1932

Abstract

The colonization of land by plants marked a pivotal transformation in terrestrial ecosystems. In order to adapt to the terrestrial environment, angiosperms, which dominate the terrestrial flora with around 300,000 species, have evolved sophisticated mechanisms for sexual reproduction involving intricate interactions between male and female structures, starting from pollen deposition on the stigma and culminating in double fertilization within the ovule. The pollen tube plays a crucial role by navigating through female tissues to deliver sperm cells. The molecular intricacies of these male–female interactions, involving numerous signaling pathways and regulatory proteins, have been extensively studied over the past two decades. This review summarizes recent findings on the regulatory mechanisms of these male–female interactions in angiosperms. We aim to provide a comprehensive understanding of plant reproductive biology and highlight the implications of these mechanisms for crop improvement and the development of new agricultural technologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083123-071512
2025-05-20
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083123-071512.html?itemId=/content/journals/10.1146/annurev-arplant-083123-071512&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Albrieux M, Sardet C, Villaz M. 1997.. The two intracellular Ca2+ release channels, ryanodine receptor and inositol 1,4,5-trisphosphate receptor, play different roles during fertilization in ascidians. . Dev. Biol. 189::17485
    [Crossref] [Google Scholar]
  2. 2.
    Ali MF, Fatema U, Peng X, Hacker SW, Maruyama D, et al. 2020.. ARP2/3-independent WAVE/SCAR pathway and class XI myosin control sperm nuclear migration in flowering plants. . PNAS 117::3275763
    [Crossref] [Google Scholar]
  3. 3.
    Amdani SN, Jones C, Coward K. 2013.. Phospholipase C zeta (PLCζ): oocyte activation and clinical links to male factor infertility. . Adv. Biol. Regul. 53::292308
    [Crossref] [Google Scholar]
  4. 4.
    Amici GB. 1824.. Observations microscopiques sur diverses espèces de plantes. . Ann. Sci. Nat. 2::4170
    [Google Scholar]
  5. 5.
    Amien S, Kliwer I, Márton ML, Debener T, Geiger D, et al. 2010.. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. . PLOS Biol. 8::e1000388
    [Crossref] [Google Scholar]
  6. 6.
    Aydin H, Sultana A, Li S, Thavalingam A, Lee JE. 2016.. Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. . Nature 534::56265
    [Crossref] [Google Scholar]
  7. 7.
    Baillie AL, Sloan J, Qu L-J, Smith LM. 2024.. Signalling between the sexes during pollen tube reception. . Trends Plant Sci. 29::34354
    [Crossref] [Google Scholar]
  8. 8.
    Beale KM, Leydon AR, Johnson MA. 2012.. Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. . Curr. Biol. 22::109094
    [Crossref] [Google Scholar]
  9. 9.
    Berger F, Hamamura Y, Ingouff M, Higashiyama T. 2008.. Double fertilization—caught in the act. . Trends Plant Sci. 13::43743
    [Crossref] [Google Scholar]
  10. 10.
    Bianchi E, Doe B, Goulding D, Wright GJ. 2014.. Juno is the egg Izumo receptor and is essential for mammalian fertilization. . Nature 508::48387
    [Crossref] [Google Scholar]
  11. 11.
    Bleckmann A, Alter S, Dresselhaus T. 2014.. The beginning of a seed: regulatory mechanisms of double fertilization. . Front. Plant Sci. 5::452
    [Crossref] [Google Scholar]
  12. 12.
    Boisson-Dernier A, Franck CM, Lituiev DS, Grossniklaus U. 2015.. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. . PNAS 112::1221116
    [Crossref] [Google Scholar]
  13. 13.
    Boisson-Dernier A, Frietsch S, Kim T-H, Dizon MB, Schroeder JI. 2008.. The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition. . Curr. Biol. 18::6368
    [Crossref] [Google Scholar]
  14. 14.
    Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, et al. 2009.. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. . Development 136::327988
    [Crossref] [Google Scholar]
  15. 15.
    Broz AK, Bedinger PA. 2021.. Pollen–pistil interactions as reproductive barriers. . Annu. Rev. Plant Biol. 72::61539
    [Crossref] [Google Scholar]
  16. 16.
    Buitink J, Leprince O, Hemminga MA, Hoekstra FA. 2000.. The effects of moisture and temperature on the ageing kinetics of pollen: interpretation based on cytoplasmic mobility. . Plant Cell Environ. 23::96774
    [Crossref] [Google Scholar]
  17. 17.
    Burri JT, Munglani G, Nelson BJ, Grossniklaus U, Vogler H. 2020.. Quantification of mechanical forces and physiological processes involved in pollen tube growth using microfluidics and microrobotics. . Methods Mol. Biol. 2160::27592
    [Crossref] [Google Scholar]
  18. 18.
    Capron A, Gourgues M, Neiva LS, Faure J-E, Berger F, et al. 2008.. Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. . Plant Cell 20::303849
    [Crossref] [Google Scholar]
  19. 19.
    Chapman LA, Goring DR. 2011.. Misregulation of phosphoinositides in Arabidopsis thaliana decreases pollen hydration and maternal fertility. . Sex. Plant Reprod. 24::31926
    [Crossref] [Google Scholar]
  20. 20.
    Chen Y-H, Li H-J, Shi D-Q, Yuan L, Liu J, et al. 2007.. The central cell plays a critical role in pollen tube guidance in Arabidopsis. . Plant Cell 19::356377
    [Crossref] [Google Scholar]
  21. 21.
    Cheng Z, Liu X, Yan S, Liu B, Zhong Y, et al. 2023.. Pollen tube emergence is mediated by ovary-expressed ALCATRAZ in cucumber. . Nat. Commun. 14::258
    [Crossref] [Google Scholar]
  22. 22.
    Cheung AY, Boavida LC, Aggarwal M, Wu HM, Feijó JA. 2010.. The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. . J. Exp. Bot. 61::190715
    [Crossref] [Google Scholar]
  23. 23.
    Cheung AY, Wang H, Wu HM. 1995.. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. . Cell 82::38393
    [Crossref] [Google Scholar]
  24. 24.
    Cyprys P, Lindemeier M, Sprunck S. 2019.. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. . Nat. Plants 5::25357
    [Crossref] [Google Scholar]
  25. 25.
    Dai XR, Gao X-Q, Chen GH, Tang LL, Wang H, Zhang XS. 2014.. ABNORMAL POLLEN TUBE GUIDANCE1, an endoplasmic reticulum-localized mannosyltransferase homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in human, is required for Arabidopsis pollen tube micropylar guidance and embryo development. . Plant Physiol. 165::154456
    [Crossref] [Google Scholar]
  26. 26.
    Deguchi R, Osanai K. 1995.. Serotonin-induced meiosis reinitiation from the first prophase and from the first metaphase in oocytes of the marine bivalve Hiatella flaccida: respective changes in intracellular Ca2+ and pH. . Dev. Biol. 171::48396
    [Crossref] [Google Scholar]
  27. 27.
    Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, et al. 2014.. Male–female communication triggers calcium signatures during fertilization in Arabidopsis. . Nat. Commun. 5::4645
    [Crossref] [Google Scholar]
  28. 28.
    Dresselhaus T, Franklin-Tong N. 2013.. Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. . Mol. Plant 6::101836
    [Crossref] [Google Scholar]
  29. 29.
    Dresselhaus T, Sprunck S, Wessel GM. 2016.. Fertilization mechanisms in flowering plants. . Curr. Biol. 26::R12539
    [Crossref] [Google Scholar]
  30. 30.
    Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, et al. 2014.. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. . Nat. Commun. 5::3129
    [Crossref] [Google Scholar]
  31. 31.
    Duan Q, Liu M-CJ, Kita D, Jordan SS, Yeh F-LJ, et al. 2020.. FERONIA controls pectin- and nitric oxide-mediated male–female interaction. . Nature 579::56166
    [Crossref] [Google Scholar]
  32. 32.
    Escobar-Restrepo J-M, Huck N, Kessler S, Gagliardini V, Gheyselinck J, et al. 2007.. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. . Science 317::65660
    [Crossref] [Google Scholar]
  33. 33.
    Fedry J, Forcina J, Legrand P, Péhau-Arnaudet G, Haouz A, et al. 2018.. Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. . PLOS Biol. 16::e2006357
    [Crossref] [Google Scholar]
  34. 34.
    Fédry J, Liu Y, Péhau-Arnaudet G, Pei J, Li W, et al. 2017.. The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. . Cell 168::90415
    [Crossref] [Google Scholar]
  35. 35.
    Feng H, Liu C, Fu R, Zhang M, Li H, et al. 2019.. LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones and coreceptors for ANXUR/BUPS receptor kinases in Arabidopsis. . Mol. Plant 12::161223
    [Crossref] [Google Scholar]
  36. 36.
    Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D. 2000.. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. . Plant Cell 12::20018
    [Crossref] [Google Scholar]
  37. 37.
    Franck CM, Westermann J, Bürssner S, Lentz R, Lituiev DS, Boisson-Dernier A. 2018.. The protein phosphatases ATUNIS1 and ATUNIS2 regulate cell wall integrity in tip-growing cells. . Plant Cell 30::190623
    [Crossref] [Google Scholar]
  38. 38.
    Fu L, Liu Y, Qin G, Wu P, Zi H, et al. 2021.. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. . Nature 591::28892
    [Crossref] [Google Scholar]
  39. 39.
    Fujii S, Tsuchimatsu T, Kimura Y, Ishida S, Tangpranomkorn S, et al. 2019.. A stigmatic gene confers interspecies incompatibility in the Brassicaceae. . Nat. Plants 5::73141
    [Crossref] [Google Scholar]
  40. 40.
    Fujii S, Yamamoto E, Ito S, Tangpranomkorn S, Kimura Y, et al. 2023.. SHI family transcription factors regulate an interspecific barrier. . Nat. Plants 9::186273
    [Crossref] [Google Scholar]
  41. 41.
    Galindo-Trigo S, Blanco-Touriñán N, DeFalco TA, Wells ES, Gray JE, et al. 2020.. CrRLK1L receptor-like kinases HERK1 and ANJEA are female determinants of pollen tube reception. . EMBO Rep. 21::e48466
    [Crossref] [Google Scholar]
  42. 42.
    Gao Q, Gu L-L, Wang H-Q, Fei C-F, Fang X, et al. 2016.. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. . PNAS 113::3096101
    [Crossref] [Google Scholar]
  43. 43.
    Gao Q, Wang C, Xi Y, Shao Q, Hou C, et al. 2023.. RALF signaling pathway activates MLO calcium channels to maintain pollen tube integrity. . Cell Res. 33::7179
    [Crossref] [Google Scholar]
  44. 44.
    Gao Q, Wang C, Xi Y, Shao Q, Li L, Luan S. 2022.. A receptor-channel trio conducts Ca2+ signalling for pollen tube reception. . Nature 607::53439
    [Crossref] [Google Scholar]
  45. 45.
    Gao X-Q, Liu CZ, Li DD, Zhao TT, Li F, et al. 2016.. The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen. . PLOS Genet. 12::e1006228
    [Crossref] [Google Scholar]
  46. 46.
    Ge ZX, Bergonci T, Zhao Y, Zou Y, Du S, et al. 2017.. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. . Science 358::1596600
    [Crossref] [Google Scholar]
  47. 47.
    Ge ZX, Zhao YL, Liu MC, Zhou LZ, Wang LL, et al. 2019.. LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity. . Curr. Biol. 29::325665
    [Crossref] [Google Scholar]
  48. 48.
    Gilles LM, Khaled A, Laffaire J-B, Chaignon S, Gendrot G, et al. 2017.. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. . EMBO J. 36::70717
    [Crossref] [Google Scholar]
  49. 49.
    Gotelli MM, Lattar EC, Zini LM, Galati BG. 2017.. Style morphology and pollen tube pathway. . Plant Reprod. 30::15570
    [Crossref] [Google Scholar]
  50. 50.
    Gould MC, Stephano JL. 2003.. Polyspermy prevention in marine invertebrates. . Microsc. Res. Tech. 61::37988
    [Crossref] [Google Scholar]
  51. 51.
    Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021.. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. . Sci. Data 8::215
    [Crossref] [Google Scholar]
  52. 52.
    Guan Y, Guo J, Li H, Yang Z. 2013.. Signaling in pollen tube growth: crosstalk, feedback, and missing links. . Mol. Plant 6::105364
    [Crossref] [Google Scholar]
  53. 53.
    Hafidh S, Honys D. 2021.. Reproduction multitasking: the male gametophyte. . Annu. Rev. Plant Biol. 72::581614
    [Crossref] [Google Scholar]
  54. 54.
    Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T. 2014.. Live imaging of calcium spikes during double fertilization in Arabidopsis. . Nat. Commun. 5::4722
    [Crossref] [Google Scholar]
  55. 55.
    Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A, et al. 2011.. Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. . Curr. Biol. 21::497502
    [Crossref] [Google Scholar]
  56. 56.
    Hao L, Liu J, Zhong S, Gu H, Qu L-J. 2016.. AtVPS41-mediated endocytic pathway is essential for pollen tube–stigma interaction in Arabidopsis. . PNAS 113::630712
    [Crossref] [Google Scholar]
  57. 57.
    Hater F, Nakel T, Groß-Hardt R. 2020.. Reproductive multitasking: the female gametophyte. . Annu. Rev. Plant Biol. 71::51746
    [Crossref] [Google Scholar]
  58. 58.
    Heslop-Harrison J, Heslop-Harrison Y. 1992.. Germination of monocolpate angiosperm pollen: effects of inhibitory factors and the Ca2+-channel blocker, Nifedipine. . Ann. Bot. 69::395403
    [Crossref] [Google Scholar]
  59. 59.
    Higashiyama T, Takeuchi H. 2015.. The mechanism and key molecules involved in pollen tube guidance. . Annu. Rev. Plant Biol. 66::393413
    [Crossref] [Google Scholar]
  60. 60.
    Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, et al. 2001.. Pollen tube attraction by the synergid cell. . Science 293::148083
    [Crossref] [Google Scholar]
  61. 61.
    Hiscock SJ, Allen AM. 2008.. Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. . New Phytol. 179::286317
    [Crossref] [Google Scholar]
  62. 62.
    Horade M, Kanaoka MM, Kuzuya M, Higashiyama T, Kaji N. 2013.. A microfluidic device for quantitative analysis of chemoattraction in plants. . Rsc Adv. 3::223017
    [Crossref] [Google Scholar]
  63. 63.
    Hou S, Shi J, Hao L, Wang Z, Liao Y, et al. 2021.. VPS18-regulated vesicle trafficking controls the secretion of pectin and its modifying enzyme during pollen tube growth in Arabidopsis. . Plant Cell 33::304256
    [Crossref] [Google Scholar]
  64. 64.
    Hou Y, Guo X, Cyprys P, Zhang Y, Bleckmann A, et al. 2016.. Maternal ENODLs are required for pollen tube reception in Arabidopsis. . Curr. Biol. 26::234350
    [Crossref] [Google Scholar]
  65. 65.
    Huang J, Dong J, Qu L-J. 2021.. From birth to function: male gametophyte development in flowering plants. . Curr. Opin. Plant Biol. 63::102118
    [Crossref] [Google Scholar]
  66. 66.
    Huang J, Ju Y, Wang X, Zhang Q, Sodmergen. 2015.. A one-step rectification of sperm cell targeting ensures the success of double fertilization. . J. Integr. Plant Biol. 57::496503
    [Crossref] [Google Scholar]
  67. 67.
    Huang J, Yang L, Yang L, Wu X, Cui X, et al. 2023.. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. . Nature 614::3038
    [Crossref] [Google Scholar]
  68. 68.
    Huang X, Zhao P, Peng X, Sun M-X. 2023.. Seed development in Arabidopsis: what we have learnt in the past 30 years. . Seed Biol. 2::6
    [Crossref] [Google Scholar]
  69. 69.
    Ingouff M, Sakata T, Li J, Sprunck S, Dresselhaus T, Berger F. 2009.. The two male gametes share equal ability to fertilize the egg cell in Arabidopsis thaliana. . Curr. Biol. 19::R1920
    [Crossref] [Google Scholar]
  70. 70.
    Iwano M, Igarashi M, Tarutani Y, Kaothien-Nakayama P, Nakayama H, et al. 2014.. A pollen coat–inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. . Plant Cell 26::63649
    [Crossref] [Google Scholar]
  71. 71.
    Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, et al. 2015.. Calcium signalling mediates self-incompatibility response in the Brassicaceae. . Nat. Plants 1::15128
    [Crossref] [Google Scholar]
  72. 72.
    Iwano M, Ngo QA, Entani T, Shiba H, Nagai T, et al. 2012.. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. . Development 139::42029
    [Crossref] [Google Scholar]
  73. 73.
    Jiang J, Stührwohldt N, Liu T, Huang Q, Li L, et al. 2022.. Egg cell-secreted aspartic proteases ECS1/2 promote gamete attachment to prioritize the fertilization of egg cells over central cells in Arabidopsis. . J. Integr. Plant Biol. 64::204759
    [Crossref] [Google Scholar]
  74. 74.
    Johnson MA, Harper JF, Palanivelu R. 2019.. A fruitful journey: pollen tube navigation from germination to fertilization. . Annu. Rev. Plant Biol. 70::80937
    [Crossref] [Google Scholar]
  75. 75.
    Ju Y, Yuan J, Jones DS, Zhang W, Staiger CJ, Kessler SA. 2021.. Polarized NORTIA accumulation in response to pollen tube arrival at synergids promotes fertilization. . Dev. Cell 56::293851
    [Crossref] [Google Scholar]
  76. 76.
    Kanaoka MM, Shimizu KK, Xie B, Urban S, Freeman M, et al. 2022.. KOMPEITO, an atypical Arabidopsis Rhomboid-related gene, is required for callose accumulation and pollen wall development. . Int. J. Mol. Sci. 23::5959
    [Crossref] [Google Scholar]
  77. 77.
    Kandasamy MK, Nasrallah JB, Nasrallah ME. 1994.. Pollen pistil interactions and developmental regulation of pollen-tube growth in Arabidopsis. . Development 120::340518
    [Crossref] [Google Scholar]
  78. 78.
    Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T. 2012.. Fertilization recovery after defective sperm cell release in Arabidopsis. . Curr. Biol. 22::108489
    [Crossref] [Google Scholar]
  79. 79.
    Kasahara RD, Maruyama D, Higashiyama T. 2013.. Fertilization recovery system is dependent on the number of pollen grains for efficient reproduction in plants. . Plant 8::e23690
    [Google Scholar]
  80. 80.
    Kasahara RD, Notaguchi M, Nagahara S, Suzuki T, Susaki D, et al. 2016.. Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. . Sci. Adv. 2::e1600554
    [Crossref] [Google Scholar]
  81. 81.
    Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN. 2005.. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. . Plant Cell 17::298192
    [Crossref] [Google Scholar]
  82. 82.
    Kawashima T, Maruyama D, Shagirov M, Li J, Hamamura Y, et al. 2014.. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana. . eLife 3::e04501
    [Crossref] [Google Scholar]
  83. 83.
    Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, et al. 2014.. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. . Plant Cell 26::106980
    [Crossref] [Google Scholar]
  84. 84.
    Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, et al. 2017.. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. . Nature 542::1059
    [Crossref] [Google Scholar]
  85. 85.
    Kim S, Mollet J-C, Dong J, Zhang K, Park S-Y, Lord EM. 2003.. Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. . PNAS 100::1612530
    [Crossref] [Google Scholar]
  86. 86.
    Kurihara D, Mizuta Y, Nagahara S, Higashiyama T. 2021.. ClearSeeAlpha: advanced optical clearing for whole-plant imaging. . Plant Cell Physiol. 62::130210
    [Crossref] [Google Scholar]
  87. 87.
    Kurihara D, Mizuta Y, Sato Y, Higashiyama T. 2015.. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. . Development 142::416879
    [Google Scholar]
  88. 88.
    Lan Z, Song Z, Wang Z, Li L, Liu Y, et al. 2023.. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas. . Cell 186::477387
    [Crossref] [Google Scholar]
  89. 89.
    Lan Z, Song Z, Zhong S, Qu L-J. 2023.. The central cell: another opportunity for fertilization recovery in plants. . Seed Biol. 2::22
    [Crossref] [Google Scholar]
  90. 90.
    Lan Z, Zhong S, Qu L-J. 2023.. Insights into pollen–stigma recognition: self-incompatibility mechanisms serve as interspecies barriers in Brassicaceae?. aBIOTECH 4::17679
    [Crossref] [Google Scholar]
  91. 91.
    Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T. 2014.. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. . Plant J. 78::94106
    [Crossref] [Google Scholar]
  92. 92.
    Läubli NF, Burri JT, Marquard J, Vogler H, Mosca G, et al. 2021.. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy. . Nat. Commun. 12::2583
    [Crossref] [Google Scholar]
  93. 93.
    Leshem Y, Johnson C, Wuest SE, Song X, Ngo QA, et al. 2012.. Molecular characterization of the glauce mutant: A central cell–specific function is required for double fertilization in Arabidopsis. . Plant Cell 24::326477
    [Crossref] [Google Scholar]
  94. 94.
    Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J, et al. 2013.. Three MYB transcription factors control pollen tube differentiation required for sperm release. . Curr. Biol. 23::120914
    [Crossref] [Google Scholar]
  95. 95.
    Leydon AR, Tsukamoto T, Dunatunga D, Qin Y, Johnson MA, Palanivelu R. 2015.. Pollen tube discharge completes the process of synergid degeneration that is initiated by pollen tube–synergid interaction in Arabidopsis. . Plant Physiol. 169::48596
    [Crossref] [Google Scholar]
  96. 96.
    Li C, Yeh FL, Cheung AY, Duan Q, Kita D, et al. 2015.. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. . eLife 4::e06587
    [Crossref] [Google Scholar]
  97. 97.
    Li H-J, Xue Y, Jia D-J, Wang T, Hi D-Q, et al. 2011.. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. . Plant Cell 23::3288302
    [Crossref] [Google Scholar]
  98. 98.
    Li H-J, Zhu S-S, Zhang M-X, Wang T, Liang L, et al. 2015.. Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. . Plant Cell 27::288093
    [Crossref] [Google Scholar]
  99. 99.
    Li L, Hou S, Xiang W, Song Z, Wang Y, et al. 2022.. The egg cell is preferentially fertilized in Arabidopsis double fertilization. . J. Integr. Plant Biol. 64::203946
    [Crossref] [Google Scholar]
  100. 100.
    Li S-Z, Wang J, Jia S-G, Wang K, Li H-J. 2023.. Synthetic apomixis: from genetic basis to agricultural application. . Seed Biol. 2::10
    [Google Scholar]
  101. 101.
    Li W, Li Q, Lyu M, Wang Z, Song Z, et al. 2022.. Lack of ethylene does not affect reproductive success and synergid cell death in Arabidopsis. . Mol. Plant 15::35462
    [Crossref] [Google Scholar]
  102. 102.
    Liang Y, Tan Z-M, Zhu L, Niu Q-K, Zhou J-J, et al. 2013.. MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. . PLOS Genet. 9::e1003933
    [Crossref] [Google Scholar]
  103. 103.
    Liu C, Li X, Meng D, Zhong Y, Chen C, et al. 2017.. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. . Mol. Plant 10::52022
    [Crossref] [Google Scholar]
  104. 104.
    Liu C, Shen LP, Xiao Y, Vyshedsky D, Peng C, et al. 2021.. Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. . Science 372::17175
    [Crossref] [Google Scholar]
  105. 105.
    Liu JJ, Zhong S, Guo XY, Hao LH, Wei XL, et al. 2013.. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis. . Curr. Biol. 23::99398
    [Crossref] [Google Scholar]
  106. 106.
    Liu M, Wang Z, Hou S, Wang L, Huang Q, et al. 2021.. AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube guidance. . Plant Physiol. 186::86573
    [Crossref] [Google Scholar]
  107. 107.
    Liu M-CJ, Yeh F-LJ, Yvon R, Simpson K, Jordan S, et al. 2024.. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. . Cell 187::32130
    [Google Scholar]
  108. 108.
    Liu X, Castro C, Wang Y, Noble J, Ponvert N, et al. 2016.. The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight-cysteine motif and the receptor-like kinase FERONIA. . Plant Cell 28::103552
    [Crossref] [Google Scholar]
  109. 109.
    Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, et al. 2011.. Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. . Plant Cell 23::8193
    [Crossref] [Google Scholar]
  110. 110.
    Mao Y, Gabel A, Nakel T, Viehöver P, Baum T, et al. 2020.. Selective egg cell polyspermy bypasses the triploid block. . eLife 9::e52976
    [Crossref] [Google Scholar]
  111. 111.
    Mao Y, Nakel T, Erbasol Serbes I, Joshi S, Tekleyohans DG, et al. 2023.. ECS1 and ECS2 suppress polyspermy and the formation of haploid plants by promoting double fertilization. . eLife 12::e85832
    [Crossref] [Google Scholar]
  112. 112.
    Márton ML, Cordts S, Broadhvest J, Dresselhaus T. 2005.. Micropylar pollen tube guidance by egg apparatus 1 of maize. . Science 307::57376
    [Crossref] [Google Scholar]
  113. 113.
    Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M, et al. 2013.. Independent control by each female gamete prevents the attraction of multiple pollen tubes. . Dev. Cell 25::31723
    [Crossref] [Google Scholar]
  114. 114.
    Maruyama D, Völz R, Takeuchi H, Mori T, Igawa T, et al. 2015.. Rapid elimination of the persistent synergid through a cell fusion mechanism. . Cell 161::90718
    [Crossref] [Google Scholar]
  115. 115.
    McCue AD, Cresti M, Feijó JA, Slotkin RK. 2011.. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. . J. Exp. Bot. 62::162131
    [Crossref] [Google Scholar]
  116. 116.
    McInnis SM, Desikan R, Hancock JT, Hiscock SJ. 2006.. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk?. New Phytol. 172::22128
    [Crossref] [Google Scholar]
  117. 117.
    Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, et al. 2017.. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. . Science 358::16003
    [Crossref] [Google Scholar]
  118. 118.
    Mendes MA, Guerra RF, Castelnovo B, Silva-Velazquez Y, Morandini P, et al. 2016.. Live and let die: A REM complex promotes fertilization through synergid cell death in Arabidopsis. . Development 143::278090
    [Crossref] [Google Scholar]
  119. 119.
    Meng J-G, Liang L, Jia P-F, Wang Y-C, Li H-J, Yang W-C. 2020.. Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance. . Nat. Plants 6::14353
    [Crossref] [Google Scholar]
  120. 120.
    Meng J-G, Xu Y-J, Wang W-Q, Yang F, Chen S-Y, et al. 2023.. Central-cell-produced attractants control fertilization recovery. . Cell 186::3593605.e12
    [Crossref] [Google Scholar]
  121. 121.
    Meng J-G, Zhang M-X, Yang W-C, Li H-J. 2019.. TICKET attracts pollen tubes and mediates reproductive isolation between relative species in Brassicaceae. . Sci. China Life Sci. 62::141319
    [Crossref] [Google Scholar]
  122. 122.
    Michard E, Lima PT, Borges F, Silva AC, Portes MT, et al. 2011.. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil d-serine. . Science 332::43437
    [Crossref] [Google Scholar]
  123. 123.
    Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, et al. 2009.. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. . Curr. Biol. 19::132731
    [Crossref] [Google Scholar]
  124. 124.
    Mizuta Y, Sakakibara D, Nagahara S, Kaneshiro I, Nagae TT, et al. 2024.. Deep imaging reveals dynamics and signaling in one-to-one pollen tube guidance. . EMBO Rep. 25::252949
    [Crossref] [Google Scholar]
  125. 125.
    Mori T, Igawa T, Tamiya G, Miyagishima S-Y, Berger F. 2014.. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. . Curr. Biol. 24::17075
    [Crossref] [Google Scholar]
  126. 126.
    Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. 2006.. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. . Nat. Cell Biol. 8::6471
    [Crossref] [Google Scholar]
  127. 127.
    Moussu S, Broyart C, Santos-Fernandez G, Augustin S, Wehrle S, et al. 2020.. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. . PNAS 117::7494503
    [Crossref] [Google Scholar]
  128. 128.
    Moussu S, Lee HK, Haas KT, Broyart C, Rathgeb U, et al. 2023.. Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction. . Science 382::71925
    [Crossref] [Google Scholar]
  129. 129.
    Nagahara S, Takeuchi H, Higashiyama T. 2020.. Polyspermy block in the central cell during double fertilization of Arabidopsis thaliana. . Front. Plant Sci. 11::588700
    [Crossref] [Google Scholar]
  130. 130.
    Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U. 2014.. A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. . Dev. Cell 29::491500
    [Crossref] [Google Scholar]
  131. 131.
    Nishikawa S-I, Yamaguchi Y, Suzuki C, Yabe A, Sato Y, et al. 2020.. Arabidopsis GEX1 is a nuclear membrane protein of gametes required for nuclear fusion during reproduction. . Front. Plant Sci. 11::548032
    [Crossref] [Google Scholar]
  132. 132.
    Ohto U, Ishida H, Krayukhina E, Uchiyama S, Inoue N, Shimizu T. 2016.. Structure of IZUMO1–JUNO reveals sperm–oocyte recognition during mammalian fertilization. . Nature 534::56669
    [Crossref] [Google Scholar]
  133. 133.
    Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, et al. 2009.. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. . Nature 458::35761
    [Crossref] [Google Scholar]
  134. 134.
    Pagnussat GC, Yu H-J, Sundaresan V. 2007.. Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. . Plant Cell 19::357892
    [Crossref] [Google Scholar]
  135. 135.
    Pinello JF, Liu Y, Snell WJ. 2021.. MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. . Dev. Cell 56::338092
    [Crossref] [Google Scholar]
  136. 136.
    Preuss D, Lemieux B, Yen G, Davis RW. 1993.. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. . Genes Dev. 7::97485
    [Crossref] [Google Scholar]
  137. 137.
    Punwani JA, Rabiger DS, Drews GN. 2007.. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus–localized proteins. . Plant Cell 19::255768
    [Crossref] [Google Scholar]
  138. 138.
    Qu LJ, Li L, Lan ZJ, Dresselhaus T. 2015.. Peptide signalling during the pollen tube journey and double fertilization. . J. Exp. Bot. 66::513950
    [Crossref] [Google Scholar]
  139. 139.
    Qu Y, Fernie AR, Liu J, Yan J. 2024.. Doubled haploid technology and synthetic apomixis: recent advances and applications in future crop breeding. . Mol. Plant 17:(7):100518
    [Crossref] [Google Scholar]
  140. 140.
    Ravi M, Chan SWL. 2010.. Haploid plants produced by centromere-mediated genome elimination. . Nature 464::61518
    [Crossref] [Google Scholar]
  141. 141.
    Riglet L, Rozier F, Kodera C, Bovio S, Sechet J, et al. 2020.. KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis. . eLife 9::e57282
    [Crossref] [Google Scholar]
  142. 142.
    Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure J-E. 2003.. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. . Curr. Biol. 13::43236
    [Crossref] [Google Scholar]
  143. 143.
    Rudall PJ, Bateman RM. 2007.. Developmental bases for key innovations in the seed-plant microgametophyte. . Trends Plant Sci. 12::31726
    [Crossref] [Google Scholar]
  144. 144.
    Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR. 2009.. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. . Plant Cell 21::265571
    [Crossref] [Google Scholar]
  145. 145.
    Sandaklie-Nikolova L, Palanivelu R, King EJ, Copenhaver GP, Drews GN. 2007.. Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. . Plant Physiol. 144::175362
    [Crossref] [Google Scholar]
  146. 146.
    Sato Y, Sugimoto N, Higashiyama T, Arata H. 2015.. Quantification of pollen tube attraction in response to guidance by female gametophyte tissue using artificial microscale pathway. . J. Biosci. Bioeng. 120::697700
    [Crossref] [Google Scholar]
  147. 147.
    Scott RJ, Armstrong SJ, Doughty J, Spielman M. 2008.. Double fertilization in Arabidopsis thaliana involves a polyspermy block on the egg but not the central cell. . Mol. Plant 1::61119
    [Crossref] [Google Scholar]
  148. 148.
    Shimizu KK, Okada K. 2000.. Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. . Development 127::451118
    [Crossref] [Google Scholar]
  149. 149.
    Song Z, Zhong S, Qu L-J. 2023.. FERONIA and reactive oxygen species: regulators in the self-incompatibility response and in interspecific pollination. . Mol. Horticult. 3::10
    [Crossref] [Google Scholar]
  150. 150.
    Spielman M, Scott RJ. 2008.. Polyspermy barriers in plants: from preventing to promoting fertilization. . Sex. Plant Reprod. 21::5365
    [Crossref] [Google Scholar]
  151. 151.
    Sprunck S. 2020.. Twice the fun, double the trouble: gamete interactions in flowering plants. . Curr. Opin. Plant Biol. 53::10616
    [Crossref] [Google Scholar]
  152. 152.
    Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T. 2012.. Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. . Science 338::109397
    [Crossref] [Google Scholar]
  153. 153.
    Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, et al. 2017.. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. . Science 355::28789
    [Crossref] [Google Scholar]
  154. 154.
    Sugi N, Calhau ARM, Jacquier NMA, Millan-Blanquez M, Becker JD, et al. 2024.. The peri-germ cell membrane: poorly characterized but key interface for plant reproduction. . Nat. Plants 10::16079
    [Crossref] [Google Scholar]
  155. 155.
    Sugi N, Izumi R, Tomomi S, Susaki D, Kinoshita T, Maruyama D. 2023.. Removal of the endoplasma membrane upon sperm cell activation after pollen tube discharge. . Front. Plant Sci. 14::1116289
    [Crossref] [Google Scholar]
  156. 156.
    Takahashi T, Mori T, Ueda K, Yamada L, Nagahara S, et al. 2018.. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. . Development 145::dev170076
    [Crossref] [Google Scholar]
  157. 157.
    Takeuchi H, Higashiyama T. 2012.. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. . PLOS Biol. 10::e1001449
    [Crossref] [Google Scholar]
  158. 158.
    Takeuchi H, Higashiyama T. 2016.. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. . Nature 531::24548
    [Crossref] [Google Scholar]
  159. 159.
    Tekleyohans DG, Groß-Hardt R. 2020.. New advances and future directions in plant polyspermy. . Mol. Reprod. Dev. 87::37073
    [Crossref] [Google Scholar]
  160. 160.
    Tekleyohans DG, Mao Y, Kägi C, Stierhof Y-D, Groß-Hardt R. 2017.. Polyspermy barriers: a plant perspective. . Curr. Opin. Plant Biol. 35::13137
    [Crossref] [Google Scholar]
  161. 161.
    Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R. 2010.. A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. . Plant J. 62::57188
    [Crossref] [Google Scholar]
  162. 162.
    Völz R, Heydlauff J, Ripper D, von Lyncker L, Groß-Hardt R. 2013.. Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. . Dev. Cell 25::31016
    [Crossref] [Google Scholar]
  163. 163.
    von Besser K, Frank AC, Johnson MA, Preuss D. 2006.. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. . Development 133::476169
    [Crossref] [Google Scholar]
  164. 164.
    Wang T, Liang L, Xue Y, Jia P-F, Chen W, et al. 2016.. A receptor heteromer mediates the male perception of female attractants in plants. . Nature 531::24144
    [Crossref] [Google Scholar]
  165. 165.
    Wang W, Malka R, Lindemeier M, Cyprys P, Tiedemann S, et al. 2024.. EGG CELL 1 contributes to egg-cell-dependent preferential fertilization in Arabidopsis. . Nat. Plants 10::26882
    [Crossref] [Google Scholar]
  166. 166.
    Wang W, Xiong H, Cyprys P, Malka R, Flores-Tornero M, et al. 2022.. DMP8 and 9 regulate HAP2/GCS1 trafficking for the timely acquisition of sperm fusion competence. . PNAS 119::e2207608119
    [Crossref] [Google Scholar]
  167. 167.
    Wang W-Q, Meng J-G, Yang F, Xu Y-J, Li S-Z, Li H-J. 2024.. A non-defensin peptide NPA1 attracts pollen tube in Arabidopsis. . Seed Biol. 3::e003
    [Google Scholar]
  168. 168.
    Williams JH, Reese JB. 2019.. Evolution of development of pollen performance. . Curr. Top. Dev. Biol. 131::299336
    [Crossref] [Google Scholar]
  169. 169.
    Wong JL, Wessel GM. 2006.. Defending the zygote: search for the ancestral animal block to polyspermy. . Curr. Top. Dev. Biol. 72::1151
    [Google Scholar]
  170. 170.
    Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, et al. 2019.. Mechanisms of RALF peptide perception by a heterotypic receptor complex. . Nature 572::27074
    [Crossref] [Google Scholar]
  171. 171.
    Xue Y, Meng J-G, Jia P-F, Zhang Z-R, Li H-J, Yang W-C. 2022.. POD1-SUN-CRT3 chaperone complex guards the ER sorting of LRR receptor kinases in Arabidopsis. . Nat. Commun. 13::2703
    [Crossref] [Google Scholar]
  172. 172.
    Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, et al. 2018.. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. . Nat. Commun. 9::604
    [Crossref] [Google Scholar]
  173. 173.
    Yanagisawa N, Higashiyama T. 2018.. Quantitative assessment of chemotropism in pollen tubes using microslit channel filters. . Biomicrofluidics 12::024113
    [Crossref] [Google Scholar]
  174. 174.
    Yang C-Y, Spielman M, Coles JP, Li Y, Ghelani S, et al. 2003.. TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. . Plant J. 34::22940
    [Crossref] [Google Scholar]
  175. 175.
    Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y. 2011.. A microsystem-based assay for studying pollen tube guidance in plant reproduction. . J. Micromech. Microeng. 21::054018
    [Crossref] [Google Scholar]
  176. 176.
    Yu B, Liu L, Wang T. 2019.. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. . Plant Cell Environ. 42::334054
    [Crossref] [Google Scholar]
  177. 177.
    Yu X, Zhang X, Zhao P, Peng X, Chen H, et al. 2021.. Fertilized egg cells secrete endopeptidases to avoid polytubey. . Nature 592::43337
    [Crossref] [Google Scholar]
  178. 178.
    Zhan H, Xiong H, Wang S, Yang Z-N. 2018.. Anther endothecium-derived very-long-chain fatty acids facilitate pollen hydration in Arabidopsis. . Mol. Plant 11::11014
    [Crossref] [Google Scholar]
  179. 179.
    Zhang J, Huang Q, Zhong S, Bleckmann A, Huang J, et al. 2017.. Sperm cells are passive cargo of the pollen tube in plant fertilization. . Nat. Plants 3::17079
    [Crossref] [Google Scholar]
  180. 180.
    Zhang J, Pinello JF, Fernández I, Baquero E, Fedry J, et al. 2021.. Species-specific gamete recognition initiates fusion-driving trimer formation by conserved fusogen HAP2. . Nat. Commun. 12::4380
    [Crossref] [Google Scholar]
  181. 181.
    Zhang X, Liu W, Nagae TT, Takeuchi H, Zhang H, et al. 2017.. Structural basis for receptor recognition of pollen tube attraction peptides. . Nat. Commun. 8::1331
    [Crossref] [Google Scholar]
  182. 182.
    Zhang X, Shi C, Li S, Zhang B, Luo P, et al. 2023.. A female in vivo haploid-induction system via mutagenesis of egg cell-specific peptidases. . Mol. Plant 16::47180
    [Crossref] [Google Scholar]
  183. 183.
    Zhang Z, Zhan H, Lu J, Xiong S, Yang N, et al. 2021.. Tapetal 3-ketoacyl-coenzyme A synthases are involved in pollen coat lipid accumulation for pollen-stigma interaction in Arabidopsis. . Front. Plant Sci. 12::770311
    [Crossref] [Google Scholar]
  184. 184.
    Zhong S, Li L, Wang Z, Ge Z, Li Q, et al. 2022.. RALF peptide signaling controls the polytubey block in Arabidopsis. . Science 375::29096
    [Crossref] [Google Scholar]
  185. 185.
    Zhong S, Liu M, Wang Z, Huang Q, Hou S, et al. 2019.. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. . Science 364::eaau9564
    [Crossref] [Google Scholar]
  186. 186.
    Zhong S, Qu L-J. 2019.. Peptide/receptor-like kinase-mediated signaling involved in male–female interactions. . Curr. Opin. Plant Biol. 51::714
    [Crossref] [Google Scholar]
  187. 187.
    Zhong S, Zhang J, Qu L-J. 2017.. The signals to trigger the initiation of ovule enlargement are from the pollen tubes: the direct evidence. . J. Integr. Plant Biol. 59::6003
    [Crossref] [Google Scholar]
  188. 188.
    Zhong S, Zhao P, Peng X, Li H-J, Duan Q, Cheung AY. 2024.. From gametes to zygote: mechanistic advances and emerging possibilities in plant reproduction. . Plant Physiol. 195::435
    [Crossref] [Google Scholar]
  189. 189.
    Zhong Y, Chen B, Li M, Wang D, Jiao Y, et al. 2020.. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. . Nat. Plants 6::46672
    [Crossref] [Google Scholar]
  190. 190.
    Zhong Y, Liu C, Qi X, Jiao Y, Wang D, et al. 2019.. Mutation of ZmDMP enhances haploid induction in maize. . Nat. Plants 5::57580
    [Crossref] [Google Scholar]
  191. 191.
    Zhou L-Z, Wang L, Chen X, Ge Z, Mergner J, et al. 2024.. The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize. . Plant Cell 36::167396
    [Crossref] [Google Scholar]
  192. 192.
    Zhou X, Lu J, Zhang Y, Guo J, Lin W, et al. 2021.. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. . Dev. Cell 56::103042
    [Crossref] [Google Scholar]
  193. 193.
    Zhou X, Meier I. 2014.. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. . PNAS 111::119005
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083123-071512
Loading
/content/journals/10.1146/annurev-arplant-083123-071512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error