1932

Abstract

I present a theory of Alzheimer's disease (AD) that explains its symptoms, pathology, and risk factors. To do this, I introduce a new theory of brain plasticity that elucidates the physiological roles of AD-related agents. New events generate synaptic and branching candidates competing for long-term enhancement. Competition resolution crucially depends on the formation of membrane lipid rafts, which requires astrocyte-produced cholesterol. Sporadic AD is caused by impaired formation of plasma-membrane lipid rafts, preventing the conversion of short- to long-term memory and yielding excessive tau phosphorylation, intracellular cholesterol accumulation, synaptic dysfunction, and neurodegeneration. Amyloid β (Aβ) production is promoted by cholesterol during the switch to competition resolution, and cholesterol accumulation stimulates chronic Aβ production, secretion, and aggregation. The theory addresses all of the major established facts known about the disease and is supported by strong evidence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052024-115455
2025-06-20
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/94/1/annurev-biochem-052024-115455.html?itemId=/content/journals/10.1146/annurev-biochem-052024-115455&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alzheimer's Association. 2023.. 2023 Alzheimer's disease facts and figures. . Alzheimer's Dement. 19:(4):1598695
    [Crossref] [Google Scholar]
  2. 2.
    Liu PP, Xie Y, Meng XY, Kang JS. 2019.. History and progress of hypotheses and clinical trials for Alzheimer's disease. . Signal Transduct. Targeted Ther. 4:(1):29
    [Crossref] [Google Scholar]
  3. 3.
    Morris GP, Clark IA, Vissel B. 2018.. Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer's disease. . Acta Neuropathol. 136:(5):66389
    [Crossref] [Google Scholar]
  4. 4.
    Murphy C. 2019.. Olfactory and other sensory impairments in Alzheimer disease. . Nat. Rev. Neurol. 15:(1):1124
    [Crossref] [Google Scholar]
  5. 5.
    Kaufman SK, Del Tredici K, Thomas TL, Braak H, Diamond MI. 2018.. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer's disease and PART. . Acta Neuropathol. 136:(1):5767
    [Crossref] [Google Scholar]
  6. 6.
    Area-Gomez E, Schon EA. 2017.. Alzheimer Disease. . In Organelle Contact Sites: From Molecular Mechanism to Disease, ed. M Tagaya, T Simmen , pp. 14956. Adv. Exp. Med. Biol. 997 . Singapore:: Springer
    [Google Scholar]
  7. 7.
    Crews L, Masliah E. 2010.. Molecular mechanisms of neurodegeneration in Alzheimer's disease. . Hum. Mol. Genet. 19:(R1):R1220
    [Crossref] [Google Scholar]
  8. 8.
    Abraham WC, Jones OD, Glanzman DL. 2019.. Is plasticity of synapses the mechanism of long-term memory storage?. npj Sci. Learn. 4:(1):9
    [Crossref] [Google Scholar]
  9. 9.
    Stein IS, Zito K. 2019.. Dendritic spine elimination: molecular mechanisms and implications. . Neuroscientist 25:(1):2747
    [Crossref] [Google Scholar]
  10. 10.
    Beaulieu JM, Espinoza S, Gainetdinov RR. 2015.. Dopamine receptors – IUPHAR review 13. . Br. J. Pharmacol. 172:(1):123
    [Crossref] [Google Scholar]
  11. 11.
    Barnes NM, Sharp T. 1999.. A review of central 5-HT receptors and their function. . Neuropharmacology 38:(8):1083152
    [Crossref] [Google Scholar]
  12. 12.
    Bednarek E, Caroni P. 2011.. β-Adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment. . Neuron 69:(6):113246
    [Crossref] [Google Scholar]
  13. 13.
    Biederer T, Kaeser PS, Blanpied TA. 2017.. Transcellular nanoalignment of synaptic function. . Neuron 96:(3):68096
    [Crossref] [Google Scholar]
  14. 14.
    Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL. 2000.. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. . J. Neurosci. 20:(19):725867
    [Crossref] [Google Scholar]
  15. 15.
    Fawcett JW, Oohashi T, Pizzorusso T. 2019.. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. . Nat. Rev. Neurosci. 20:(8):45165
    [Crossref] [Google Scholar]
  16. 16.
    Muriel O, Sánchez-Álvarez M, Strippoli R, Del Pozo MA. 2018.. Role of the endocytosis of caveolae in intracellular signaling and metabolism. . In Endocytosis and Signaling, ed. C Lamaze, I Prior , pp. 20334. Prog. Mol. Subcell. Biol. 57 . Cham, Switz.:: Springer
    [Google Scholar]
  17. 17.
    Leschik J, Eckenstaler R, Endres T, Munsch T, Edelmann E, et al. 2019.. Prominent postsynaptic and dendritic exocytosis of endogenous BDNF vesicles in BDNF-GFP knock-in mice. . Mol. Neurobiol. 56::683355
    [Crossref] [Google Scholar]
  18. 18.
    Hébert M, Lesept F, Vivien D, Macrez R. 2016.. The story of an exceptional serine protease, tissue-type plasminogen activator (tPA). . Rev. Neurol. 172:(3):18697
    [Crossref] [Google Scholar]
  19. 19.
    Knapska E, Kaczmarek L. 2016.. Matrix metalloproteinase 9 (MMP-9) in learning and memory. . In Novel Mechanisms of Memory, ed. KP Giese, K Radwanska , pp. 16181. Cham, Switz:.: Springer
    [Google Scholar]
  20. 20.
    Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GV, Quintanilla RA. 2019.. It's all about tau. . Prog. Neurobiol. 175::5476
    [Crossref] [Google Scholar]
  21. 21.
    Cervellini I, Galino J, Zhu N, Allen S, Birchmeier C, Bennett DL. 2018.. Sustained MAPK/ERK activation in adult Schwann cells impairs nerve repair. . J. Neurosci. 38:(3):67990
    [Crossref] [Google Scholar]
  22. 22.
    Ludka FK, Cunha MP, Dal-Cim T, Binder LB, Constantino LC, et al. 2017.. Atorvastatin protects from Aβ1–40-induced cell damage and depressive-like behavior via ProBDNF cleavage. . Mol. Neurobiol. 54::616373
    [Crossref] [Google Scholar]
  23. 23.
    Fan QW, Yu W, Senda T, Yanagisawa K, Michikawa M. 2001.. Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. . J. Neurochem. 76:(2):391400
    [Crossref] [Google Scholar]
  24. 24.
    Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD. 2004.. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. . Neuron 42:(6):897912
    [Crossref] [Google Scholar]
  25. 25.
    Itami C, Kimura F, Kohno T, Matsuoka M, Ichikawa M, et al. 2003.. Brain-derived neurotrophic factor-dependent unmasking of “silent” synapses in the developing mouse barrel cortex. . PNAS 100:(22):1306974
    [Crossref] [Google Scholar]
  26. 26.
    Park H, Poo Mm. 2013.. Neurotrophin regulation of neural circuit development and function. . Nat. Rev. Neurosci. 14:(1):723
    [Crossref] [Google Scholar]
  27. 27.
    Nicoll RA, Schulman H. 2023.. Synaptic memory and CaMKII: a review. . Physiol. Rev. 103:(4):2877925
    [Crossref] [Google Scholar]
  28. 28.
    Armijo-Weingart L, Gallo G. 2017.. It takes a village to raise a branch: cellular mechanisms of the initiation of axon collateral branches. . Mol. Cell. Neurosci. 84::3647
    [Crossref] [Google Scholar]
  29. 29.
    Henley JM, Wilkinson KA. 2013.. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. . Dialogues Clin. Neurosci. 15:(1):1127
    [Crossref] [Google Scholar]
  30. 30.
    Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. 2002.. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. . Cell 110:(4):44355
    [Crossref] [Google Scholar]
  31. 31.
    Bissen D, Foss F, Acker-Palmer A. 2019.. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. . Cell. Mol. Life Sci. 76::213369
    [Crossref] [Google Scholar]
  32. 32.
    Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R. 2006.. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. . Neuron 51:(2):21325
    [Crossref] [Google Scholar]
  33. 33.
    Pilpel Y, Segal M. 2004.. Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. . Eur. J. Neurosci. 19:(12):315164
    [Crossref] [Google Scholar]
  34. 34.
    Yamawaki N, Li X, Lambot L, Ren LY, Radulovic J, Shepherd GM. 2019.. Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons. . Nat. Neurosci. 22:(4):61826
    [Crossref] [Google Scholar]
  35. 35.
    Balmaceda V, Cuchillo-Ibáñez I, Pujadas L, García-Ayllón MS, Saura CA, et al. 2014.. ApoER2 processing by presenilin-1 modulates reelin expression. . FASEB J. 28:(4):154354
    [Crossref] [Google Scholar]
  36. 36.
    Stranahan AM, Erion JR, Wosiski-Kuhn M. 2013.. Reelin signaling in development, maintenance, and plasticity of neural networks. . Ageing Res. Rev. 12:(3):81522
    [Crossref] [Google Scholar]
  37. 37.
    Van Der Kant R, Goldstein LS. 2015.. Cellular functions of the amyloid precursor protein from development to dementia. . Dev. Cell 32:(4):50215
    [Crossref] [Google Scholar]
  38. 38.
    Ge YW, Lahiri D. 2002.. Regulation of promoter activity of the APP gene by cytokines and growth factors: implications in Alzheimer's disease. . Ann. N. Y. Acad. Sci. 973:(1):46367
    [Crossref] [Google Scholar]
  39. 39.
    Huang YWA, Zhou B, Wernig M, Südhof TC. 2017.. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. . Cell 168:(3):42741
    [Crossref] [Google Scholar]
  40. 40.
    Nigam SM, Xu S, Kritikou JS, Marosi K, Brodin L, Mattson MP. 2017.. Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. . J. Neurochem. 142:(2):28696
    [Crossref] [Google Scholar]
  41. 41.
    Yang C, Liu Y, Ni X, Li N, Zhang B, Fang X. 2014.. Enhancement of the nonamyloidogenic pathway by exogenous NGF in an Alzheimer transgenic mouse model. . Neuropeptides 48:(4):23338
    [Crossref] [Google Scholar]
  42. 42.
    Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG. 2000.. Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer's disease brains. . EMBO Rep. 1:(6):53035
    [Crossref] [Google Scholar]
  43. 43.
    Fragkouli A, Tzinia AK, Charalampopoulos I, Gravanis A, Tsilibary EC. 2011.. Matrix metalloproteinase-9 participates in NGF-induced α-secretase cleavage of amyloid-β protein precursor in PC12 cells. . J. Alzheimer's Dis. 24:(4):70519
    [Crossref] [Google Scholar]
  44. 44.
    Buxbaum JD, Gandy SE, Cicchetti P, Ehrlich ME, Czernik AJ, et al. 1990.. Processing of Alzheimer β/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. . PNAS 87:(15):60036
    [Crossref] [Google Scholar]
  45. 45.
    Kojro E, Gimpl G, Lammich S, März W, Fahrenholz F. 2001.. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. . PNAS 98:(10):581520
    [Crossref] [Google Scholar]
  46. 46.
    Ehehalt R, Keller P, Haass C, Thiele C, Simons K. 2003.. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. . J. Cell Biol. 160:(1):11323
    [Crossref] [Google Scholar]
  47. 47.
    Wang W, Mutka AL, Zmrzljak UP, Rozman D, Tanila H, et al. 2014.. Amyloid precursor protein α- and β-cleaved ectodomains exert opposing control of cholesterol homeostasis via SREBP2. . FASEB J. 28:(2):84960
    [Crossref] [Google Scholar]
  48. 48.
    Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, et al. 2011.. Age-dependent accumulation of soluble amyloid β (Aβ) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-α (sAPPα) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3β pathway in Alzheimer mouse model. . J. Biol. Chem. 286:(21):1841425
    [Crossref] [Google Scholar]
  49. 49.
    Wang X, Yu S, Gao SJ, Hu JP, Wang Y, Liu HX. 2014.. Insulin inhibits Abeta production through modulation of APP processing in a cellular model of Alzheimer's disease. . Neuroendocrinol. Lett. 35::22429
    [Google Scholar]
  50. 50.
    Livingstone RW, Elder MK, Singh A, Westlake CM, Tate WP, et al. 2021.. Secreted amyloid precursor protein-alpha enhances LTP through the synthesis and trafficking of Ca2+-permeable AMPA receptors. . Front. Mol. Neurosci. 14::660208
    [Crossref] [Google Scholar]
  51. 51.
    Hick M, Herrmann U, Weyer SW, Mallm JP, Tschäpe JA, et al. 2015.. Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity. . Acta Neuropathol. 129:(1):2137
    [Crossref] [Google Scholar]
  52. 52.
    Sosa LJ, Cáceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A. 2017.. The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. . J. Neurochem. 143:(1):1129
    [Crossref] [Google Scholar]
  53. 53.
    Obregon D, Hou H, Deng J, Giunta B, Tian J, et al. 2012.. Soluble amyloid precursor protein-α modulates β-secretase activity and amyloid-β generation. . Nat. Commun. 3:(1):777
    [Crossref] [Google Scholar]
  54. 54.
    Rohe M, Synowitz M, Glass R, Paul SM, Nykjaer A, Willnow TE. 2009.. Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression. . J. Neurosci. 29:(49):1547278
    [Crossref] [Google Scholar]
  55. 55.
    Gugustea R, Jia Z. 2021.. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity. . Neuropharmacology 194::108630
    [Crossref] [Google Scholar]
  56. 56.
    Martin M, Dotti CG, Ledesma MD. 2010.. Brain cholesterol in normal and pathological aging. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801:(8):93444
    [Crossref] [Google Scholar]
  57. 57.
    Spagnuolo MS, Donizetti A, Iannotta L, Aliperti V, Cupidi C, et al. 2018.. Brain-derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons. . J. Cell. Physiol. 233:(9):692543
    [Crossref] [Google Scholar]
  58. 58.
    Strachan-Whaley MR, Reilly K, Dobson J, Kalisch BE. 2015.. Map kinase and PKC signaling pathways modulate NGF-mediated apoE transcription. . Neurosci. Lett. 595::5459
    [Crossref] [Google Scholar]
  59. 59.
    Wang JM, Irwin RW, Brinton RD. 2006.. Activation of estrogen receptor α increases and estrogen receptor β decreases apolipoprotein E expression in hippocampus in vitro and in vivo. . PNAS 103:(45):1698388
    [Crossref] [Google Scholar]
  60. 60.
    Mahley RW, Huang Y. 2012.. Apolipoprotein E sets the stage: Response to injury triggers neuropathology. . Neuron 76:(5):87185
    [Crossref] [Google Scholar]
  61. 61.
    Shimano H, Sato R. 2017.. SREBP-regulated lipid metabolism: convergent physiology – divergent pathophysiology. . Nat. Rev. Endocrinol. 13:(12):71030
    [Crossref] [Google Scholar]
  62. 62.
    Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. 2019.. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. . Nat. Rev. Neurol. 15:(9):50118
    [Crossref] [Google Scholar]
  63. 63.
    Mondadori CR, de Quervain DJF, Buchmann A, Mustovic H, Wollmer MA, et al. 2007.. Better memory and neural efficiency in young apolipoprotein E ε4 carriers. . Cereb. Cortex 17:(8):193447
    [Crossref] [Google Scholar]
  64. 64.
    Sezgin E, Levental I, Mayor S, Eggeling C. 2017.. The mystery of membrane organization: composition, regulation and roles of lipid rafts. . Nat. Rev. Mol. Cell Biol. 18:(6):36174
    [Crossref] [Google Scholar]
  65. 65.
    Head BP, Patel HH, Insel PA. 2014.. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. . Biochim. Biophys. Acta Biomembr. 1838:(2):53245
    [Crossref] [Google Scholar]
  66. 66.
    Whitehead SN, Gangaraju S, Aylsworth A, Hou ST. 2012.. Membrane raft disruption results in neuritic retraction prior to neuronal death in cortical neurons. . Biosci. Trends 6:(4):18391
    [Crossref] [Google Scholar]
  67. 67.
    Albanesi JP, Barylko B, DeMartino GN, Jameson DM. 2020.. Palmitoylated proteins in dendritic spine remodeling. . Front. Synapt. Neurosci. 12::22
    [Crossref] [Google Scholar]
  68. 68.
    Pike LJ. 2005.. Growth factor receptors, lipid rafts and caveolae: an evolving story. . Biochim. Biophys. Acta Mol. Cell Res. 1746:(3):26073
    [Crossref] [Google Scholar]
  69. 69.
    Baenziger JE, Domville JA, Therien JD. 2017.. The role of cholesterol in the activation of nicotinic acetylcholine receptors. . Curr. Top. Membr. 80::95137
    [Crossref] [Google Scholar]
  70. 70.
    Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, et al. 2001.. CNS synaptogenesis promoted by glia-derived cholesterol. . Science 294:(5545):135457
    [Crossref] [Google Scholar]
  71. 71.
    Hering H, Lin CC, Sheng M. 2003.. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. . J. Neurosci. 23:(8):326271
    [Crossref] [Google Scholar]
  72. 72.
    Frank C, Rufini S, Tancredi V, Forcina R, Grossi D, D'Arcangelo G. 2008.. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. . Exp. Neurol. 212:(2):40714
    [Crossref] [Google Scholar]
  73. 73.
    Area-Gomez E, del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, De Groof AJ, et al. 2012.. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. . EMBO J. 31:(21):410623
    [Crossref] [Google Scholar]
  74. 74.
    Waugh MG. 2013.. Raft-like membranes from the trans-Golgi network and endosomal compartments. . Nat. Protoc. 8:(12):242939
    [Crossref] [Google Scholar]
  75. 75.
    Chowdhury D, Hell JW. 2019.. Ca2+/calmodulin binding to PSD-95 downregulates its palmitoylation and AMPARs in long-term depression. . Front. Synapt. Neurosci. 11::6
    [Crossref] [Google Scholar]
  76. 76.
    Sanz-Clemente A, Nicoll RA, Roche KW. 2013.. Diversity in NMDA receptor composition: many regulators, many consequences. . Neuroscientist 19:(1):6275
    [Crossref] [Google Scholar]
  77. 77.
    Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ, et al. 2006.. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. . Nat. Neurosci. 9:(5):6024
    [Crossref] [Google Scholar]
  78. 78.
    Miller EC, Teravskis PJ, Dummer BW, Zhao X, Huganir RL, Liao D. 2014.. Tau phosphorylation and tau mislocalization mediate soluble Aβ oligomer-induced AMPA glutamate receptor signaling deficits. . Eur. J. Neurosci. 39:(7):121424
    [Crossref] [Google Scholar]
  79. 79.
    Liu PW, Hosokawa T, Hayashi Y. 2021.. Regulation of synaptic nanodomain by liquid–liquid phase separation: a novel mechanism of synaptic plasticity. . Curr. Opin. Neurobiol. 69::8492
    [Crossref] [Google Scholar]
  80. 80.
    Shouval HZ, Wang SSH, Wittenberg GM. 2010.. Spike timing dependent plasticity: a consequence of more fundamental learning rules. . Front. Comput. Neurosci. 4::19
    [Google Scholar]
  81. 81.
    Saneyoshi T, Matsuno H, Suzuki A, Murakoshi H, Hedrick NG, et al. 2019.. Reciprocal activation within a kinase-effector complex underlying persistence of structural LTP. . Neuron 102:(6):1199210
    [Crossref] [Google Scholar]
  82. 82.
    Sacktor TC, Fenton AA. 2018.. What does LTP tell us about the roles of CaMKII and PKMζ in memory?. Mol. Brain 11::77
    [Crossref] [Google Scholar]
  83. 83.
    Egawa J, Pearn ML, Lemkuil BP, Patel PM, Head BP. 2016.. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function. . J. Physiol. 594:(16):456579
    [Crossref] [Google Scholar]
  84. 84.
    Bakota L, Brandt R. Why kiss-and-hop explains that tau does not stabilize microtubules and does not interfere with axonal transport (at physiological conditions). . Cytoskeleton 81:(1):4752
    [Crossref] [Google Scholar]
  85. 85.
    Cabrales Fontela Y, Kadavath H, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. 2017.. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. . Nat. Commun. 8:(1):1981
    [Crossref] [Google Scholar]
  86. 86.
    Gong CX, Iqbal K. 2008.. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. . Curr. Med. Chem. 15:(23):232128
    [Crossref] [Google Scholar]
  87. 87.
    Sontag JM, Nunbhakdi-Craig V, Sontag E. 2013.. Leucine carboxyl methyltransferase 1 (LCMT1)-dependent methylation regulates the association of protein phosphatase 2A and Tau protein with plasma membrane microdomains in neuroblastoma cells. . J. Biol. Chem. 288:(38):27396405
    [Crossref] [Google Scholar]
  88. 88.
    Shen LL, Li WW, Xu YL, Gao SH, Xu MY, et al. 2019.. Neurotrophin receptor p75 mediates amyloid β-induced tau pathology. . Neurobiol. Dis. 132::104567
    [Crossref] [Google Scholar]
  89. 89.
    Bai X, Wu J, Zhang M, Xu Y, Duan L, et al. 2021.. DHCR24 knock-down induced tau hyperphosphorylation at Thr181, Ser199, Thr231, Ser262, Ser396 epitopes and inhibition of autophagy by overactivation of GSK3β/mTOR signaling. . Front. Aging Neurosci. 13::513605
    [Crossref] [Google Scholar]
  90. 90.
    Merezhko M, Uronen RL, Huttunen HJ. 2020.. The cell biology of tau secretion. . Front. Mol. Neurosci. 13::569818
    [Crossref] [Google Scholar]
  91. 91.
    Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. 1998.. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. . PNAS 95:(11):646064
    [Crossref] [Google Scholar]
  92. 92.
    Grimm MO, Grimm HS, Tomic I, Beyreuther K, Hartmann T, Bergmann C. 2008.. Independent inhibition of Alzheimer disease β- and γ-secretase cleavage by lowered cholesterol levels. . J. Biol. Chem. 283:(17):1130211
    [Crossref] [Google Scholar]
  93. 93.
    Grimm MO, Grimm HS, Pätzold AJ, Zinser EG, Halonen R, Duering M, et al. 2005.. Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. . Nat. Cell Biol. 7:(11):111823
    [Crossref] [Google Scholar]
  94. 94.
    Cho YY, Kwon OH, Chung S. 2020.. Preferred endocytosis of amyloid precursor protein from cholesterol-enriched lipid raft microdomains. . Molecules 25:(23):5490
    [Crossref] [Google Scholar]
  95. 95.
    Costantini C, Weindruch R, Della Valle G, Puglielli L. 2005.. A TrkA-to-p75NTR molecular switch activates amyloid β-peptide generation during aging. . Biochem. J. 391:(1):5967
    [Crossref] [Google Scholar]
  96. 96.
    Guglielmotto M, Monteleone D, Giliberto L, Fornaro M, Borghi R, et al. 2011.. Amyloid-β 42 activates the expression of BACE1 through the JNK pathway. . J. Alzheimer's Dis. 27:(4):87183
    [Crossref] [Google Scholar]
  97. 97.
    Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, et al. 2006.. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. . Neuron 52:(5):83143
    [Crossref] [Google Scholar]
  98. 98.
    Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC. 2009.. Amyloid β-induced nerve growth factor dysmetabolism in Alzheimer disease. . J. Neuropathol. Exp. Neurol. 68:(8):85769
    [Crossref] [Google Scholar]
  99. 99.
    Knafo S, Esteban JA. 2017.. PTEN: local and global modulation of neuronal function in health and disease. . Trends Neurosci. 40:(2):8391
    [Crossref] [Google Scholar]
  100. 100.
    Petratos S, Li QX, George AJ, Hou X, Kerr ML, et al. 2008.. The β-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. . Brain 131:(1):90108
    [Crossref] [Google Scholar]
  101. 101.
    Dougherty JJ, Wu J, Nichols RA. 2003.. β-Amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. . J. Neurosci. 23:(17):674047
    [Crossref] [Google Scholar]
  102. 102.
    Zhang Gl, Zhang X, Wang Xm, Li JP. 2014.. Towards understanding the roles of heparan sulfate proteoglycans in Alzheimer's disease. . BioMed. Res. Int. 2014::516028
    [Google Scholar]
  103. 103.
    Di Scala C, Chahinian H, Yahi N, Garmy N, Fantini J. 2014.. Interaction of Alzheimer's β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation. . Biochemistry 53:(28):4489502
    [Crossref] [Google Scholar]
  104. 104.
    Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, et al. 2008.. Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. . J. Neurosci. 28:(53):1453745
    [Crossref] [Google Scholar]
  105. 105.
    Finnie PS, Nader K. 2020.. Amyloid beta secreted during consolidation prevents memory malleability. . Curr. Biol. 30:(10):193440
    [Crossref] [Google Scholar]
  106. 106.
    Rasch B, Born J. 2013.. About sleep's role in memory. . Physiol. Rev. 93:(2):681766
    [Crossref] [Google Scholar]
  107. 107.
    Lazar AN, Hanbouch L, Boussicaut L, Fourmaux B, Daira P, et al. 2022.. Lipid dys-homeostasis contributes to APOE4-associated AD pathology. . Cells 11:(22):3616
    [Crossref] [Google Scholar]
  108. 108.
    Ferris HA, Perry RJ, Moreira GV, Shulman GI, Horton JD, Kahn CR. 2017.. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. . PNAS 114:(5):118994
    [Crossref] [Google Scholar]
  109. 109.
    Stewart KL, Radford SE. 2017.. Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. . Biophys. Rev. 9:(4):40519
    [Crossref] [Google Scholar]
  110. 110.
    Georgieva ER, Xiao S, Borbat PP, Freed JH, Eliezer D. 2014.. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. . Biophys. J. 107:(6):144152
    [Crossref] [Google Scholar]
  111. 111.
    Jack CR Jr., Wiste HJ, Schwarz CG, Lowe VJ, Senjem ML, et al. 2018.. Longitudinal tau PET in ageing and Alzheimer's disease. . Brain 141:(5):151728
    [Crossref] [Google Scholar]
  112. 112.
    Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Dimech AS, et al. 2018.. Sex differences in Alzheimer disease – the gateway to precision medicine. . Nat. Rev. Neurol. 14:(8):45769
    [Crossref] [Google Scholar]
  113. 113.
    Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, et al. 2011.. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. . Alzheimer's Res. Ther. 3:(1):1
    [Crossref] [Google Scholar]
  114. 114.
    Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, et al. 2003.. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. . EMBO Rep. 4:(12):119096
    [Crossref] [Google Scholar]
  115. 115.
    Fabelo N, Martín V, Marín R, Moreno D, Ferrer I, Díaz M. 2014.. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions. . Neurobiol. Aging 35:(8):180112
    [Crossref] [Google Scholar]
  116. 116.
    Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Månsson JE, Fredman P. 2005.. Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. . J. Neurochem. 92:(1):17182
    [Crossref] [Google Scholar]
  117. 117.
    Abdullah M, Kimura N, Akatsu H, Hashizume Y, Ferdous T, et al. 2019.. Flotillin is a novel diagnostic blood marker of Alzheimer's disease. . J. Alzheimer's Dis. 72:(4):116576
    [Crossref] [Google Scholar]
  118. 118.
    Mesa-Herrera F, Marn R, Torrealba E, Santos G, Díaz M. 2022.. Neuronal ER-signalosome proteins as early biomarkers in prodromal Alzheimer's disease independent of amyloid-β production and tau phosphorylation. . Front. Mol. Neurosci. 15::879146
    [Crossref] [Google Scholar]
  119. 119.
    Chan WH, Yau LF, Meng XY, Chan KM, Jiang ZH, Wang JR. 2023.. Robust quantitation of gangliosides and sulfatides in human brain using UHPLC-MRM-MS: method development and application in Alzheimer's disease. . Talanta 256::124264
    [Crossref] [Google Scholar]
  120. 120.
    Girardot N, Allinquant B, Langui D, Laquerriere A, Dubois B, et al. 2003.. Accumulation of flotillin-1 in tangle-bearing neurones of Alzheimer's disease. . Neuropathol. Appl. Neurobiol. 29:(5):45161
    [Crossref] [Google Scholar]
  121. 121.
    Foley P. 2010.. Lipids in Alzheimer's disease: a century-old story. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801:(8):75053
    [Crossref] [Google Scholar]
  122. 122.
    Mason RP, Shoemaker WJ, Shajenko L, Chambers TE, Herbette LG. 1992.. Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol. . Neurobiol. Aging 13:(3):41319
    [Crossref] [Google Scholar]
  123. 123.
    Yassine HN, Feng Q, Chiang J, Petrosspour LM, Fonteh AN, et al. 2016.. ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer's disease. . J. Am. Heart Assoc. 5:(2):e002886
    [Crossref] [Google Scholar]
  124. 124.
    Kölsch H, Heun R, Jessen F, Popp J, Hentschel F, et al. 2010.. Alterations of cholesterol precursor levels in Alzheimer's disease. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801:(8):94550
    [Crossref] [Google Scholar]
  125. 125.
    Phelix CF, LeBaron RG, Roberson DJ, Villanueva RE, Villareal G, et al. 2011.. In vivo and in silico evidence: Hippocampal cholesterol metabolism decreases with aging and increases with Alzheimer's disease – modeling brain aging and disease. . In 2011 IEEE 11th International Conference on Data Mining Workshops, pp. 106470. New York:: IEEE
    [Google Scholar]
  126. 126.
    Bai X, Mai M, Yao K, Zhang M, Huang Y, et al. 2022.. The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. . Acta Neuropathol. Commun. 10:(1):35
    [Crossref] [Google Scholar]
  127. 127.
    Varma VR, Büşra Lüleci H, Oommen AM, Varma S, Blackshear CT, et al. 2021.. Abnormal brain cholesterol homeostasis in Alzheimer's disease—a targeted metabolomic and transcriptomic study. . npj Aging Mech. Dis. 7:(1):11
    [Crossref] [Google Scholar]
  128. 128.
    Distl R, Meske V, Ohm TG. 2001.. Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. . Acta Neuropathol. 101::54754
    [Crossref] [Google Scholar]
  129. 129.
    Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, et al. 2004.. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. . PNAS 101:(7):207075
    [Crossref] [Google Scholar]
  130. 130.
    Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, et al. 2012.. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. . J. Biol. Chem. 287:(4):267888
    [Crossref] [Google Scholar]
  131. 131.
    Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, et al. 2008.. Cholesterol retention in Alzheimer's brain is responsible for high β- and γ-secretase activities and Aβ production. . Neurobiol. Dis. 29:(3):42237
    [Crossref] [Google Scholar]
  132. 132.
    Akram A, Schmeidler J, Katsel P, Hof PR, Haroutunian V. 2010.. Increased expression of cholesterol transporter ABCA1 is highly correlated with severity of dementia in AD hippocampus. . Brain Res. 1318::16777
    [Crossref] [Google Scholar]
  133. 133.
    Arenas F, Castro F, Nuñez S, Gay G, Garcia-Ruiz C, Fernandez-Checa JC. 2020.. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer's disease and Down syndrome. . Aging 12:(1):57192
    [Crossref] [Google Scholar]
  134. 134.
    Lazar AN, Bich C, Panchal M, Desbenoit N, Petit VW, et al. 2013.. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. . Acta Neuropathol. 125:(1):13344
    [Crossref] [Google Scholar]
  135. 135.
    Wang C, Zhao F, Shen K, Wang W, Siedlak SL, et al. 2019.. The sterol regulatory element-binding protein 2 is dysregulated by tau alterations in Alzheimer disease. . Brain Pathol. 29:(4):53043
    [Crossref] [Google Scholar]
  136. 136.
    Cho YY, Kwon OH, Park MK, Kim TW, Chung S. 2019.. Elevated cellular cholesterol in familial Alzheimer's presenilin 1 mutation is associated with lipid raft localization of β-amyloid precursor protein. . PLOS ONE 14:(1):e0210535
    [Crossref] [Google Scholar]
  137. 137.
    Popp J, Meichsner S, Kölsch H, Lewczuk P, Maier W, et al. 2013.. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer's disease. . Biochem. Pharmacol. 86:(1):3742
    [Crossref] [Google Scholar]
  138. 138.
    Popp J, Lewczuk P, Kölsch H, Meichsner S, Maier W, et al. 2012.. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer's disease. . J. Neurochem. 123:(2):31016
    [Crossref] [Google Scholar]
  139. 139.
    Adorni MP, Ruscica M, Ferri N, Bernini F, Zimetti F. 2019.. Proprotein convertase subtilisin/kexin type 9, brain cholesterol homeostasis and potential implication for Alzheimer's disease. . Front. Aging Neurosci. 11::120
    [Crossref] [Google Scholar]
  140. 140.
    Montesinos J, Pera M, Larrea D, Guardia-Laguarta C, Agrawal RR, et al. 2020.. The Alzheimer's disease-associated C99 fragment of APP regulates cellular cholesterol trafficking. . EMBO J. 39:(20):e103791
    [Crossref] [Google Scholar]
  141. 141.
    Pani A, Dess S, Diaz G, La Colla P, Abete C, et al. 2009.. Altered cholesterol ester cycle in skin fibroblasts from patients with Alzheimer's disease. . J. Alzheimer's Dis. 18:(4):82941
    [Crossref] [Google Scholar]
  142. 142.
    Van Acker ZP, Bretou M, Annaert W. 2019.. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. . Mol. Neurodegenerat. 14:(1):20
    [Crossref] [Google Scholar]
  143. 143.
    Grimm MO, Mett J, Grimm HS, Hartmann T. 2017.. APP function and lipids: a bidirectional link. . Front. Mol. Neurosci. 10::63
    [Crossref] [Google Scholar]
  144. 144.
    Chung SH. 2009.. Aberrant phosphorylation in the pathogenesis of Alzheimer's disease. . BMB Rep. 42:(8):46774
    [Crossref] [Google Scholar]
  145. 145.
    Iulita MF, Cuello AC. 2016.. The NGF metabolic pathway in the CNS and its dysregulation in Down syndrome and Alzheimer's disease. . Curr. Alzheimer Res. 13:(1):5367
    [Crossref] [Google Scholar]
  146. 146.
    Carter TL, Rissman RA, Mishizen-Eberz AJ, Wolfe BB, Hamilton RL, et al. 2004.. Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer's disease patients according to Braak stage. . Exp. Neurol. 187:(2):299309
    [Crossref] [Google Scholar]
  147. 147.
    Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. 2011.. A pathophysiological framework of hippocampal dysfunction in ageing and disease. . Nat. Rev. Neurosci. 12:(10):585601
    [Crossref] [Google Scholar]
  148. 148.
    Braak H, Braak E. 1991.. Alzheimer's disease affects limbic nuclei of the thalamus. . Acta Neuropathol. 81:(3):26168
    [Crossref] [Google Scholar]
  149. 149.
    Maass A, Schütze H, Speck O, Yonelinas A, Tempelmann C, et al. 2014.. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. . Nat. Commun. 5:(1):5547
    [Crossref] [Google Scholar]
  150. 150.
    Thomas PV, Cheng AL, Colby CC, Liu L, Patel CK, et al. 2014.. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. . J. Proteom. 103::17893
    [Crossref] [Google Scholar]
  151. 151.
    Brady JD, Rich TC, Le X, Stafford K, Fowler CJ, et al. 2004.. Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. . Mol. Pharmacol. 65:(3):50311
    [Crossref] [Google Scholar]
  152. 152.
    Munderloh C, Solis GP, Bodrikov V, Jaeger FA, Wiechers M, et al. 2009.. Reggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons. . J. Neurosci. 29:(20):660715
    [Crossref] [Google Scholar]
  153. 153.
    Chung SD, Chen CH, Hung SH, Lin HC, Wang LH. 2015.. A population-based study on the association between statin use and sudden sensorineural hearing loss. . Otolaryngol.Head Neck Surg. 152:(2):31925
    [Crossref] [Google Scholar]
  154. 154.
    Lötsch J, Knothe C, Lippmann C, Ultsch A, Hummel T, Walter C. 2015.. Olfactory drug effects approached from human-derived data. . Drug Discov. Today 20:(11):1398406
    [Crossref] [Google Scholar]
  155. 155.
    Crumling MA, Liu L, Thomas PV, Benson J, Kanicki A, et al. 2012.. Hearing loss and hair cell death in mice given the cholesterol-chelating agent hydroxypropyl-β-cyclodextrin. . PLOS ONE 7:(12):e53280
    [Crossref] [Google Scholar]
  156. 156.
    Dong HK, Gim JA, Yeo SH, Kim HS. 2017.. Integrated late onset Alzheimer's disease (LOAD) susceptibility genes: cholesterol metabolism and trafficking perspectives. . Gene 597::1016
    [Crossref] [Google Scholar]
  157. 157.
    Love S, Bridges LR, Case CP. 1995.. Neurofibrillary tangles in Niemann–Pick disease type C. . Brain 118:(1):11929
    [Crossref] [Google Scholar]
  158. 158.
    Castello MA, Soriano S. 2013.. Rational heterodoxy: cholesterol reformation of the amyloid doctrine. . Ageing Res. Rev. 12:(1):28288
    [Crossref] [Google Scholar]
  159. 159.
    Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, et al. 2018.. Multiscale analysis of independent Alzheimer's cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. . Neuron 99:(1):6482
    [Crossref] [Google Scholar]
  160. 160.
    Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, et al. 2018.. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections—a nationwide, population-based cohort study in Taiwan. . Neurotherapeutics 15:(2):41729
    [Crossref] [Google Scholar]
  161. 161.
    Eyting M, Xie M, Hess S, Geldsetzer P. 2023.. Causal evidence that herpes zoster vaccination prevents a proportion of dementia cases. . medRxiv 37292746. https://doi.org/10.1101/2023.05.23.23290253
  162. 162.
    Itzhaki RF, Wozniak MA. 2006.. Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer's disease and other disorders. . Prog. Lipid Res. 45:(1):7390
    [Crossref] [Google Scholar]
  163. 163.
    Li L, Liang J, Fu H. 2020.. An update on the association between traumatic brain injury and Alzheimer's disease: focus on tau pathology and synaptic dysfunction. . Neurosci. Biobehav. Rev. 120::37286
    [Crossref] [Google Scholar]
  164. 164.
    de la Monte SM, Tong M, Wands JR. 2018.. The 20-year voyage aboard the journal of Alzheimer's disease: docking at ‘Type 3 Diabetes,’ environmental/exposure factors, pathogenic mechanisms, and potential treatments. . J. Alzheimer's Dis. 62:(3):138190
    [Crossref] [Google Scholar]
  165. 165.
    Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, et al. 2015.. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. . Lancet Diabetes Endocrinol. 3:(6):43136
    [Crossref] [Google Scholar]
  166. 166.
    Ulrich JD, Ulland TK, Colonna M, Holtzman DM. 2017.. Elucidating the role of TREM2 in Alzheimer's disease. . Neuron 94:(2):23748
    [Crossref] [Google Scholar]
  167. 167.
    Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. 2018.. A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. . Neurobiol. Stress 8::17285
    [Crossref] [Google Scholar]
  168. 168.
    Hellström-Lindahl E, Moore H, Nordberg A. 2000.. Increased levels of tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. . J. Neurochem. 74:(2):77784
    [Crossref] [Google Scholar]
  169. 169.
    Paulavicius AM, Mizzaci CC, Tavares DR, Rocha AP, Civile VT, et al. 2020.. Bilingualism for delaying the onset of Alzheimer's disease: a systematic review and meta-analysis. . Eur. Geriatr. Med. 11::65158
    [Crossref] [Google Scholar]
  170. 170.
    Heim S, Stumme J, Bittner N, Jockwitz C, Amunts K, Caspers S. 2019.. Bilingualism and “brain reserve”: a matter of age. . Neurobiol. Aging 81::15765
    [Crossref] [Google Scholar]
  171. 171.
    Perani D, Farsad M, Ballarini T, Lubian F, Malpetti M, et al. 2017.. The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia. . PNAS 114:(7):169095
    [Crossref] [Google Scholar]
  172. 172.
    Meng Q, Lin MS, Tzeng I, et al. 2020.. Relationship between exercise and Alzheimer's disease: a narrative literature review. . Front. Neurosci. 14::131
    [Crossref] [Google Scholar]
  173. 173.
    Puglielli L, Tanzi RE, Kovacs DM. 2003.. Alzheimer's disease: the cholesterol connection. . Nat. Neurosci. 6:(4):34551
    [Crossref] [Google Scholar]
  174. 174.
    Mattson MP. 2008.. Hormesis defined. . Ageing Res. Rev. 7:(1):17
    [Crossref] [Google Scholar]
  175. 175.
    Gonçalves JT, Schafer ST, Gage FH. 2016.. Adult neurogenesis in the hippocampus: from stem cells to behavior. . Cell 167:(4):897914
    [Crossref] [Google Scholar]
  176. 176.
    Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, et al. 2019.. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. . Nat. Med. 25:(4):55460
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-052024-115455
Loading
/content/journals/10.1146/annurev-biochem-052024-115455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error