1932

Abstract

Plant cells are defined by their walls, which, in addition to providing structural support and shape, are an integral component of the nonliving extracellular space called the apoplast. Cell wall thickenings are present in many different root cell types. They come in a variety of simple and more complex structures with varying composition of lignin and suberin and can change in response to environmental stressors. The majority of these root cell wall thickenings and cell types that contain them are absent in the model plant despite being present in most plant species. As a result, we know very little regarding their developmental control and function. Increasing evidence suggests that these structures are critical for responding to and facilitating adaptation to a wide array of stresses that a plant root experiences. These structures function in blocking apoplastic transport, oxygen, and water loss and enhancing root penetrative strength. In this review, we describe the most common types of cell wall thickenings in the outer cell types of plant roots—the velamen, exodermal thickenings, the sclerenchyma, and phi thickenings. Their cell type dependency, morphology, composition, environmental responsiveness, and genetic control in vascular plants are discussed, as well as their potential to generate more stress-resilient roots in the face of a changing climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-112451
2025-05-20
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/76/1/annurev-arplant-102820-112451.html?itemId=/content/journals/10.1146/annurev-arplant-102820-112451&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aleamotu'a M, Baker JK, McCurdy DW, Collings DA. 2022.. Phi thickenings in Brassica oleracea roots are induced by osmotic stress and mechanical effects, both involving jasmonic acid. . J. Exp. Bot. 73:(3):75669
    [Crossref] [Google Scholar]
  2. 2.
    Aleamotu'a M, McCurdy DW, Collings DA. 2019.. Phi thickenings in roots: novel secondary wall structures responsive to biotic and abiotic stresses. . J. Exp. Bot. 70:(18):463142
    [Crossref] [Google Scholar]
  3. 3.
    Aleamotu'a M, Tai Y-T, McCurdy DW, Collings DA. 2018.. Developmental biology and induction of Phi thickenings by abiotic stress in roots of the Brassicaceae. . Plants 7:(2):47 Use of confocal imaging to demonstrate the environmental inducibility of phi thickening networks in Brassica.
    [Crossref] [Google Scholar]
  4. 4.
    Andersen TG, Molina D, Kilian J, Franke RB, Ragni L, Geldner N. 2021.. Tissue-autonomous phenylpropanoid production is essential for establishment of root barriers. . Curr. Biol. 31:(5):96577.e5
    [Crossref] [Google Scholar]
  5. 5.
    Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, et al. 2016.. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. . Cell 164:(3):44759 Demonstration that endodermal suberin is environmentally inducible and functions in nutrient homeostasis.
    [Crossref] [Google Scholar]
  6. 6.
    Barbosa ICR, De Bellis D, Flückiger I, Bellani E, Grangé-Guerment M, et al. 2023.. Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci. . Nat. Commun. 14:(1):1626
    [Crossref] [Google Scholar]
  7. 7.
    Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, et al. 2009.. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. . PLOS Genet. 5:(5):e1000492
    [Crossref] [Google Scholar]
  8. 8.
    Benzing DH, Ott DW, Friedman WE. 1982.. Roots of Sobralia macrantha (Orchidaceae): structure and function of the velamen-exodermis complex. . Am. J. Bot. 69:(4):60814
    [Crossref] [Google Scholar]
  9. 9.
    Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, et al. 2011.. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. . Curr. Biol. 21:(11):91726
    [Crossref] [Google Scholar]
  10. 10.
    Boerjan W, Ralph J, Baucher M. 2003.. Lignin biosynthesis. . Annu. Rev. Plant Biol. 54::51946
    [Crossref] [Google Scholar]
  11. 11.
    Bokor B, Soukup M, Vaculík M, Vd'ačný P, Weidinger M, et al. 2019.. Silicon uptake and localisation in date palm (Phoenix dactylifera)—a unique association with Sclerenchyma. . Front. Plant Sci. 10::988
    [Crossref] [Google Scholar]
  12. 12.
    Bonacorsi NK, Seago JL Jr. 2016.. Root development and structure in seedlings of Ginkgo biloba. . Am. J. Bot. 103:(2):35563
    [Crossref] [Google Scholar]
  13. 13.
    Bonnett HT Jr. 1968.. The root endodermis: fine structure and function. . J. Cell Biol. 37:(1):199205
    [Crossref] [Google Scholar]
  14. 14.
    Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, et al. 2007.. A high-resolution root spatiotemporal map reveals dominant expression patterns. . Science 318:(5851):8016
    [Crossref] [Google Scholar]
  15. 15.
    Brundrett MC, Enstone DE, Peterson CA. 1988.. A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. . Protoplasma 146:(2):13342
    [Crossref] [Google Scholar]
  16. 16.
    Burr B, Barthlott W. 1991.. On a velamen-like tissue in the root cortex of orchids. . Flora 185:(5):31323
    [Crossref] [Google Scholar]
  17. 17.
    Calvo-Polanco M, Ribeyre Z, Dauzat M, Reyt G, Hidalgo-Shrestha C, et al. 2021.. Physiological roles of Casparian strips and suberin in the transport of water and solutes. . New Phytol. 232:(6):2295307
    [Crossref] [Google Scholar]
  18. 18.
    Campos R, Goff J, Rodriguez-Furlan C, Van Norman JM. 2020.. The Arabidopsis receptor kinase IRK is polarized and represses specific cell divisions in roots. . Dev. Cell 52:(2):18395.e4
    [Crossref] [Google Scholar]
  19. 19.
    Cantó-Pastor A, Kajala K, Shaar-Moshe L, Manzano C, Timilsena P, et al. 2024.. A suberized exodermis is required for tomato drought tolerance. . Nat. Plants 10::11830 The endodermal suberin gene module is exclusively present in the tomato exodermis.
    [Crossref] [Google Scholar]
  20. 20.
    Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, et al. 2010.. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. . Nature 465:(7296):31621
    [Crossref] [Google Scholar]
  21. 21.
    Caspary R. 1865.. Bemerkungen über die Schutzscheide und die Bildung des Stammes und der Wurzel. In Jahrbücher für wissenschaftliche Botanik, ed. N Pringscheim , pp. 101124. Leipzig, Ger:.: Verlag von Wilh. Engelmann
    [Google Scholar]
  22. 22.
    Cheng H, Jiang Z-Y, Liu Y, Ye Z-H, Wu M-L, et al. 2014.. Metal (Pb, Zn and Cu) uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization. . Tree Physiol. 34:(6):64656
    [Crossref] [Google Scholar]
  23. 23.
    Chomicki G, Bidel LPR, Ming F, Coiro M, Zhang X, et al. 2015.. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. . New Phytol. 205:(3):133041
    [Crossref] [Google Scholar]
  24. 24.
    Clark NM, Hinde E, Winter CM, Fisher AP, Crosti G, et al. 2016.. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. . eLife 5::e14770
    [Crossref] [Google Scholar]
  25. 25.
    Clarkson DT, Robards AW, Stephens JE, Stark M. 1987.. Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers. . Plant Cell Environ. 10:(1):8393
    [Crossref] [Google Scholar]
  26. 26.
    Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, et al. 2007.. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. . Science 316:(5823):42125
    [Crossref] [Google Scholar]
  27. 27.
    de Bastos Pazini J, da Silva Martins JF, da Rosa Dorneles K, Lopes Crizel R, da Silva FF, et al. 2022.. Morphoanatomical and biochemical factors associated with rice resistance to the South American rice water weevil, Oryzophagus oryzae (Coleoptera: Curculionidae). . Sci. Rep. 12:(1):22480
    [Crossref] [Google Scholar]
  28. 28.
    Degenhardt B, Gimmler H. 2000.. Cell wall adaptations to multiple environmental stresses in maize roots. . J. Exp. Bot. 51:(344):595603
    [Crossref] [Google Scholar]
  29. 29.
    de Lucas M, Pu L, Turco G, Gaudinier A, Morao AK, et al. 2016.. Transcriptional regulation of Arabidopsis Polycomb Repressive Complex 2 coordinates cell-type proliferation and differentiation. . Plant Cell 28:(10):261631
    [Crossref] [Google Scholar]
  30. 30.
    De Simone O, Haase K, Müller E, Junk WJ, Hartmann K, et al. 2003.. Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. . Plant Physiol. 132:(1):20617
    [Crossref] [Google Scholar]
  31. 31.
    Doblas VG, Smakowska-Luzan E, Fujita S, Alassimone J, Barberon M, et al. 2017.. Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. . Science 355::28084
    [Crossref] [Google Scholar]
  32. 32.
    Company-Arumí D, Montells C, Iglesias M, Marguí E, Verdaguer D, et al. 2023.. A functional exodermal suberin is key for plant nutrition and growth in potato. . bioRxiv 2023.09.14.557788. https://www.biorxiv.org/content/10.1101/2023.09.14.557788v1
    [Google Scholar]
  33. 33.
    Einzmann HJR, Schickenberg N, Zotz G. 2019.. Variation in root morphology of epiphytic orchids along small-scale and large-scale moisture gradients. . Acta Bot. Brasilica 34:(1):6673
    [Crossref] [Google Scholar]
  34. 34.
    Ejiri M, Sawazaki Y, Shiono K. 2020.. Some accessions of Amazonian wild rice (Oryza glumaepatula) constitutively form a barrier to radial oxygen loss along adventitious roots under aerated conditions. . Plants 9:(7):880
    [Crossref] [Google Scholar]
  35. 35.
    Ejiri M, Shiono K. 2019.. Prevention of radial oxygen loss is associated with exodermal suberin along adventitious roots of annual wild species of Echinochloa. . Front. Plant Sci. 10::254
    [Crossref] [Google Scholar]
  36. 36.
    Ejiri M, Shiono K. 2020.. Groups of multi-cellular passage cells in the root exodermis of Echinochloa crus-galli varieties lack not only suberin lamellae but also lignin deposits. . Plant Signal. Behav. 15:(2):1719749
    [Crossref] [Google Scholar]
  37. 37.
    Emonet A, Zhou F, Vacheron J, Heiman CM, Dénervaud Tendon V, et al. 2021.. Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria. . Curr. Biol. 31:(5):101228.e7
    [Crossref] [Google Scholar]
  38. 38.
    Enstone DE, Peterson CA. 1992.. A rapid fluorescence technique to probe the permeability of the root apoplast. . Can. J. Bot. 70:(7):1493501
    [Crossref] [Google Scholar]
  39. 39.
    Enstone DE, Peterson CA, Ma F. 2002.. Root endodermis and exodermis: structure, function, and responses to the environment. . J. Plant Growth Regul. 21:(4):33551
    [Crossref] [Google Scholar]
  40. 40.
    Ezquer I, Salameh I, Colombo L, Kalaitzis P. 2020.. Plant cell walls tackling climate change: biotechnological strategies to improve crop adaptations and photosynthesis in response to global warming. . Plants 9:(2):212
    [Crossref] [Google Scholar]
  41. 41.
    Fernandez-Garcia N, Lopez-Perez L, Hernandez M, Olmos E. 2009.. Role of phi cells and the endodermis under salt stress in Brassica oleracea. . New Phytol. 181:(2):34760
    [Crossref] [Google Scholar]
  42. 42.
    Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK. 2011.. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). . J. Exp. Bot. 62:(6):200111
    [Crossref] [Google Scholar]
  43. 43.
    Fröschel C, Komorek J, Attard A, Marsell A, Lopez-Arboleda WA, et al. 2021.. Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. . Cell Host Microbe 29:(2):299310.e7
    [Crossref] [Google Scholar]
  44. 44.
    Geldner N. 2013.. The endodermis. . Annu. Rev. Plant Biol. 64::53158
    [Crossref] [Google Scholar]
  45. 45.
    Gerrath JM, Covington L, Doubt J, Larson DW. 2002.. Occurrence of phi thickenings is correlated with gymnosperm systematics. . Can. J. Bot. 80:(8):85260
    [Crossref] [Google Scholar]
  46. 46.
    Gerrath JM, Matthes U, Purich M, Larson DW. 2005.. Root environmental effects on phi thickening production and root morphology in three gymnosperms. . Can. J. Bot. 83:(4):37985
    [Crossref] [Google Scholar]
  47. 47.
    Haas DL, Carothers ZB, Robbins RR. 1976.. Observations on the phi-thickenings and casparian strips in Pelargonium roots. . Am. J. Bot. 63:(6):86367
    [Google Scholar]
  48. 48.
    Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, et al. 2000.. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. . Cell 101:(5):55567
    [Crossref] [Google Scholar]
  49. 49.
    Henrique P de C, Alves JD, Goulart P de FP, Deuner S, Silveira NM, et al. 2010.. Características fisiológicas e anatômicas de plantas de sibipiruna submetidas à hipoxia. . Cienc. Rural 40:(1):7076
    [Crossref] [Google Scholar]
  50. 50.
    Herbette S, Bouchet B, Brunel N, Bonnin E, Cochard H, Guillon F. 2015.. Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula × alba. . Ann. Bot. 115:(2):18799
    [Crossref] [Google Scholar]
  51. 51.
    Holbein J, Franke RB, Marhavý P, Fujita S, Górecka M, et al. 2019.. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes. . Plant J. 100:(2):22136
    [Crossref] [Google Scholar]
  52. 52.
    Holbein J, Shen D, Andersen TG. 2021.. The endodermal passage cell—just another brick in the wall?. New Phytol. 230:(4):132128
    [Crossref] [Google Scholar]
  53. 53.
    Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, et al. 2013.. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. . PNAS 110:(35):14498503
    [Crossref] [Google Scholar]
  54. 54.
    Idris NA, Aleamotu‘a M, McCurdy DW, Collings DA. 2021.. The orchid velamen: a model system for studying patterned secondary cell wall development?. Plants 10:(7):1358 Demonstration of orchid velamen cell wall organization, composition, and associated cytoskeletal patterning.
    [Crossref] [Google Scholar]
  55. 55.
    Idris NA, Collings DA. 2015.. The life of phi: the development of phi thickenings in roots of the orchids of the genus Miltoniopsis. . Planta 241:(2):489506
    [Crossref] [Google Scholar]
  56. 56.
    Idris NA, Collings DA. 2019.. The induction and roles played by phi thickenings in orchid roots. . Plants 8:(12):574
    [Crossref] [Google Scholar]
  57. 57.
    Jiménez J de la C, Kotula L, Veneklaas EJ, Colmer TD. 2019.. Root-zone hypoxia reduces growth of the tropical forage grass Urochloa humidicola in high-nutrient but not low-nutrient conditions. . Ann. Bot. 124:(6):101932
    [Crossref] [Google Scholar]
  58. 58.
    Joca TAC, de Oliveira DC, Zotz G, Cardoso JCF, Moreira ASFP. 2020.. Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae. . Protoplasma 257:(1):10318
    [Crossref] [Google Scholar]
  59. 59.
    Kajala K, Gouran M, Shaar-Moshe L, Mason GA, Rodriguez-Medina J, et al. 2021.. Innovation, conservation, and repurposing of gene function in root cell type development. . Cell 184::333348.E19
    [Crossref] [Google Scholar]
  60. 60.
    Kalmbach L, Hématy K, De Bellis D, Barberon M, Fujita S, et al. 2017.. Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. . Nat. Plants 3::17058
    [Crossref] [Google Scholar]
  61. 61.
    Kapp N, Barnes WJ, Richard TL, Anderson CT. 2015.. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon. . J. Exp. Bot. 66:(14):4295304
    [Crossref] [Google Scholar]
  62. 62.
    Karahara I, Shibaoka H. 1992.. Isolation of Casparian strips from pea roots. . Plant Cell Physiol. 33:(5):55561
    [Google Scholar]
  63. 63.
    Kim JI, Hidalgo-Shrestha C, Bonawitz ND, Franke RB, Chapple C. 2021.. Spatio-temporal control of phenylpropanoid biosynthesis by inducible complementation of a cinnamate 4-hydroxylase mutant. . J. Exp. Bot. 72:(8):306173
    [Crossref] [Google Scholar]
  64. 64.
    Kotula L, Ranathunge K, Schreiber L, Steudle E. 2009.. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. . J. Exp. Bot. 60:(7):215567
    [Crossref] [Google Scholar]
  65. 65.
    Kotula L, Schreiber L, Colmer TD, Nakazono M. 2017.. Anatomical and biochemical characterisation of a barrier to radial O2 loss in adventitious roots of two contrasting Hordeum marinum accessions. . Funct. Plant Biol. 44:(9):84557
    [Crossref] [Google Scholar]
  66. 66.
    Kováč J, Lux A, Soukup M, Weidinger M, Gruber D, et al. 2020.. A new insight on structural and some functional aspects of peri-endodermal thickenings, a specific layer in Noccaea caerulescens roots. . Ann. Bot. 126:(3):42334
    [Crossref] [Google Scholar]
  67. 67.
    Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, et al. 2020.. Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. . Plant Cell Environ. 43:(2):34457
    [Crossref] [Google Scholar]
  68. 68.
    Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, et al. 2014.. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. . Plant Cell Environ. 37:(7):165671
    [Crossref] [Google Scholar]
  69. 69.
    Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, et al. 2005.. Transcription switches for protoxylem and metaxylem vessel formation. . Genes Dev. 19:(16):185560
    [Crossref] [Google Scholar]
  70. 70.
    Leal AR, Belo J, Beeckman T, Barros PM, Oliveira MM. 2022.. The combined effect of heat and osmotic stress on suberization of roots. . Cells 11:(15):2341
    [Crossref] [Google Scholar]
  71. 71.
    Lehmann H, Stelzer R, Holzamer S, Kunz U, Gierth M. 2000.. Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots. . Planta 211:(6):81622
    [Crossref] [Google Scholar]
  72. 72.
    Li J-W, Chen X-D, Hu X-Y, Ma L, Zhang S-B. 2018.. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought. . Planta 247:(1):6997
    [Crossref] [Google Scholar]
  73. 73.
    Li J-W, Zhang S-B, Xi H-P, Bradshaw CJA, Zhang J-L. 2020.. Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid. . Ann. Bot. 126:(2):26175
    [Crossref] [Google Scholar]
  74. 74.
    López-Pérez L, Fernández-García N, Olmos E, Carvajal M. 2007.. The phi thickening in roots of broccoli plants: an acclimation mechanism to salinity?. Int. J. Plant Sci. 168:(8):114149
    [Crossref] [Google Scholar]
  75. 75.
    Lux A, Morita S, Abe J, Ito K. 2005.. An improved method for clearing and staining free-hand sections and whole-mount samples. . Ann. Bot. 96:(6):98996
    [Crossref] [Google Scholar]
  76. 76.
    Manokari M, Priyadharshini S, Cokulraj M, Dey A, Faisal M, et al. 2022.. Assessment of cell wall histochemistry of velamentous epiphytic roots in adaptive response of micropropagated plantlets of Vanda tessellata (Roxb.) Hook. ex G. Don. . Plant Cell Tissue Organ. Cult. 149:(3):68596
    [Crossref] [Google Scholar]
  77. 77.
    Manzano C, Morimoto KW, Shaar-Moshe L, Mason GA, Cantó-Pastor A, et al. 2025.. Regulation and function of a polarly localized lignin barrier in the exodermis. . Nat. Plants 11::11830
    [Google Scholar]
  78. 78.
    Meyer CJ, Peterson CA. 2011.. Casparian bands occur in the periderm of Pelargonium hortorum stem and root. . Ann. Bot. 107:(4):59198
    [Crossref] [Google Scholar]
  79. 79.
    Meyer CJ, Peterson CA, Bernards MA. 2011.. A comparison of suberin monomers from the multiseriate exodermis of Iris germanica during maturation under differing growth conditions. . Planta 233:(4):77386
    [Crossref] [Google Scholar]
  80. 80.
    Meyer CJ, Seago JL Jr., Peterson CA. 2009.. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. . Ann. Bot. 103:(5):687702
    [Crossref] [Google Scholar]
  81. 81.
    Millay MA, Taylor TN, Taylor EL. 1987.. Phi thickenings in fossil seed plants from Antarctica. . IAWA Bull. 8:(3):191201
    [Crossref] [Google Scholar]
  82. 82.
    Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. 2010.. Abiotic and biotic stresses and changes in the lignin content and composition in plants. . J. Integr. Plant Biol. 52:(4):36076
    [Crossref] [Google Scholar]
  83. 83.
    Moussaieff A, Rogachev I, Brodsky L, Malitsky S, Toal TW, et al. 2013.. High-resolution metabolic mapping of cell types in plant roots. . PNAS 110:(13):E123241
    [Crossref] [Google Scholar]
  84. 84.
    Nakajima K, Sena G, Nawy T, Benfey PN. 2001.. Intercellular movement of the putative transcription factor SHR in root patterning. . Nature 413:(6853):30711
    [Crossref] [Google Scholar]
  85. 85.
    Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Matsubayashi Y. 2017.. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. . Science 355:(6322):28486
    [Crossref] [Google Scholar]
  86. 86.
    Namyslov J, Bauriedlová Z, Janoušková J, Soukup A, Tylová E. 2020.. Exodermis and endodermis respond to nutrient deficiency in nutrient-specific and localized manner. . Plants 9:(2):201
    [Crossref] [Google Scholar]
  87. 87.
    Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N. 2012.. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. . PNAS 109:(25):101016 Demonstration that the Casparian strip functions as the first endodermal apoplastic barrier.
    [Crossref] [Google Scholar]
  88. 88.
    Ovečka M, Sojka J, Tichá M, Komis G, Basheer J, et al. 2022.. Imaging plant cells and organs with light-sheet and super-resolution microscopy. . Plant Physiol. 188:(2):683702 A newly described exodermal lignin morphology, including its apoplastic barrier function and molecular regulation.
    [Crossref] [Google Scholar]
  89. 89.
    Pan CX, Nakao Y, Nii N. 2006.. Anatomical development of Phi thickening and the Casparian strip in loquat roots. . J. Japan. Soc. Hortic. Sci. 75:(6):44549
    [Crossref] [Google Scholar]
  90. 90.
    Pecková E, Tylová E, Soukup A. 2016.. Tracing root permeability: comparison of tracer methods. . Biol. Plant 60:(4):695705
    [Crossref] [Google Scholar]
  91. 91.
    Peralta Ogorek LL, Takahashi H, Nakazono M, Pedersen O. 2023.. The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect. . New Phytol. 238:(5):182537
    [Crossref] [Google Scholar]
  92. 92.
    Perumalla CJ, Peterson CA. 1986.. Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. . Can. J. Bot. 64:(9):187378
    [Crossref] [Google Scholar]
  93. 93.
    Perumalla CJ, Peterson CA, Enstone DE. 1990.. A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. . Bot. J. Linn. Soc. 103:(2):93112 One of the largest systematic anatomical studies of exodermal cell wall thickenings across a range of angiosperms (see also Reference 95).
    [Crossref] [Google Scholar]
  94. 94.
    Peterson CA, Emanuel ME, Weerdenburg CA. 1981.. The permeability of phi thickenings in apple (Pyrus malus) and geranium (Pelargonium hortorum) roots to an apoplastic fluorescent dye tracer. . Can. J. Bot. 59:(6):110710
    [Crossref] [Google Scholar]
  95. 95.
    Peterson CA, Perumalla CJ. 2008.. A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. . Bot. J. Linn. Soc. 103:(2):11325
    [Crossref] [Google Scholar]
  96. 96.
    Peterson CA, Peterson RL, Robards AW. 1978.. A correlated histochemical and ultrastructural study of the epidermis and hypodermis of onion roots. . Protoplasma 96:(1):121
    [Crossref] [Google Scholar]
  97. 97.
    Ponert J, Trávníček P, Vuong TB, Rybková R, Suda J. 2016.. A new species of Cleisostoma (Orchidaceae) from the Hon Ba Nature Reserve in Vietnam: a multidisciplinary assessment. . PLOS ONE 11:(3):e0150631
    [Crossref] [Google Scholar]
  98. 98.
    Porembski S, Barthlott W. 1988.. Velamen radicum micromorphology and classification of Orchidaceae. . Nord. J. Bot. 8:(2):11737
    [Crossref] [Google Scholar]
  99. 99.
    Qi Y, Huang J-L, Zhang S-B. 2020.. Correlated evolution of leaf and root anatomic traits in Dendrobium (Orchidaceae). . AoB Plants 12:(4):plaa034
    [Crossref] [Google Scholar]
  100. 100.
    Ramakrishna P, Barberon M. 2019.. Polarized transport across root epithelia. . Curr. Opin. Plant Biol. 52::2329
    [Crossref] [Google Scholar]
  101. 101.
    Ranathunge K, Lin J, Steudle E, Schreiber L. 2011.. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. . Plant Cell Environ. 34:(8):122340
    [Crossref] [Google Scholar]
  102. 102.
    Ranathunge K, Thomas RH, Fang X, Peterson CA, Gijzen M, Bernards MA. 2008.. Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae. . Phytopathology 98:(11):117989
    [Crossref] [Google Scholar]
  103. 102a.
    Reynoso MA, Borowsky AT, Pauluzzi GC, Yeung E, Zhang J, . 2022.. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. . Dev. Cell 57:(9):117792.E6
    [Crossref] [Google Scholar]
  104. 103.
    Reyt G, Ramakrishna P, Salas-González I, Fujita S, Love A, et al. 2021.. Two chemically distinct root lignin barriers control solute and water balance. . Nat. Commun. 12:(1):2320
    [Crossref] [Google Scholar]
  105. 104.
    Rippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M. 2009.. Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. . Plant Physiol. 149:(3):125160
    [Crossref] [Google Scholar]
  106. 105.
    Robards AW, Robb ME. 1972.. Uptake and binding of uranyl ions by barley roots. . Science 178:(4064):98082
    [Crossref] [Google Scholar]
  107. 106.
    Rodriguez-Furlan C, Campos R, Toth JN, Van Norman JM. 2022.. Distinct mechanisms orchestrate the contra-polarity of IRK and KOIN, two LRR-receptor-kinases controlling root cell division. . Nat. Commun. 13:(1):235
    [Crossref] [Google Scholar]
  108. 107.
    Rojas-Murcia N, Hématy K, Lee Y, Emonet A, Ursache R, et al. 2020.. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. . PNAS 117:(46):2916677
    [Crossref] [Google Scholar]
  109. 108.
    Roppolo D, De Rybel B, Dénervaud Tendon V, Pfister A, Alassimone J, et al. 2011.. A novel protein family mediates Casparian strip formation in the endodermis. . Nature 473:(7347):38083
    [Crossref] [Google Scholar]
  110. 109.
    Rounds CM, Lubeck E, Hepler PK, Winship LJ. 2011.. Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs. . Plant Physiol. 157:(1):17587
    [Crossref] [Google Scholar]
  111. 110.
    Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, et al. 2021.. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. . Science 371:(6525):eabd0695
    [Crossref] [Google Scholar]
  112. 111.
    Schneider HM, Strock CF, Hanlon MT, Vanhees DJ, Perkins AC, et al. 2021.. Multiseriate cortical sclerenchyma enhance root penetration in compacted soils. . PNAS 118:(6):e2012087118 . Systematic anatomical identification of cortical sclerenchyma, their likely function, and their absence in wild/landrace progenitors.
    [Crossref] [Google Scholar]
  113. 112.
    Schreiber L, Hartmann K, Skrabs M, Zeier J. 1999.. Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. . J. Exp. Bot. 50:(337):126780
    [Google Scholar]
  114. 113.
    Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, et al. 2014.. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. . Plant Physiol. 166:(2):798807
    [Crossref] [Google Scholar]
  115. 114.
    Seago JL Jr., Peterson CA, Enstone DE, Scholey CA. 1999.. Development of the endodermis and hypodermis of Typha glauca Godr. and Typha angustifolia L. roots. . Can. J. Bot. 77:(1):12234
    [Google Scholar]
  116. 115.
    Seago JL Jr., Peterson CA, Kinsley LJ, Broderick J. 2000.. Development and structure of the root cortex in Calthapalustris L. and Nymphaea odorata Ait. . Ann. Bot. 86:(3):63140
    [Crossref] [Google Scholar]
  117. 116.
    Seago JL Jr., Peterson CA, Enstone DE. 2000.. Cortical development in roots of the aquatic plant Pontederia cordata (Pontederiaceae). . Am. J. Bot. 87:(8):111627
    [Crossref] [Google Scholar]
  118. 117.
    Serra O, Geldner N. 2022.. The making of suberin. . New Phytol. 235:(3):84866
    [Crossref] [Google Scholar]
  119. 118.
    Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M. 2010.. A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. . Plant J. 62:(2):27790
    [Crossref] [Google Scholar]
  120. 119.
    Serra O, Mähönen AP, Hetherington AJ, Ragni L. 2022.. The making of plant armor: the periderm. . Annu. Rev. Plant Biol. 73::40532
    [Crossref] [Google Scholar]
  121. 120.
    Shao Y, Cheng Y, Pang H, Chang M, He F, et al. 2020.. Investigation of salt tolerance mechanisms across a root developmental gradient in almond rootstocks. . Front. Plant Sci. 11::595055
    [Crossref] [Google Scholar]
  122. 121.
    Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, et al. 2014.. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). . Plant J. 80:(1):4051 Genetic perturbation of the RCN1 transporter and suberin's function as a radial oxygen loss barrier.
    [Crossref] [Google Scholar]
  123. 122.
    Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, et al. 2011.. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. . Ann. Bot. 107:(1):8999
    [Crossref] [Google Scholar]
  124. 123.
    Shiono K, Yoshikawa M, Kreszies T, Yamada S, Hojo Y, et al. 2022.. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). . New Phytol. 233:(2):65569
    [Crossref] [Google Scholar]
  125. 124.
    Shukla V, Han J-P, Cléard F, Lefebvre-Legendre L, Gully K, et al. 2021.. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. . PNAS 118:(39):e2101730118
    [Crossref] [Google Scholar]
  126. 125.
    Song Y, Ye L, Nii N. 2011.. Effects of soil water availability on development of suberin lamellae in the endodermis and exodermis and on cortical cell wall thickening in red bayberry (Myrica rubra Sieb. et Zucc.) tree roots. . Sci. Hortic. 129:(4):55460
    [Crossref] [Google Scholar]
  127. 126.
    Song Z, Zonta F, Ogorek LLP, Bastegaard VK, Herzog M, et al. 2023.. The quantitative importance of key root traits for radial water loss under low water potential. . Plant Soil 482:(1):56784
    [Crossref] [Google Scholar]
  128. 127.
    Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O. 2007.. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. . New Phytol. 173:(2):26478
    [Crossref] [Google Scholar]
  129. 128.
    Soukup A, Malá J, Hrubcová M, Kálal J, Votrubová O, Cvikrová M. 2004.. Differences in anatomical structure and lignin content of roots of pedunculate oak and wild cherry-tree plantlets during acclimation. . Biol. Plant. 48::48189
    [Crossref] [Google Scholar]
  130. 129.
    Souza I da C, Morozesk M, Duarte ID, Bonomo MM, Rocha LD, et al. 2014.. Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study, Rhizophora mangle from four neotropical mangroves in Brazil. . Chemosphere 108::11524
    [Crossref] [Google Scholar]
  131. 130.
    Strullu-Derrien C, Rioult J-P, Strullu D-G. 2009.. Mycorrhizas in upper carboniferous Radiculites-type cordaitalean rootlets. . New Phytol. 182:(3):56164
    [Crossref] [Google Scholar]
  132. 131.
    Su Y, Feng T, Liu C-B, Huang H, Wang Y-L, et al. 2023.. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. . Nat. Plants 9:(12):196877
    [Crossref] [Google Scholar]
  133. 132.
    Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, et al. 2015.. An Arabidopsis gene regulatory network for secondary cell wall synthesis. . Nature 517:(7536):57175
    [Crossref] [Google Scholar]
  134. 133.
    Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA. 2007.. Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. . Plant Physiol. 144:(1):299311
    [Crossref] [Google Scholar]
  135. 134.
    Tylová E, Pecková E, Blascheová Z, Soukup A. 2017.. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors. . Ann. Bot. 120:(1):7185
    [Crossref] [Google Scholar]
  136. 135.
    Ursache R, Andersen TG, Marhavý P, Geldner N. 2018.. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. . Plant J. 93:(2):399412
    [Crossref] [Google Scholar]
  137. 136.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010.. Lignin biosynthesis and structure. . Plant Physiol. 153:(3):895905
    [Crossref] [Google Scholar]
  138. 137.
    Van Tieghem MP. 1887.. Sur le réseau sus-endodermique de la racine des cruciferes. . Bull. Soc. Bot. Fr. 34:(3):12531
    [Crossref] [Google Scholar]
  139. 138.
    Van Tieghem MP, Monal N. 1888.. Sur le réseau sous-épidermique de la racine des géraniacées. . Bull. Soc. Bot. Fr. 35:(5):27474
    [Crossref] [Google Scholar]
  140. 139.
    Van Tieghem PÉL. 1871.. Recherches sur la Symétrie de Structure des Plantes Vasculaires. Paris:: V. Masson et Fils
    [Google Scholar]
  141. 140.
    Wang Z, Yamaji N, Huang S, Zhang X, Shi M, et al. 2019.. OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. . Plant Cell. 31:(11):263648
    [Google Scholar]
  142. 141.
    Watanabe K, Takahashi H, Sato S, Nishiuchi S, Omori F, et al. 2017.. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. . Plant Cell Environ. 40:(2):30416
    [Crossref] [Google Scholar]
  143. 142.
    Woolfson KN, Esfandiari M, Bernards MA. 2022.. Suberin biosynthesis, assembly, and regulation. . Plants 11:(4):555
    [Crossref] [Google Scholar]
  144. 143.
    Wu D, Li L, Li C, Dun B, Zhang J, et al. 2021.. Apoplastic histochemical features of plant root walls that may facilitate ion uptake and retention. . Open Life Sci. 16:(1):134756
    [Crossref] [Google Scholar]
  145. 144.
    Xiang J, Ming J, Yin H, Zhu Y, Li Y, et al. 2019.. Anatomy and histochemistry of the roots and shoots in the aquatic selenium hyperaccumulator Cardamine hupingshanensis (Brassicaceae). . Open Life Sci. 14::31826
    [Crossref] [Google Scholar]
  146. 145.
    Xu QT, Yang L, Zhou ZQ, Mei FZ, Qu LH, Zhou GS. 2013.. Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. . Planta 238:(5):96982
    [Crossref] [Google Scholar]
  147. 146.
    Xu Y-T, Hon P-M, Jiang R-W, Cheng L, Li S-H, et al. 2006.. Antitussive effects of Stemona tuberosa with different chemical profiles. . J. Ethnopharmacol. 108:(1):4653
    [Crossref] [Google Scholar]
  148. 147.
    Yang C, Zhang X, Wang T, Hu S, Zhou C, et al. 2019.. Phenotypic plasticity in the structure of fine adventitious Metasequoia glyptostroboides roots allows adaptation to aquatic and terrestrial environments. . Plants 8:(11):501
    [Crossref] [Google Scholar]
  149. 148.
    Yasuno N, Takamure I, Kidou S-I, Tokuji Y, Ureshi A-N, et al. 2009.. Rice shoot branching requires an ATP-binding cassette subfamily G protein. . New Phytol. 182:(1):91101
    [Crossref] [Google Scholar]
  150. 149.
    Zhang B, Xin B, Sun X, Chao D, Zheng H, et al. 2024.. Small peptide signaling via OsCIF1/2 mediates Casparian strip formation at the root endodermal and nonendodermal cell layers in rice. . Plant Cell 36:(2):383403
    [Crossref] [Google Scholar]
  151. 150.
    Zotz G, Schickenberg N, Albach D. 2017.. The velamen radicum is common among terrestrial monocotyledons. . Ann. Bot. 120:(5):62532
    [Crossref] [Google Scholar]
  152. 151.
    Zotz G, Winkler U. 2013.. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. . Oecologia 171:(3):73341
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-112451
Loading
/content/journals/10.1146/annurev-arplant-102820-112451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error