1932

Abstract

Eukaryotic glycobiology revolves around nucleotide sugar transporters (NSTs), which are critical for glycan biosynthesis in the Golgi apparatus and endoplasmic reticulum. In plants, NSTs share similarities with triose phosphate translocators (TPTs) and together form the NST/TPT superfamily. Major research efforts over the last decades have led to the biochemical characterization of several of these transporters and addressed their role in cell wall polysaccharide and glycoconjugate biosynthesis, revealing precise substrate specificity and function. While recent insights gained from NST and TPT crystal structures promise to unravel the molecular mechanisms governing these membrane proteins, their regulation and dynamic behavior remain enigmatic. Likewise, many uncharacterized and orphan NSTs pose exciting questions about the biology of the endomembrane system. We discuss the progress in this active research area and stimulate consideration for the intriguing outstanding questions with a view to establish a foundation for applications in plant engineering and biopolymer production.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-083123-075017
2025-05-20
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-083123-075017.html?itemId=/content/journals/10.1146/annurev-arplant-083123-075017&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahn JW, Verma R, Kim M, Lee JY, Kim YK, et al. 2006.. Depletion of UDP-d-apiose/UDP-d-xylose synthases results in rhamnogalacturonan-II deficiency, cell wall thickening, and cell death in higher plants. . J. Biol. Chem. 281::1370816
    [Crossref] [Google Scholar]
  2. 2.
    Ahuja S, Whorton MR. 2019.. Structural basis for mammalian nucleotide sugar transport. . eLife 8::e45221
    [Crossref] [Google Scholar]
  3. 3.
    Amos RA, Pattathil S, Yang JY, Atmodjo MA, Urbanowicz BR, et al. 2018.. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. . J. Biol. Chem. 293::1904763
    [Crossref] [Google Scholar]
  4. 4.
    Anderson CT, Pelloux J. 2025.. The dynamics, degradation, and afterlives of pectins: influences on cell wall assembly and structure, plant development and physiology, agronomy, and biotechnology. . Annu. Rev. Plant Biol. 76::85113
    [Google Scholar]
  5. 5.
    Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, et al. 2006.. Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. . Plant J. 45::14465
    [Crossref] [Google Scholar]
  6. 6.
    Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, et al. 2011.. Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. . PNAS 108::2022530
    [Crossref] [Google Scholar]
  7. 7.
    Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, et al. 2018.. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. . Biotechnol. Biofuels 11::2
    [Crossref] [Google Scholar]
  8. 8.
    Bakker H, Routier F, Ashikov A, Neumann D, Bosch D, Gerardy-Schahn R. 2008.. A CMP-sialic acid transporter cloned from Arabidopsis thaliana. . Carbohydr. Res. 343::214852
    [Crossref] [Google Scholar]
  9. 9.
    Bakker H, Routier F, Oelmann S, Jordi W, Lommen A, et al. 2005.. Molecular cloning of two Arabidopsis UDP-galactose transporters by complementation of a deficient Chinese hamster ovary cell line. . Glycobiology 15::193201
    [Crossref] [Google Scholar]
  10. 10.
    Baldwin TC, Handford MG, Yuseff MI, Orellana A, Dupree P. 2001.. Identification and characterization of GONST1, a Golgi-localized GDP-mannose transporter in Arabidopsis. . Plant Cell 13::228395 Pioneering study identifying the first plant NST and showing its function as a GDP-mannose transporter based on a yeast complementation approach.
    [Crossref] [Google Scholar]
  11. 11.
    Barber C, Rosti J, Rawat A, Findlay K, Roberts K, Seifert GJ. 2006.. Distinct properties of the five UDP-d-glucose/UDP-d-galactose 4-epimerase isoforms of Arabidopsis thaliana. . J. Biol. Chem. 281::1727685
    [Crossref] [Google Scholar]
  12. 12.
    Bar-Peled M, O'Neill MA. 2011.. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. . Annu. Rev. Plant Biol. 62::12755 This excellent review provides a comprehensive overview of the formation and conversion of nucleotide sugars in terrestrial plants.
    [Crossref] [Google Scholar]
  13. 13.
    Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, et al. 2006.. Integrating membrane transport with male gametophyte development and function through transcriptomics. . Plant Physiol. 140::115168
    [Crossref] [Google Scholar]
  14. 14.
    Bonin CP, Potter I, Vanzin GF, Reiter WD. 1997.. The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-d-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-l-fucose. . PNAS 94::208590
    [Crossref] [Google Scholar]
  15. 15.
    Brandon AG, Scheller HV. 2020.. Engineering of bioenergy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass. . Front. Plant Sci. 11::282
    [Crossref] [Google Scholar]
  16. 16.
    Breton C, Heissigerová H, Jeanneau C, Moravcová J, Imberty A. 2002.. Comparative aspects of glycosyltransferases. . Biochem. Soc. Symp. 2002.:2332
    [Google Scholar]
  17. 17.
    Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, et al. 2010.. The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. . Cell Host Microbe 7::6273
    [Crossref] [Google Scholar]
  18. 18.
    Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, et al. 2007.. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. . Plant J. 52::115468
    [Crossref] [Google Scholar]
  19. 19.
    Bure C, Cacas JL, Wang F, Gaudin K, Domergue F, et al. 2011.. Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry. . Rapid Commun. Mass Spectrom. 25::313145
    [Crossref] [Google Scholar]
  20. 20.
    Burget EG, Verma R, Mølhøj M, Reiter WD. 2003.. The biosynthesis of l-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. . Plant Cell 15::52331
    [Crossref] [Google Scholar]
  21. 21.
    Burton RA, Fincher GB. 2014.. Plant cell wall engineering: applications in biofuel production and improved human health. . Curr. Opin. Biotechnol. 26::7984
    [Crossref] [Google Scholar]
  22. 22.
    Capasso JM, Hirschberg CB. 1984.. Mechanisms of glycosylation and sulfation in the Golgi apparatus: evidence for nucleotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane. . PNAS 81::705155 Fundamental study showing biochemically that NSTs act as antiporters that exchange nucleotide sugars stoichiomet-rically with the corresponding monophosphates.
    [Crossref] [Google Scholar]
  23. 23.
    Castilho A, Pabst M, Leonard R, Veit C, Altmann F, et al. 2008.. Construction of a functional CMP-sialic acid biosynthesis pathway in Arabidopsis. . Plant Physiol. 147::33139
    [Crossref] [Google Scholar]
  24. 24.
    Celiz-Balboa J, Largo-Gosens A, Parra-Rojas JP, Arenas-Morales V, Sepulveda-Orellana P, et al. 2020.. Functional interchangeability of nucleotide sugar transporters URGT1 and URGT2 reveals that urgt1 and urgt2 cell wall chemotypes depend on their spatio-temporal expression. . Front. Plant Sci. 11::594544
    [Crossref] [Google Scholar]
  25. 25.
    Chevalier L, Bernard S, Ramdani Y, Lamour R, Bardor M, et al. 2010.. Subcompartment localization of the side chain xyloglucan-synthesizing enzymes within Golgi stacks of tobacco suspension-cultured cells. . Plant J. 64::97789
    [Crossref] [Google Scholar]
  26. 26.
    Chou YH, Pogorelko G, Young ZT, Zabotina OA. 2015.. Protein–protein interactions among xyloglucan-synthesizing enzymes and formation of Golgi-localized multiprotein complexes. . Plant Cell Physiol. 56::25567
    [Crossref] [Google Scholar]
  27. 27.
    Drakakaki G, Zabotina O, Delgado I, Robert S, Keegstra K, Raikhel N. 2006.. Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development. . Plant Physiol. 142::148092
    [Crossref] [Google Scholar]
  28. 28.
    Ebert B, Birdseye D, Liwanag AJM, Laursen T, Rennie EA, et al. 2018.. The three members of the Arabidopsis Glycosyltransferase Family 92 are functional β-1,4-galactan synthases. . Plant Cell Physiol. 59::262436
    [Crossref] [Google Scholar]
  29. 29.
    Ebert B, Rautengarten C, Guo X, Xiong G, Stonebloom S, et al. 2015.. Identification and characterization of a Golgi-localized UDP-xylose transporter family from Arabidopsis. . Plant Cell 27::121827 The discovery of UDP-xylose transporters emphasizes the significance of the cytosolic UDP-xylose pool, despite the presence of a Golgi UDP-xylose pool.
    [Crossref] [Google Scholar]
  30. 30.
    Ebert B, Rautengarten C, Heazlewood JL. 2017.. GDP-l-fucose transport in plants: the missing piece. . Channels 11::810
    [Crossref] [Google Scholar]
  31. 31.
    Ebert B, Rautengarten C, McFarlane HE, Rupasinghe T, Zeng W, et al. 2018.. A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. . Nat. Plants 4::792801
    [Crossref] [Google Scholar]
  32. 32.
    Feingold DS. 1982.. Aldo (and keto) hexoses and uronic acids. . In Plant Carbohydrates I: Intracellular Carbohydrates, ed. W Tanner, FA Loewus , pp. 376. Berlin:: Springer-Verlag
    [Google Scholar]
  33. 33.
    Fukuda M, Nishida S, Kakei Y, Shimada Y, Fujiwara T. 2019.. Genome-wide analysis of long intergenic noncoding RNAs responding to low-nutrient conditions in Arabidopsis thaliana: possible involvement of trans-acting siRNA3 in response to low nitrogen. . Plant Cell Physiol. 60::196173
    [Crossref] [Google Scholar]
  34. 34.
    Ganesh A, Shukla V, Mohapatra A, George AP, Bhukya DPN, et al. 2022.. Root cap to soil interface: a driving force toward plant adaptation and development. . Plant Cell Physiol. 63::103851
    [Crossref] [Google Scholar]
  35. 35.
    Gemmer MR, Richter C, Schmutzer T, Raorane ML, Junker B, et al. 2021.. Genome-wide association study on metabolite accumulation in a wild barley NAM population reveals natural variation in sugar metabolism. . PLOS ONE 16::e0246510
    [Crossref] [Google Scholar]
  36. 36.
    Gluza P. 2021.. From nucleotide sugars to polysaccharides: How do plants control the delivery of substrates for cell wall biosynthesis and protein glycosylation? PhD Thesis, Univ. Melbourne
    [Google Scholar]
  37. 37.
    Gondolf VM, Stoppel R, Ebert B, Rautengarten C, Liwanag AJ, et al. 2014.. A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis. . BMC Plant Biol. 14::344
    [Crossref] [Google Scholar]
  38. 38.
    Gould SB, Garg SG, Martin WF. 2016.. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. . Trends Microbiol. 24::52534
    [Crossref] [Google Scholar]
  39. 39.
    Gu X, Wages CJ, Davis KE, Guyett PJ, Bar-Peled M. 2009.. Enzymatic characterization and comparison of various poaceae UDP-GlcA 4-epimerase isoforms. . J. Biochem. 146::52734
    [Crossref] [Google Scholar]
  40. 40.
    Guyett P, Glushka J, Gu X, Bar-Peled M. 2009.. Real-time NMR monitoring of intermediates and labile products of the bifunctional enzyme UDP-apiose/UDP-xylose synthase. . Carbohydr. Res. 344::107278
    [Crossref] [Google Scholar]
  41. 41.
    Hadley B, Litfin T, Day CJ, Haselhorst T, Zhou Y, Tiralongo J. 2019.. Nucleotide sugar transporter SLC35 family structure and function. . Comput. Struct. Biotechnol. J. 17::112334
    [Crossref] [Google Scholar]
  42. 42.
    Handford M, Rodríguez-Furlán C, Marchant L, Segura M, Gómez D, et al. 2012.. Arabidopsis thaliana AtUTr7 encodes a Golgi-localized UDP–glucose/UDP–galactose transporter that affects lateral root emergence. . Mol. Plant 5::126380
    [Crossref] [Google Scholar]
  43. 43.
    Handford MG, Sicilia F, Brandizzi F, Chung JH, Dupree P. 2004.. Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. . Mol. Genet. Genom. 272::397410
    [Crossref] [Google Scholar]
  44. 44.
    Harper AD, Bar-Peled M. 2002.. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. . Plant Physiol. 130::218898
    [Crossref] [Google Scholar]
  45. 45.
    Haydon MJ, Bell LJ, Webb AA. 2011.. Interactions between plant circadian clocks and solute transport. . J. Exp. Bot. 62::233348
    [Crossref] [Google Scholar]
  46. 46.
    Hilgers EJA, Staehr P, Flugge UI, Hausler RE. 2018.. The xylulose 5-phosphate/phosphate translocator supports triose phosphate, but not phosphoenolpyruvate transport across the inner envelope membrane of plastids in Arabidopsis thaliana mutant plants. . Front. Plant Sci. 9::1461
    [Crossref] [Google Scholar]
  47. 47.
    Huq MA, Akter S, Nou IS, Kim HT, Jung YJ, Kang KK. 2016.. Identification of functional SNPs in genes and their effects on plant phenotypes. . J. Plant Biotechnol. 43::111
    [Crossref] [Google Scholar]
  48. 48.
    Jing B, Ishikawa T, Soltis N, Inada N, Liang Y, et al. 2021.. The Arabidopsis thaliana nucleotide sugar transporter GONST2 is a functional homolog of GONST1. . Plant Direct 5::e00309
    [Crossref] [Google Scholar]
  49. 49.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  50. 50.
    Knappe S, Flügge U-I, Fischer K. 2003.. Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. . Plant Physiol. 131::117890
    [Crossref] [Google Scholar]
  51. 51.
    Kobayashi M, Kouzu N, Inami A, Toyooka K, Konishi Y, et al. 2011.. Characterization of Arabidopsis CTP:3-deoxy-d-manno-2-octulosonate cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis. . Plant Cell Physiol. 52::183243
    [Crossref] [Google Scholar]
  52. 52.
    Konishi T, Takeda T, Miyazaki Y, Ohnishi-Kameyama M, Hayashi T, et al. 2007.. A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. . Glycobiology 17::34554
    [Crossref] [Google Scholar]
  53. 53.
    Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. 2016.. Metabolism of l-arabinose in plants. . J. Plant Res. 129::78192
    [Crossref] [Google Scholar]
  54. 54.
    Kozlov G, Gehring K. 2020.. Calnexin cycle—structural features of the ER chaperone system. . FEBS J. 287::432240
    [Crossref] [Google Scholar]
  55. 55.
    Lee Y, Nishizawa T, Takemoto M, Kumazaki K, Yamashita K, et al. 2017.. Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity. . Nat. Plants 3::82532
    [Crossref] [Google Scholar]
  56. 56.
    Li LX, Rautengarten C, Heazlewood JL, Doering TL. 2018.. UDP-glucuronic acid transport is required for virulence of Cryptococcus neoformans. . mBio 9::e02319-17
    [Google Scholar]
  57. 57.
    Li Z, Wang P, You C, Yu J, Zhang X, et al. 2020.. Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. . New Phytol. 226::173852
    [Crossref] [Google Scholar]
  58. 58.
    Liu M, Zhu J, Huang H, Chen Y, Dong Z. 2023.. Comparative analysis of nascent RNA sequencing methods and their applications in studies of cotranscriptional splicing dynamics. . Plant Cell 35::430424
    [Crossref] [Google Scholar]
  59. 59.
    Liu X, Luo M, Li M, Wei J. 2022.. Transcriptomic analysis reveals lncRNAs associated with flowering of Angelica sinensis during vernalization. . Curr. Issues Mol. Biol. 44::186788
    [Crossref] [Google Scholar]
  60. 60.
    Liwanag AJ, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, et al. 2012.. Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. . Plant Cell 24::502436
    [Crossref] [Google Scholar]
  61. 61.
    Lund CH, Bromley JR, Stenbaek A, Rasmussen RE, Scheller HV, Sakuragi Y. 2015.. A reversible Renilla luciferase protein complementation assay for rapid identification of protein–protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus. . J. Exp. Bot. 66::8597
    [Crossref] [Google Scholar]
  62. 62.
    Ma X, Zhang C, Kim DY, Huang Y, Chatt E, et al. 2021.. Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. . Plant Physiol. 185::194365
    [Crossref] [Google Scholar]
  63. 63.
    Mandon EC, Milla ME, Kempner E, Hirschberg CB. 1994.. Purification of the Golgi adenosine 3′-phosphate 5′-phosphosulfate transporter, a homodimer within the membrane. . PNAS 91::1070711
    [Crossref] [Google Scholar]
  64. 64.
    Mariette A, Curry TM, Urbanowicz BR, Ebert B. 2023.. Plant cell wall glycosyltransferases: from sequence to structure and function. . In Plant Cell Walls: Research Milestones and Conceptual Insights, ed. A Geitmann , pp. 2950. Boca Raton, FL:: CRC Press. , 1st ed.. Recent book chapter comprehensively discussing glycosyl-transferases, the enzymes assembling cell wall polysaccharides and glycoconjugates.
    [Google Scholar]
  65. 65.
    Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. 2021.. Not just a simple sugar: arabinose metabolism and function in plants. . Plant Cell Physiol. 62::1791812
    [Crossref] [Google Scholar]
  66. 66.
    Maszczak-Seneczko D, Sosicka P, Kaczmarek B, Majkowski M, Luzarowski M, et al. 2015.. UDP-galactose (SLC35A2) and UDP-N-acetylglucosamine (SLC35A3) transporters form glycosylation-related complexes with mannoside acetylglucosaminyltransferases (Mgats). . J. Biol. Chem. 290::1547586
    [Crossref] [Google Scholar]
  67. 67.
    Maszczak-Seneczko D, Sosicka P, Olczak T, Jakimowicz P, Majkowski M, Olczak M. 2013.. UDP-N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate. . J. Biol. Chem. 288::2185060
    [Crossref] [Google Scholar]
  68. 68.
    McBride HM. 2018.. Mitochondria and endomembrane origins. . Curr. Biol. 28::R36772
    [Crossref] [Google Scholar]
  69. 69.
    McKown AD, Klapste J, Guy RD, Geraldes A, Porth I, et al. 2014.. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. . New Phytol. 203::53553
    [Crossref] [Google Scholar]
  70. 70.
    Milewski S, Gabriel I, Olchowy J. 2006.. Enzymes of UDP-GlcNAc biosynthesis in yeast. . Yeast 23::114
    [Crossref] [Google Scholar]
  71. 71.
    Molhoj M, Verma R, Reiter WD. 2003.. The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. . Plant J. 35::693703
    [Crossref] [Google Scholar]
  72. 72.
    Mortimer JC, Yu X, Albrecht S, Sicilia F, Huichalaf M, et al. 2013.. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis. . Plant Cell 25::188194
    [Crossref] [Google Scholar]
  73. 73.
    Munoz P, Norambuena L, Orellana A. 1996.. Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. . Plant Physiol. 112::158594 Groundbreaking study first describing nucleotide sugar transport activity in plants.
    [Crossref] [Google Scholar]
  74. 74.
    Naseem S, Parrino SM, Buenten DM, Konopka JB. 2012.. Novel roles for GlcNAc in cell signaling. . Commun. Integr. Biol. 5::15659
    [Crossref] [Google Scholar]
  75. 75.
    Niemann MC, Bartrina I, Ashikov A, Weber H, Novak O, et al. 2015.. Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. . PNAS 112::29196
    [Crossref] [Google Scholar]
  76. 76.
    Niemann MC, Werner T. 2015.. Endoplasmic reticulum: where nucleotide sugar transport meets cytokinin control mechanisms. . Plant. Signal. Behav. 10::e1072668
    [Crossref] [Google Scholar]
  77. 77.
    Nji E, Gulati A, Qureshi AA, Coincon M, Drew D. 2019.. Structural basis for the delivery of activated sialic acid into Golgi for sialyation. . Nat. Struct. Mol. Biol. 26::41523
    [Crossref] [Google Scholar]
  78. 78.
    Norambuena L, Marchant L, Berninsone P, Hirschberg CB, Silva H, Orellana A. 2002.. Transport of UDP-galactose in plants. Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactos/UDP-glucose transporter. . J. Biol. Chem. 277::3292329
    [Crossref] [Google Scholar]
  79. 79.
    Norambuena L, Nilo R, Handford M, Reyes F, Marchant L, et al. 2005.. AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. . Planta 222:(3):52129
    [Crossref] [Google Scholar]
  80. 80.
    Orellana A, Moraga C, Araya M, Moreno A. 2016.. Overview of nucleotide sugar transporter gene family functions across multiple species. . J. Mol. Biol. 428::315065
    [Crossref] [Google Scholar]
  81. 81.
    Parker JL, Corey RA, Stansfeld PJ, Newstead S. 2019.. Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer. . Nat. Commun. 10::4657
    [Crossref] [Google Scholar]
  82. 82.
    Parker JL, Newstead S. 2017.. Structural basis of nucleotide sugar transport across the Golgi membrane. . Nature 551::52124 First study that solved the crystal structure of an NST, specifically the GDP-mannose transporter Vrg4 from baker's yeast.
    [Crossref] [Google Scholar]
  83. 83.
    Parra-Rojas JP, Largo-Gosens A, Carrasco T, Celiz-Balboa J, Arenas-Morales V, et al. 2019.. New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. . J. Exp. Bot. 70::507188
    [Crossref] [Google Scholar]
  84. 84.
    Parsons HT, Stevens TJ, McFarlane HE, Vidal-Melgosa S, Griss J, et al. 2019.. Separating Golgi proteins from cis to trans reveals underlying properties of cisternal localization. . Plant Cell 31::201034
    [Crossref] [Google Scholar]
  85. 85.
    Pattathil S, Harper AD, Bar-Peled M. 2005.. Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. . Planta 221::53848
    [Crossref] [Google Scholar]
  86. 86.
    Pattison RJ, Amtmann A. 2009.. N-glycan production in the endoplasmic reticulum of plants. . Trends Plant Sci. 14::9299
    [Crossref] [Google Scholar]
  87. 87.
    Pauly M, Gawenda N, Wagner C, Fischbach P, Ramirez V, et al. 2019.. The suitability of orthogonal hosts to study plant cell wall biosynthesis. . Plants 8::516
    [Crossref] [Google Scholar]
  88. 88.
    Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, et al. 2007.. The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. . Plant Cell 19::23755
    [Crossref] [Google Scholar]
  89. 89.
    Poulhazan A, Arnold AA, Mentink-Vigier F, Muszynski A, Azadi P, et al. 2024.. Molecular-level architecture of Chlamydomonas reinhardtii’s glycoprotein-rich cell wall. . Nat. Commun. 15::986
    [Crossref] [Google Scholar]
  90. 90.
    Rautengarten C, Birdseye D, Pattathil S, McFarlane HE, Saez-Aguayo S, et al. 2017.. The elaborate route for UDP-arabinose delivery into the Golgi of plants. . PNAS 114::426166
    [Crossref] [Google Scholar]
  91. 91.
    Rautengarten C, Ebert B, Herter T, Petzold CJ, Ishii T, et al. 2011.. The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis. . Plant Cell 23::137390
    [Crossref] [Google Scholar]
  92. 92.
    Rautengarten C, Ebert B, Liu L, Stonebloom S, Smith-Moritz AM, et al. 2016.. The Arabidopsis Golgi-localized GDP-l-fucose transporter is required for plant development. . Nat. Commun. 7::12119
    [Crossref] [Google Scholar]
  93. 93.
    Rautengarten C, Ebert B, Moreno I, Temple H, Herter T, et al. 2014.. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. . PNAS 111::1156368 Elegant study detecting selective nucleotide sugar transport into proteoliposomes by mass spectrometry and identifying the first UDP-Rha transporter.
    [Crossref] [Google Scholar]
  94. 94.
    Ren Y, Hansen SF, Ebert B, Lau J, Scheller HV. 2014.. Site-directed mutagenesis of IRX9, IRX9L and IRX14 proteins involved in xylan biosynthesis: glycosyltransferase activity is not required for IRX9 function in Arabidopsis. . PLOS ONE 9::e105014
    [Crossref] [Google Scholar]
  95. 95.
    Reuhs BL, Glenn J, Stephens SB, Kim JS, Christie DB, et al. 2004. l-Galactose replaces l-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the l-fucose-deficient mur1 Arabidopsis mutant. . Planta 219::14757
    [Crossref] [Google Scholar]
  96. 96.
    Reyes F, Leon G, Donoso M, Brandizzi F, Weber AP, Orellana A. 2010.. The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. . Plant J. 61::42335
    [Crossref] [Google Scholar]
  97. 97.
    Reyes F, Marchant L, Norambuena L, Nilo R, Silva H, Orellana A. 2006.. AtUTr1, a UDP-glucose/UDP-galactose transporter from Arabidopsis thaliana, is located in the endoplasmic reticulum and up-regulated by the unfolded protein response. . J. Biol. Chem. 281::914551 First description of the functional role of an NST in planta.
    [Crossref] [Google Scholar]
  98. 98.
    Roach M, Gerber L, Sandquist D, Gorzsas A, Hedenstrom M, et al. 2012.. Fructokinase is required for carbon partitioning to cellulose in aspen wood. . Plant J. 70::96777
    [Crossref] [Google Scholar]
  99. 99.
    Rollwitz I, Santaella M, Hille D, Flugge UI, Fischer K. 2006.. Characterization of AtNST-KT1, a novel UDP-galactose transporter from Arabidopsis thaliana. . FEBS Lett. 580::424651 Innovative study that demonstrated transport for a plant NST by utilizing a reconstituted proteoliposome system, thereby characterizing the first UDP-Gal transporter.
    [Crossref] [Google Scholar]
  100. 100.
    Saez-Aguayo S, Parra-Rojas JP, Sepulveda-Orellana P, Celiz-Balboa J, Arenas-Morales V, et al. 2021.. Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. . Plant Physiol. 185::91433
    [Crossref] [Google Scholar]
  101. 101.
    Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, et al. 2017.. UUAT1 is a Golgi-localized UDP-uronic acid transporter that modulates the polysaccharide composition of Arabidopsis seed mucilage. . Plant Cell 29::12943
    [Crossref] [Google Scholar]
  102. 102.
    Saint-Jore-Dupas C, Nebenführ A, Boulaflous A, Follet-Gueye ML, Plasson C, et al. 2006.. Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. . Plant Cell 18::3182200
    [Crossref] [Google Scholar]
  103. 103.
    Scheller HV, Ulvskov P. 2010.. Hemicelluloses. . Annu. Rev. Plant Biol. 61::26389
    [Crossref] [Google Scholar]
  104. 104.
    Sechet J, Htwe S, Urbanowicz B, Agyeman A, Feng W, et al. 2018.. Suppression of Arabidopsis GGLT1 affects growth by reducing the l-galactose content and borate cross-linking of rhamnogalacturonan-II. . Plant J. 96::103650
    [Crossref] [Google Scholar]
  105. 105.
    Seifert GJ. 2004.. Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. . Curr. Opin. Plant Biol. 7::27784
    [Crossref] [Google Scholar]
  106. 106.
    Seifert GJ. 2018.. Mad moves of the building blocks—nucleotide sugars find unexpected paths into cell walls. . J. Exp. Bot. 69::9057
    [Crossref] [Google Scholar]
  107. 107.
    Seifert GJ, Barber C, Wells B, Dolan L, Roberts K. 2002.. Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-d-galactose into cell wall polymers. . Curr. Biol. 12::184045
    [Crossref] [Google Scholar]
  108. 108.
    Shiri Y, Solouki M, Ebrahimie E, Emamjomeh A, Zahiri J. 2020.. Gibberellin causes wide transcriptional modifications in the early stage of grape cluster development. . Genomics 112::82030
    [Crossref] [Google Scholar]
  109. 109.
    Smyth KM, Marchant A. 2013.. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria. . Carbohydr. Res. 380::7075
    [Crossref] [Google Scholar]
  110. 110.
    Sweetlove LJ, Fernie AR. 2018.. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. . Nat. Commun. 9::2136
    [Crossref] [Google Scholar]
  111. 111.
    Takashima S, Seino J, Nakano T, Fujiyama K, Tsujimoto M, et al. 2009.. Analysis of CMP-sialic acid transporter-like proteins in plants. . Phytochemistry 70::197381
    [Crossref] [Google Scholar]
  112. 112.
    Tang SN, Barnum CR, Szarzanowicz MJ, Sirirungruang S, Shih PM. 2023.. Harnessing plant sugar metabolism for glycoengineering. . Biology 12::1505
    [Crossref] [Google Scholar]
  113. 113.
    Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarría-Poza A, et al. 2022.. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. . Nat. Plants 8::65669
    [Crossref] [Google Scholar]
  114. 114.
    Temple H, Saez-Aguayo S, Reyes FC, Orellana A. 2016.. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. . Glycobiology 26::91325
    [Crossref] [Google Scholar]
  115. 115.
    Urbanowicz BR, Pena MJ, Moniz HA, Moremen KW, York WS. 2014.. Two Arabidopsis proteins synthesize acetylated xylan in vitro. . Plant J. 80::197206
    [Crossref] [Google Scholar]
  116. 116.
    Utz D, Handford M. 2015.. VvGONST-A and VvGONST-B are Golgi-localised GDP-sugar transporters in grapevine (Vitis vinifera L.). . Plant Sci. 231::19197
    [Crossref] [Google Scholar]
  117. 117.
    Vastermark A, Almen MS, Simmen MW, Fredriksson R, Schioth HB. 2011.. Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae. . BMC Evol. Biol. 11::123
    [Crossref] [Google Scholar]
  118. 118.
    Voiniciuc C, Dama M, Gawenda N, Stritt F, Pauly M. 2019.. Mechanistic insights from plant heteromannan synthesis in yeast. . PNAS 116::52227
    [Crossref] [Google Scholar]
  119. 119.
    Wang R, Dobritsa AA. 2021.. Loss of THIN EXINE2 disrupts multiple processes in the mechanism of pollen exine formation. . Plant Physiol. 187::13357
    [Crossref] [Google Scholar]
  120. 120.
    Weber AP, Linka M, Bhattacharya D. 2006.. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. . Eukaryot. Cell 5::60912
    [Crossref] [Google Scholar]
  121. 121.
    Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W, et al. 2019.. A hybrid approach enabling large-scale glycomic analysis of post-Golgi vesicles reveals a transport route for polysaccharides. . Plant Cell 31::62744
    [Crossref] [Google Scholar]
  122. 122.
    Wong GY, Millar AA. 2022.. TRUEE; a bioinformatic pipeline to define the functional microRNA targetome of Arabidopsis. . Plant J. 110::147692
    [Crossref] [Google Scholar]
  123. 123.
    Wulff C, Norambuena L, Orellana A. 2000.. GDP-fucose uptake into the Golgi apparatus during xyloglucan biosynthesis requires the activity of a transporter-like protein other than the UDP-glucose transporter. . Plant Physiol. 122::86777
    [Crossref] [Google Scholar]
  124. 124.
    York WS, O'Neill MA. 2008.. Biochemical control of xylan biosynthesis—which end is up?. Curr. Opin. Plant Biol. 11::25865
    [Crossref] [Google Scholar]
  125. 125.
    Zeng W, Lampugnani ER, Picard KL, Song L, Wu AM, et al. 2016.. Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus. . Plant Physiol. 171::93109
    [Crossref] [Google Scholar]
  126. 126.
    Zhang B, Liu X, Qian Q, Liu L, Dong G, et al. 2011.. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. . PNAS 108::511015
    [Crossref] [Google Scholar]
  127. 127.
    Zhao X, Ebert B, Zhang B, Liu H, Zhang Y, et al. 2020.. UDP-Api/UDP-Xyl synthases affect plant development by controlling the content of UDP-Api to regulate the RG-II-borate complex. . Plant J. 104::25267
    [Crossref] [Google Scholar]
  128. 128.
    Zhao X, Liu N, Shang N, Zeng W, Ebert B, et al. 2018.. Three UDP-xylose transporters participate in xylan biosynthesis by conveying cytosolic UDP-xylose into the Golgi lumen in Arabidopsis. . J. Exp. Bot. 69::112534
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-083123-075017
Loading
/content/journals/10.1146/annurev-arplant-083123-075017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error