresses geminivirus infection. . J. Virol. 92:(16):
    [Crossref] [Google Scholar]
  24. 24.
    Crevillén P, Yang H, Cui X, Greeff C, Trick M, et al. 2014.. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. . Nature 515:(7528):58790
    [Crossref] [Google Scholar]
  25. 25.
    Cui X, Lu F, Qiu Q, Zhou B, Gu L, et al. 2016.. REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. . Nat. Genet. 48:(6):69499
    [Crossref] [Google Scholar]
  26. 26.
    Cui X, Zheng Y, Lu Y, Issakidis-Bourguet E, Zhou D-X. 2021.. Metabolic control of histone demethylase activity involved in plant response to high temperature. . Plant Physiol. 185:(4):kiab020
    [Google Scholar]
  27. 27.
    Davarinejad H, Joshi M, Ait-Hamou N, Munro K, Couture J-F. 2018.. ATXR5/6 forms alternative protein complexes with PCNA and the nucleosome core particle. . J. Mol. Biol. 431:(7):137079
    [Crossref] [Google Scholar]
  28. 28.
    Ding Y, Avramova Z, Fromm M. 2011.. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. . Plant J. 66:(5):73544
    [Crossref] [Google Scholar]
  29. 29.
    Ding Y, Fromm M, Avramova Z. 2012.. Multiple exposures to drought “train” transcriptional responses in Arabidopsis. . Nat. Commun. 3:(1):740
    [Crossref] [Google Scholar]
  30. 30.
    Ding Y, Lapko H, Ndamukong I, Xia Y, Al-Abdallat A, et al. 2009.. The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM, and the response to drought; a view from the other end of the pathway. . Plant Signal. Behav. 4:(11):104958
    [Crossref] [Google Scholar]
  31. 31.
    Dong J, LeBlanc C, Poulet A, Mermaz B, Villarino G, et al. 2020.. H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. . Plant Cell 33:(4):koaa027 Suggested that H3.1K27me1 helps maintain PRC2-associated H3K27me3 across mitosis by serving as substrate for PRC2.
    [Google Scholar]
  32. 32.
    Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, et al. 2012.. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. . Cell 151:(1):16780
    [Crossref] [Google Scholar]
  33. 33.
    Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS. 2007.. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. . Plant J. 52:(4):61526
    [Crossref] [Google Scholar]
  34. 34.
    Fang H, Liu X, Thorn G, Duan J, Tian L. 2014.. Expression analysis of histone acetyltransferases in rice under drought stress. . Biochem. Biophys. Res. Commun. 443:(2):4005
    [Crossref] [Google Scholar]
  35. 35.
    Fang J, Jiang J, Leichter SM, Liu J, Biswal M, et al. 2022.. Mechanistic basis for maintenance of CHG DNA methylation in plants. . Nat. Commun. 13:(1):3877 Showed bivalent readout of H3K9me2 and H3K18ac by CMT3, connecting HDA6 and non-CG methylation.
    [Crossref] [Google Scholar]
  36. 36.
    Feng C, Cai X-W, Su Y-N, Li L, Chen S, He X-J. 2021.. Arabidopsis RPD3-like histone deacetylases form multiple complexes involved in stress response. . J. Genet. Genom. 48:(5):36983
    [Crossref] [Google Scholar]
  37. 37.
    Feng W, Hale CJ, Over RS, Cokus SJ, Jacobsen SE, Michaels SD. 2017.. Large-scale heterochromatin remodeling linked to overreplication-associated DNA damage. . PNAS 114:(2):40611
    [Crossref] [Google Scholar]
  38. 38.
    Feng XJ, Li JR, Qi SL, Lin QF, Jin JB, Hua XJ. 2016.. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. . PNAS 113:(51):E833543
    [Google Scholar]
  39. 39.
    Fiorucci A-S, Bourbousse C, Concia L, Rougée M, Deton-Cabanillas A-F, et al. 2019.. Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. . Genome Biol. 20:(1):100
    [Crossref] [Google Scholar]
  40. 40.
    Fong PM, Tian L, Chen ZJ. 2006.. Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. . Cell Res. 16:(5):47988
    [Crossref] [Google Scholar]
  41. 41.
    Foroozani M, Holder DH, Deal RB. 2022.. Histone variants in the specialization of plant chromatin. . Annu. Rev. Plant Biol. 73::14972
    [Crossref] [Google Scholar]
  42. 42.
    Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, et al. 2021.. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. . Nat. Commun. 12::3426
    [Crossref] [Google Scholar]
  43. 43.
    Fu Y, Ma H, Chen S, Gu T, Gong J. 2017.. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. . J. Exp. Bot. 69:(3):57988
    [Crossref] [Google Scholar]
  44. 44.
    Fu Y-L, Zhang G-B, Lv X-F, Guan Y, Yi H-Y, Gong J-M. 2013.. Arabidopsis histone methylase CAU1/PRMT5/SKB1 acts as an epigenetic suppressor of the calcium signaling gene CAS to mediate stomatal closure in response to extracellular calcium. . Plant Cell 25:(8):287891
    [Crossref] [Google Scholar]
  45. 45.
    Gan E-S, Xu Y, Wong J-Y, Goh JG, Sun B, et al. 2014.. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. . Nat. Commun. 5::5098
    [Crossref] [Google Scholar]
  46. 46.
    Gao Z, Li Y, Ou Y, Yin M, Chen T, et al. 2023.. A pair of readers of bivalent chromatin mediate formation of Polycomb-based “memory of cold” in plants. . Mol. Cell 83:(7):110924 Described the function of EBS and SHL in the PRC2-mediated silencing of FLC in vernalization.
    [Crossref] [Google Scholar]
  47. 47.
    Gendall AR, Levy YY, Wilson A, Dean C. 2001.. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. . Cell 107:(4):52535
    [Crossref] [Google Scholar]
  48. 48.
    Greb T, Mylne JS, Crevillen P, Geraldo N, An H, et al. 2007.. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. . Curr. Biol. 17:(1):7378
    [Crossref] [Google Scholar]
  49. 49.
    Guo L, Yu Y, Law JA, Zhang X. 2010.. SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. . PNAS 107:(43):1855762
    [Crossref] [Google Scholar]
  50. 50.
    Guo Z, Li Z, Liu Y, An Z, Peng M, et al. 2020.. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. . New Phytol. 227:(5):145366
    [Crossref] [Google Scholar]
  51. 51.
    Han Z, Yu H, Zhao Z, Hunter D, Luo X, et al. 2016.. AtHD2D gene plays a role in plant growth, development, and response to abiotic stresses in Arabidopsis thaliana. . Front. Plant Sci. 7::310
    [Google Scholar]
  52. 52.
    He K, Mei H, Zhu J, Qiu Q, Cao X, Deng X. 2021.. The histone H3K27 demethylase REF6/JMJ12 promotes thermomorphogenesis in Arabidopsis. . Natl. Sci. Rev. 9:(5):nwab213
    [Crossref] [Google Scholar]
  53. 53.
    Hisanaga T, Romani F, Wu S, Kowar T, Wu Y, et al. 2023.. The Polycomb repressive complex 2 deposits H3K27me3 and represses transposable elements in a broad range of eukaryotes. . Curr. Biol. 33:(20):436780.e9
    [Crossref] [Google Scholar]
  54. 54.
    Hu Z, Song N, Zheng M, Liu X, Liu Z, et al. 2015.. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. . Plant J. 84:(6):117891
    [Crossref] [Google Scholar]
  55. 55.
    Hung F-Y, Chen C, Yen M-R, Hsieh J-WA, Li C, et al. 2020.. The expression of long non-coding RNAs is associated with H3Ac and H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex in Arabidopsis. . NAR Genom. Bioinform. 2:(3):lqaa066
    [Crossref] [Google Scholar]
  56. 56.
    Hung F-Y, Feng Y-R, Hsin K-T, Shih Y-H, Chang C-H, et al. 2023.. Arabidopsis histone H3 lysine 9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to repress KNAT1 and KNAT2. . Commun. Biol. 6::219
    [Crossref] [Google Scholar]
  57. 57.
    Inagaki S, Miura-Kamio A, Nakamura Y, Lu F, Cui X, et al. 2010.. Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. . EMBO J. 29:(20):3496506
    [Crossref] [Google Scholar]
  58. 58.
    Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, et al. 2004.. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. . Chromosoma 112:(6):30815
    [Crossref] [Google Scholar]
  59. 59.
    Jacob Y, Bergamin E, Donoghue MTA, Mongeon V, LeBlanc C, et al. 2014.. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. . Science 343:(6176):124953
    [Crossref] [Google Scholar]
  60. 60.
    Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, et al. 2009.. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. . Nat. Struct. Mol. Biol. 16:(7):76368
    [Crossref] [Google Scholar]
  61. 61.
    Jacob Y, Stroud H, LeBlanc C, Feng S, Zhuo L, et al. 2010.. Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. . Nature 466:(7309):98791
    [Crossref] [Google Scholar]
  62. 62.
    Jiang D, Berger F. 2017.. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. . Science 357:(6356):114649
    [Crossref] [Google Scholar]
  63. 63.
    Jiang D, Gu X, He Y. 2009.. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. . Plant Cell 21:(6):173346
    [Crossref] [Google Scholar]
  64. 64.
    Jiang D, Yang W, He Y, Amasino RM. 2007.. Arabidopsis relatives of the human Lysine-Specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. . Plant Cell 19:(10):297587
    [Crossref] [Google Scholar]
  65. 65.
    Johnson LM, Law JA, Khattar A, Henderson IR, Jacobsen SE. 2008.. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. . PLOS Genet. 4:(11):e1000280
    [Crossref] [Google Scholar]
  66. 66.
    Kappel C, Friedrich T, Oberkofler V, Jiang L, Crawford T, et al. 2023.. Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis. . Genome Biol. 24:(1):129
    [Crossref] [Google Scholar]
  67. 67.
    Khan IU, Ali A, Khan HA, Baek D, Park J, et al. 2020.. PWR/HDA9/ABI4 complex epigenetically regulates ABA dependent drought stress tolerance in Arabidopsis. . Front. Plant Sci. 11::623
    [Crossref] [Google Scholar]
  68. 68.
    Kim J-M, To TK, Ishida J, Matsui A, Kimura H, Seki M. 2012.. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. . Plant Cell Physiol. 53:(5):84756
    [Crossref] [Google Scholar]
  69. 69.
    Kim J-M, To TK, Ishida J, Morosawa T, Kawashima M, et al. 2008.. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. . Plant Cell Physiol. 49:(10):158088
    [Crossref] [Google Scholar]
  70. 70.
    Kwon CS, Lee D, Choi G, Chung W. 2009.. Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. . Plant J. 60:(1):11221
    [Crossref] [Google Scholar]
  71. 71.
    Lämke J, Brzezinka K, Altmann S, Bäurle I. 2016.. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. . EMBO J. 35:(2):16275 Showed that heat stress transcriptional memory depends on H3K4 hypermethylation and HSFA2 binding during heat stress.
    [Crossref] [Google Scholar]
  72. 72.
    Lang J, Smetana O, Sanchez-Calderon L, Lincker F, Genestier J, et al. 2012.. Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. . New Phytol. 194:(2):35363
    [Crossref] [Google Scholar]
  73. 73.
    Law JA, Du J, Hale CJ, Feng S, Krajewski K, et al. 2013.. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. . Nature 498:(7454):38589
    [Crossref] [Google Scholar]
  74. 74.
    Lee HG, Seo PJ. 2019.. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. . Nat. Commun. 10:(1):1713
    [Crossref] [Google Scholar]
  75. 75.
    Lee WY, Lee D, Chung W, Kwon CS. 2009.. Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. . Plant J. 58:(3):51124
    [Crossref] [Google Scholar]
  76. 76.
    Leng X, Thomas Q, Rasmussen SH, Marquardt S. 2020.. A G(enomic)P(ositioning)S(ystem) for plant RNAPII transcription. . Trends Plant Sci. 25:(8):74464
    [Crossref] [Google Scholar]
  77. 77.
    Li S, Lin Y-CJ, Wang P, Zhang B, Li M, et al. 2018.. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. . Plant Cell 31:(3):66386
    [Crossref] [Google Scholar]
  78. 78.
    Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, et al. 2015.. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. . Genome Biol. 16:(1):79
    [Crossref] [Google Scholar]
  79. 79.
    Li Z, Fu X, Wang Y, Liu R, He Y. 2018.. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. . Nat. Genet. 50:(9):125461
    [Crossref] [Google Scholar]
  80. 80.
    Li Z, Jiang D, He Y. 2018.. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. . Nat. Plants 4:(10):83646
    [Crossref] [Google Scholar]
  81. 81.
    Li Z, Li B, Liu J, Guo Z, Liu Y, et al. 2016.. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis. . J. Integr. Plant Biol. 58:(12):95970
    [Crossref] [Google Scholar]
  82. 82.
    Liang X, Lei M, Li F, Yang X, Zhou M, et al. 2018.. Family-wide characterization of histone binding abilities of PHD domains of AL proteins in Arabidopsis thaliana. . Protein J. 37:(6):53138
    [Crossref] [Google Scholar]
  83. 83.
    Lim CJ, Park J, Shen M, Park HJ, Cheong MS, et al. 2020.. The histone-modifying complex PWR/HOS15/HD2C epigenetically regulates cold tolerance. . Plant Physiol. 184:(2):1097111
    [Crossref] [Google Scholar]
  84. 84.
    Liu C, Cheng J, Zhuang Y, Ye L, Li Z, et al. 2019.. Polycomb repressive complex 2 attenuates ABA-induced senescence in Arabidopsis. . Plant J. 97:(2):36877
    [Crossref] [Google Scholar]
  85. 85.
    Liu J, Feng L, Gu X, Deng X, Qiu Q, et al. 2019.. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. . Cell Res. 29:(5):37990
    [Crossref] [Google Scholar]
  86. 86.
    Liu N, Fromm M, Avramova Z. 2014.. H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana. . Mol. Plant 7:(3):50213
    [Crossref] [Google Scholar]
  87. 87.
    Liu X, Kim YJ, Müller R, Yumul RE, Liu C, et al. 2011.. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb group proteins. . Plant Cell 23:(10):365470
    [Crossref] [Google Scholar]
  88. 88.
    Liu Y, Liu K, Yin L, Yu Y, Qi J, et al. 2019.. H3K4me2 functions as a repressive epigenetic mark in plants. . Epigenet. Chromatin 12:(1):40
    [Crossref] [Google Scholar]
  89. 89.
    Liu Y, Zhang A, Yin H, Meng Q, Yu X, et al. 2018.. Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. . New Phytol. 217:(4):158297
    [Crossref] [Google Scholar]
  90. 90.
    Liu Z-W, Simmons CH, Zhong X. 2022.. Linking transcriptional silencing with chromatin remodeling, folding, and positioning in the nucleus. . Curr. Opin. Plant Biol. 69::102261
    [Crossref] [Google Scholar]
  91. 91.
    Lu L, Chen X, Qian S, Zhong X. 2018.. The plant-specific histone residue Phe41 is important for genome-wide H3.1 distribution. . Nat. Commun. 9::630
    [Crossref] [Google Scholar]
  92. 92.
    Ma S, Tang N, Li X, Xie Y, Xiang D, et al. 2019.. Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice. . Mol. Plant 12:(2):26377
    [Crossref] [Google Scholar]
  93. 93.
    Mateo-Bonmatí E, Esteve-Bruna D, Juan-Vicente L, Nadi R, Candela H, et al. 2018.. INCURVATA11 and CUPULIFORMIS2 are redundant genes that encode epigenetic machinery components in Arabidopsis. . Plant Cell 30:(7):1596616
    [Crossref] [Google Scholar]
  94. 94.
    Mathieu O, Probst AV, Paszkowski J. 2005.. Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. . EMBO J. 24:(15):278391
    [Crossref] [Google Scholar]
  95. 95.
    Mehdi S, Derkacheva M, Ramström M, Kralemann L, Bergquist J, Hennig L. 2015.. The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling. . Plant Cell 28:(1):4254
    [Crossref] [Google Scholar]
  96. 96.
    Merini W, Romero-Campero FJ, Gomez-Zambrano A, Zhou Y, Turck F, Calonje M. 2017.. The Arabidopsis Polycomb repressive complex 1 (PRC1) components AtBMI1A, B, and C impact gene networks throughout all stages of plant development. . Plant Physiol. 173:(1):62741
    [Crossref] [Google Scholar]
  97. 97.
    Mikulski P, Hohenstatt ML, Farrona S, Smaczniak C, Stahl Y, et al. 2019.. The chromatin-associated protein PWO1 interacts with plant nuclear lamin-like components to regulate nuclear size. . Plant Cell 31:(5):114154
    [Crossref] [Google Scholar]
  98. 98.
    Milutinovic M, Lindsey BE III, Wijeratne A, Hernandez JM, Grotewold N, et al. 2019.. Arabidopsis EMSY-like (EML) histone readers are necessary for post-fertilization seed development, but prevent fertilization-independent seed formation. . Plant Sci. 285::99109
    [Crossref] [Google Scholar]
  99. 99.
    Nie W-F, Lei M, Zhang M, Tang K, Huang H, et al. 2019.. Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis. . PNAS 116:(33):1664150
    [Crossref] [Google Scholar]
  100. 100.
    Niu Y, Bai J, Liu X, Zhang H, Bao J, et al. 2022.. HISTONE DEACETYLASE 9 transduces heat signal in plant cells. . PNAS 119:(45):e2206846119
    [Crossref] [Google Scholar]
  101. 101.
    Oberkofler V, Bäurle I. 2022.. Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory. . Plant Physiol. 189:(2):70314
    [Crossref] [Google Scholar]
  102. 102.
    Oh S, Park S, van Nocker S. 2008.. Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. . PLOS Genet. 4:(8):e1000077
    [Crossref] [Google Scholar]
  103. 103.
    Oliva R, Bazett-Jones DP, Locklear L, Dixon GH. 1990.. Histone hyperacetylation can induce unfolding of the nucleosome core particle. . Nucleic Acids Res. 18:(9):273947
    [Crossref] [Google Scholar]
  104. 104.
    Pajoro A, Severing E, Angenent GC, Immink RGH. 2017.. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. . Genome Biol. 18:(1):102
    [Crossref] [Google Scholar]
  105. 105.
    Peeters AJM, Vries HB, Hanhart CJ, Léon-Kloosterziel KM, Zeevaart JAD, Koornneef M. 2002.. Characterization of mutants with reduced seed dormancy at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. . Physiol. Plant. 115:(4):60412
    [Crossref] [Google Scholar]
  106. 106.
    Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, et al. 2015.. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. . Dev. Cell 33:(5):57688
    [Crossref] [Google Scholar]
  107. 107.
    Potok ME, Zhong Z, Picard CL, Liu Q, Do T, et al. 2022.. The role of ATXR6 expression in modulating genome stability and transposable element repression in Arabidopsis. . PNAS 119:(3):e2115570119
    [Crossref] [Google Scholar]
  108. 108.
    Pratx L, Wendering P, Kappel C, Nikoloski Z, Bäurle I. 2023.. Histone retention preserves epigenetic marks during heat stress-induced transcriptional memory in plants. . EMBO J. 42::e113595
    [Crossref] [Google Scholar]
  109. 109.
    Qian F, Zhao Q, Zhang T, Li Y, Su Y, et al. 2021.. A histone H3K27me3 reader cooperates with a family of PHD finger-containing proteins to regulate flowering time in Arabidopsis. . J. Integr. Plant Biol. 63:(4):787802
    [Crossref] [Google Scholar]
  110. 110.
    Qian S, Lv X, Scheid RN, Lu L, Yang Z, et al. 2018.. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL. . Nat. Commun. 9::2425
    [Crossref] [Google Scholar]
  111. 111.
    Qüesta JI, Song J, Geraldo N, An H, Dean C. 2016.. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. . Science 353:(6298):48588
    [Crossref] [Google Scholar]
  112. 112.
    Ramirez-Prado JS, Latrasse D, Rodriguez-Granados NY, Huang Y, Manza-Mianza D, et al. 2019.. The Polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity. . Plant J. 100:(6):111831
    [Crossref] [Google Scholar]
  113. 113.
    Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, et al. 2011.. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. . EMBO J. 30:(10):192838
    [Crossref] [Google Scholar]
  114. 114.
    Saharan K, Baral S, Shaikh NH, Vasudevan D. 2024.. Structure-function analyses reveal Arabidopsis thaliana HDA7 to be an inactive histone deacetylase. . Curr. Res. Struct. Biol. 7::100136
    [Crossref] [Google Scholar]
  115. 115.
    Saleh A, Alvarez-Venegas R, Yilmaz M, Le O, Hou G, et al. 2008.. The highly similar Arabidopsis homologs of Trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. . Plant Cell 20:(3):56879
    [Crossref] [Google Scholar]
  116. 116.
    Sani E, Herzyk P, Perrella G, Colot V, Amtmann A. 2013.. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. . Genome Biol. 14:(6):R59
    [Crossref] [Google Scholar]
  117. 117.
    Saze H, Shiraishi A, Miura A, Kakutani T. 2008.. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. . Science 319:(5862):46265
    [Crossref] [Google Scholar]
  118. 118.
    Scheid R, Chen J, Zhong X. 2021.. Biological role and mechanism of chromatin readers in plants. . Curr. Opin. Plant Biol. 61::102008
    [Crossref] [Google Scholar]
  119. 119.
    Shang J-Y, Lu Y-J, Cai X-W, Su Y-N, Feng C, et al. 2021.. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. . Plant Cell 33:(10):325071 Showed that JMJ24/JMJ26/JMJ28 might function together with COMPASS-like complexes to mediate transcriptional activation.
    [Crossref] [Google Scholar]
  120. 120.
    Shen Y, Chi Y, Lu S, Lu H, Shi L. 2022.. Involvement of JMJ15 in the dynamic change of genome-wide H3K4me3 in response to salt stress. . Front. Plant Sci. 13::1009723
    [Crossref] [Google Scholar]
  121. 121.
    Shen Y, Lei T, Cui X, Liu X, Zhou S, et al. 2019.. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. . Plant J. 100:(5):9911006
    [Crossref] [Google Scholar]
  122. 122.
    Shim S, Lee HG, Lee H, Seo PJ. 2020.. H3K36me2 is highly correlated with m6A modifications in plants. . J. Integr. Plant Biol. 62:(10):145560
    [Crossref] [Google Scholar]
  123. 123.
    Song C-P, Agarwal M, Ohta M, Guo Y, Halfter U, et al. 2005.. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. . Plant Cell 17:(8):238496
    [Crossref] [Google Scholar]
  124. 124.
    Song Z-T, Zhang L-L, Han J-J, Zhou M, Liu J-X. 2021.. Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. . Plant J. 105:(5):132638
    [Crossref] [Google Scholar]
  125. 125.
    Stroud H, Otero S, Desvoyes B, Ramírez-Parra E, Jacobsen SE, Gutierrez C. 2012.. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. . PNAS 109:(14):537075
    [Crossref] [Google Scholar]
  126. 126.
    Sun B, Zhou Y, Cai J, Shang E, Yamaguchi N, et al. 2019.. Integration of transcriptional repression and Polycomb-mediated silencing of WUSCHEL in floral meristems. . Plant Cell 31:(7):1488505
    [Crossref] [Google Scholar]
  127. 127.
    Sung S, Amasino RM. 2004.. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. . Nature 427:(6970):15964
    [Crossref] [Google Scholar]
  128. 128.
    Tahir MS, Karagiannis J, Tian L. 2022.. HD2A and HD2C co-regulate drought stress response by modulating stomatal closure and root growth in Arabidopsis. . Front. Plant Sci. 13::1062722
    [Crossref] [Google Scholar]
  129. 129.
    Tamada Y, Yun J-Y, Woo SC, Amasino RM. 2009.. ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. . Plant Cell 21:(10):325769
    [Crossref] [Google Scholar]
  130. 130.
    Tan L-M, Liu R, Gu B-W, Zhang C-J, Luo J, et al. 2020.. Dual recognition of H3K4me3 and DNA by the ISWI component ARID5 regulates the floral transition in Arabidopsis. . Plant Cell 32:(7):217895
    [Crossref] [Google Scholar]
  131. 131.
    Tao Z, Hu H, Luo X, Jia B, Du J, He Y. 2019.. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. . Nat. Plants 5:(4):42435
    [Crossref] [Google Scholar]
  132. 132.
    To TK, Nakaminami K, Kim J-M, Morosawa T, Ishida J, et al. 2011.. Arabidopsis HDA6 is required for freezing tolerance. . Biochem. Biophys. Res. Commun. 406:(3):41419
    [Crossref] [Google Scholar]
  133. 133.
    Tu Y-T, Chen C-Y, Huang Y-S, Chang C-H, Yen M-R, et al. 2022.. HISTONE DEACETYLASE 15 and MOS4-associated complex subunits 3A/3B coregulate intron retention of ABA-responsive genes. . Plant Physiol. 190:(1):88297
    [Crossref] [Google Scholar]
  134. 134.
    Ueda M, Matsui A, Nakamura T, Abe T, Sunaoshi Y, et al. 2018.. Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. . Plant Signal. Behav. 13:(8):e1475808
    [Google Scholar]
  135. 135.
    Ueda M, Matsui A, Watanabe S, Kobayashi M, Saito K, et al. 2019.. Transcriptome analysis of the hierarchical response of histone deacetylase proteins that respond in an antagonistic manner to salinity stress. . Front. Plant Sci. 10::1323
    [Crossref] [Google Scholar]
  136. 136.
    van Dijk K, Ding Y, Malkaram S, Riethoven J-JM, Liu R, et al. 2010.. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. . BMC Plant Biol. 10:(1):238
    [Crossref] [Google Scholar]
  137. 137.
    Veluchamy A, Jégu T, Ariel F, Latrasse D, Mariappan KG, et al. 2016.. LHP1 regulates H3K27me3 spreading and shapes the three-dimensional conformation of the Arabidopsis genome. . PLOS ONE 11:(7):e0158936
    [Crossref] [Google Scholar]
  138. 138.
    Vlachonasios KE, Thomashow MF, Triezenberg SJ. 2003.. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. . Plant Cell 15:(3):62638
    [Crossref] [Google Scholar]
  139. 139.
    Wang H, Yin C, Zhang G, Yang M, Zhu B, et al. 2024.. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modification and nucleosome depletion in Arabidopsis. . Plant J. 118:(2):54964 Profiled the Arabidopsis genome-wide distribution of cold-induced H3K4me3-H3K27me3 bivalent histones first observed in potato tubers.
    [Crossref] [Google Scholar]
  140. 140.
    Wang Q, Bao X, Chen S, Zhong H, Liu Y, et al. 2021.. AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. . Nucleic Acids Res. 49:(17):975567
    [Crossref] [Google Scholar]
  141. 141.
    Wang Q, Liu P, Jing H, Zhou XF, Zhao B, et al. 2021.. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis. . New Phytol. 232:(1):22136
    [Crossref] [Google Scholar]
  142. 142.
    Wei W, Lu L, Bian X, Li Q, Han J, et al. 2023.. Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. . J. Integr. Plant Biol. 65:(7):163650
    [Crossref] [Google Scholar]
  143. 143.
    Whittaker C, Dean C. 2016.. The FLC locus: a platform for discoveries in epigenetics and adaptation. . Annu. Rev. Cell Dev. Biol. 33::55575
    [Crossref] [Google Scholar]
  144. 144.
    Wu J, Yamaguchi N, Ito T. 2019.. Histone demethylases control root elongation in response to stress-signaling hormone abscisic acid. . Plant Signal. Behav. 14:(7):1604019
    [Crossref] [Google Scholar]
  145. 145.
    Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou J-P, et al. 2008.. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. . Mol. Cell. Biol. 28:(4):134860
    [Crossref] [Google Scholar]
  146. 146.
    Xu Y, Gan E-S, Zhou J, Wee W-Y, Zhang X, Ito T. 2014.. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. . Nucleic Acids Res. 42:(17):1096074
    [Crossref] [Google Scholar]
  147. 147.
    Yamaguchi N, Matsubara S, Yoshimizu K, Seki M, Hamada K, et al. 2021.. H3K27me3 demethylases alter HSP22 and HSP17.6C expression in response to recurring heat in Arabidopsis. . Nat. Commun. 12:(1):3480
    [Crossref] [Google Scholar]
  148. 148.
    Yan Y, Shen L, Chen Y, Bao S, Thong Z, Yu H. 2014.. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. . Dev. Cell 30:(4):43748
    [Crossref] [Google Scholar]
  149. 149.
    Yang F, Sun Y, Du X, Chu Z, Zhong X, Chen X. 2023.. Plant-specific histone deacetylases associate with ARGONAUTE4 to promote heterochromatin stabilization and plant heat tolerance. . New Phytol. 238:(1):25269
    [Crossref] [Google Scholar]
  150. 150.
    Yang Z, Qian S, Scheid RN, Lu L, Chen X, et al. 2018.. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. . Nat. Genet. 50:(9):124753
    [Crossref] [Google Scholar]
  151. 151.
    Yelagandula R, Stroud H, Holec S, Zhou K, Feng S, et al. 2014.. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. . Cell 158:(1):98109
    [Crossref] [Google Scholar]
  152. 152.
    Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, et al. 2001.. EMBRYONIC FLOWER2, a novel Polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. . Plant Cell 13:(11):247181
    [Crossref] [Google Scholar]
  153. 153.
    You Y, Sawikowska A, Neumann M, Posé D, Capovilla G, et al. 2017.. Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. . Nat. Commun. 8::15120
    [Crossref] [Google Scholar]
  154. 154.
    Yu C-W, Tai R, Wang S-C, Yang P, Luo M, et al. 2017.. HISTONE DEACETYLASE6 acts in concert with histone methyltransferases SUVH4, SUVH5, and SUVH6 to regulate transposon silencing. . Plant Cell 29:(8):197083
    [Crossref] [Google Scholar]
  155. 155.
    Yuan L, Chen X, Chen H, Wu K, Huang S. 2019.. Histone deacetylases HDA6 and HDA9 coordinately regulate valve cell elongation through affecting auxin signaling in Arabidopsis. . Biochem. Biophys. Res. Commun. 508:(3):695700
    [Crossref] [Google Scholar]
  156. 156.
    Zeng X, Gao Z, Jiang C, Yang Y, Liu R, He Y. 2019.. HISTONE DEACETYLASE 9 functions with Polycomb silencing to repress FLOWERING LOCUS C expression. . Plant Physiol. 182:(1):55565
    [Crossref] [Google Scholar]
  157. 157.
    Zeng Z, Zhang W, Marand AP, Zhu B, Buell CR, Jiang J. 2019.. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. . Genome Biol. 20:(1):123
    [Crossref] [Google Scholar]
  158. 158.
    Zha P, Liu S, Li Y, Ma T, Yang L, et al. 2020.. The evening complex and the chromatin-remodeling factor PICKLE coordinately control seed dormancy by directly repressing DOG1 in Arabidopsis. . Plant Commun. 1:(2):100011
    [Crossref] [Google Scholar]
  159. 159.
    Zhang C, Du X, Tang K, Yang Z, Pan L, et al. 2018.. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. . Nat. Commun. 9:(1):4547
    [Crossref] [Google Scholar]
  160. 160.
    Zhang P, He R, Yang J, Cai J, Qu Z, et al. 2023.. The long non-coding RNA DANA2 positively regulates drought tolerance by recruiting ERF84 to promote JMJ29-mediated histone demethylation. . Mol. Plant 16:(8):133953
    [Crossref] [Google Scholar]
  161. 161.
    Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE. 2009.. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. . Genome Biol. 10:(6):R62
    [Crossref] [Google Scholar]
  162. 162.
    Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, et al. 2007.. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. . PLOS Biol. 5:(5):102635
    [Google Scholar]
  163. 163.
    Zhang Y, Jiao Y, Liu Z, Zhu Y-X. 2015.. ROW1 maintains quiescent centre identity by confining WOX5 expression to specific cells. . Nat. Commun. 6::6003
    [Crossref] [Google Scholar]
  164. 164.
    Zhang Y-Z, Yuan J, Zhang L, Chen C, Wang Y, et al. 2020.. Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis. . Nat. Commun. 11:(1):6212
    [Crossref] [Google Scholar]
  165. 165.
    Zhao S, Cheng L, Gao Y, Zhang B, Zheng X, et al. 2019.. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. . Cell Res. 29::5466 Profiled AGDP3 as an H3K9me2-binding protein that might antagonize DNA methylation and gene silencing.
    [Crossref] [Google Scholar]
  166. 166.
    Zhao W, Wang X, Zhang Q, Zheng Q, Yao H, et al. 2022.. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice. . Plant Physiol. 189:(2):105064
    [Crossref] [Google Scholar]
  167. 167.
    Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M. 2020.. Temperature-dependent growth contributes to long-term cold sensing. . Nature 583:(7818):82529
    [Crossref] [Google Scholar]
  168. 168.
    Zheng J, Chen F, Wang Z, Cao H, Li X, et al. 2012.. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. . New Phytol. 193:(3):60516
    [Crossref] [Google Scholar]
  169. 169.
    Zheng M, Liu X, Lin J, Liu X, Wang Z, et al. 2019.. Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. . Plant J. 97:(3):587602
    [Crossref] [Google Scholar]
  170. 170.
    Zheng Y, Ge J, Bao C, Chang W, Liu J, et al. 2020.. Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response. . Mol. Plant 13:(4):598611
    [Crossref] [Google Scholar]
  171. 171.
    Zhou S, Chen Q, Sun Y, Li Y. 2017.. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. . Plant Cell Environ. 40:(8):151230
    [Crossref] [Google Scholar]
  172. 172.
    Zhou X, Wei M, Nie W, Xi Y, Peng L, et al. 2022.. The H3K9me2-binding protein AGDP3 limits DNA methylation and transcriptional gene silencing in Arabidopsis. . J. Integr. Plant Biol. 64:(12):238595
    [Crossref] [Google Scholar]
  173. 173.
    Zhou Y, Yang P, Zhang F, Luo X, Xie J. 2020.. Histone deacetylase HDA19 interacts with histone methyltransferase SUVH5 to regulate seed dormancy in Arabidopsis. . Plant Biol. 22:(6):106271
    [Crossref] [Google Scholar]
  174. 174.
    Zhu P, Lister C, Dean C. 2021.. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. . Nature 599:(7886):65761
    [Crossref] [Google Scholar]
  175. 175.
    Zong W, Kim J, Bordiya Y, Qiao H, Sung S. 2022.. Abscisic acid negatively regulates the Polycomb-mediated H3K27me3 through the PHD-finger protein, VIL1. . New Phytol. 235:(3):105769
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083123-070919
Loading
/content/journals/10.1146/annurev-arplant-083123-070919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error