Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R. 1.  et al. 2013. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40:6463–71 [Google Scholar]
  2. Flemming W. 2.  1882. Zellsubstanz, Kern und Zelltheilung Leipzig, Ger: F.C.W. Vogel
  3. Wuhr M, Chen Y, Dumont S, Groen AC, Needleman DJ. 3.  et al. 2008. Evidence for an upper limit to mitotic spindle length. Curr. Biol. 18:1256–61 [Google Scholar]
  4. Sauer G, Korner R, Hanisch A, Ries A, Nigg EA, Sillje HH. 4.  2005. Proteome analysis of the human mitotic spindle. Mol. Cell. Proteomics 4:35–43 [Google Scholar]
  5. Brugues J, Nuzzo V, Mazur E, Needleman DJ. 5.  2012. Nucleation and transport organize microtubules in metaphase spindles. Cell 149:554–64 [Google Scholar]
  6. Sawin KE, Mitchison TJ. 6.  1991. Poleward microtubule flux mitotic spindles assembled in vitro. J. Cell Biol. 112:941–54 [Google Scholar]
  7. Inoué S, Salmon ED. 7.  1995. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6:1619–40 [Google Scholar]
  8. Nédélec F, Surrey T, Karsenti E. 8.  2003. Self-organisation and forces in the microtubule cytoskeleton. Curr. Opin. Cell Biol. 15:118–24 [Google Scholar]
  9. Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P. 9.  et al. 1996. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–25 [Google Scholar]
  10. Boveri T. 10. 1887–1900 Zellen-Studien. Jena, Ger: Gustav Fischer
  11. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. 11.  2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–74 [Google Scholar]
  12. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F. 12.  et al. 2012. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14:1159–68 [Google Scholar]
  13. Lawo S, Hasegan M, Gupta GD, Pelletier L. 13.  2012. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14:1148–58 [Google Scholar]
  14. Cleveland DW, Mao Y, Sullivan KF. 14.  2003. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–21 [Google Scholar]
  15. Santaguida S, Musacchio A. 15.  2009. The life and miracles of kinetochores. EMBO J. 28:2511–31 [Google Scholar]
  16. Inoué S. 16.  1981. Cell division and the mitotic spindle. J. Cell Biol. 91:131–47s [Google Scholar]
  17. Brinkley W. 17.  1997. Microtubules: a brief historical perspective. J. Struct. Biol. 118:84–86 [Google Scholar]
  18. Mitchison T, Kirschner M. 18.  1984. Dynamic instability of microtubule growth. Nature 312:237–42 [Google Scholar]
  19. Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N. 19.  et al. 2005. Proteome analysis of human metaphase chromosomes. J. Biol. Chem. 280:16994–7004 [Google Scholar]
  20. Mack GJ, Compton DA. 20.  2001. Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. PNAS 98:14434–39 [Google Scholar]
  21. Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R. 21.  2006. Phosphoproteome analysis of the human mitotic spindle. PNAS 103:5391–96 [Google Scholar]
  22. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM. 22.  et al. 2007. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–21 [Google Scholar]
  23. Hughes JR, Meireles AM, Fisher KH, Garcia A, Antrobus PR. 23.  et al. 2008. A microtubule interactome: complexes with roles in cell cycle and mitosis. PLOS Biol. 6:785–95 [Google Scholar]
  24. Hutchins JRA, Toyoda Y, Hegemann B, Poser I, Heriche JK. 24.  et al. 2010. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328:593–99 [Google Scholar]
  25. Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H. 25.  et al. 2010. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–27 [Google Scholar]
  26. Moritz M, Zheng Y, Alberts BM, Oegema K. 26.  1998. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142:775–86 [Google Scholar]
  27. Murphy SM, Preble AM, Patel UK, O'Connell KL, Dias DP. 27.  et al. 2001. GCP5 and GCP6: two new members of the human γ-tubulin complex. Mol. Biol. Cell 12:3340–52 [Google Scholar]
  28. Zheng Y, Wong ML, Alberts B, Mitchison T. 28.  1995. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378:578–83 [Google Scholar]
  29. Oegema K, Wiese C, Martin OC, Milligan RA, Iwamatsu A. 29.  et al. 1999. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144:721–33 [Google Scholar]
  30. Kollman JM, Greenberg CH, Li S, Moritz M, Zelter A. 30.  et al. 2015. Ring closure activates yeast γ TuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22:132–37 [Google Scholar]
  31. Kollman JM, Polka JK, Zelter A, Davis TN, Agard DA. 31.  2010. Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466:879–82 [Google Scholar]
  32. Teixido-Travesa N, Roig J, Luders J. 32.  2012. The where, when and how of microtubule nucleation—one ring to rule them all. J. Cell Sci. 125:4445–56 [Google Scholar]
  33. Lin TC, Neuner A, Schiebel E. 33.  2015. Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25:296–307 [Google Scholar]
  34. Petry S, Vale RD. 34.  2015. Microtubule nucleation at the centrosome and beyond. Nat. Cell Biol. 17:1089–93 [Google Scholar]
  35. Roostalu J, Cade NI, Surrey T. 35.  2015. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat. Cell Biol. 17:1422–34 [Google Scholar]
  36. Wieczorek M, Bechstedt S, Chaaban S, Brouhard GJ. 36.  2015. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17:907–16 [Google Scholar]
  37. Roll-Mecak A, Vale RD. 37.  2006. Making more microtubules by severing: a common theme of noncentrosomal microtubule arrays?. J. Cell Biol. 175:849–51 [Google Scholar]
  38. Wiese C, Zheng Y. 38.  2000. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2:358–64 [Google Scholar]
  39. Brouhard GJ, Rice LM. 39.  2014. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 207:323–34 [Google Scholar]
  40. Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E. 40.  2014. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157:1117–29 [Google Scholar]
  41. Nogales E, Wang HW. 41.  2006. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 16:221–29 [Google Scholar]
  42. Akhmanova A, Steinmetz MO. 42.  2008. Tracking the ends: A dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9:309–22 [Google Scholar]
  43. Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS. 43.  et al. 2009. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–76 [Google Scholar]
  44. Maurer SP, Cade NI, Bohner G, Gustafsson N, Boutant E, Surrey T. 44.  2014. EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr. Biol. 24:372–84 [Google Scholar]
  45. Roberts AJ, Goodman BS, Reck-Peterson SL. 45.  2014. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 3:e02641 [Google Scholar]
  46. Duellberg C, Trokter M, Jha R, Sen I, Steinmetz MO, Surrey T. 46.  2014. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat. Cell Biol. 16:804–11 [Google Scholar]
  47. Zanic M, Widlund PO, Hyman AA, Howard J. 47.  2013. Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat. Cell Biol. 15:688–93 [Google Scholar]
  48. Welburn JP. 48.  2013. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken) 70:476–93 [Google Scholar]
  49. Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP. 49.  2014. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J. 33:1855–68 [Google Scholar]
  50. McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD. 50.  2014. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345:337–41 [Google Scholar]
  51. Tanenbaum ME, Vale RD, McKenney RJ. 51.  2013. Cytoplasmic dynein crosslinks and slides anti-parallel microtubules using its two motor domains. eLife 2:e00943 [Google Scholar]
  52. Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF. 52.  2005. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–18 [Google Scholar]
  53. Dogterom M, Surrey T. 53.  2013. Microtubule organization in vitro. Curr. Opin. Cell Biol. 25:23–29 [Google Scholar]
  54. Subramanian R, Kapoor TM. 54.  2012. Building complexity: insights into self-organized assembly of microtubule-based architectures. Dev. Cell 23:874–85 [Google Scholar]
  55. Ding R, McDonald KL, McIntosh JR. 55.  1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120:141–51 [Google Scholar]
  56. Winey M, Morgan GP, Straight PD, Giddings TH Jr, Mastronarde DN. 56.  2005. Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol. Biol. Cell 16:1178–88 [Google Scholar]
  57. McIntosh JR, Landis SC. 57.  1971. The distribution of spindle microtubules during mitosis in cultured human cells. J. Cell Biol. 49:468–97 [Google Scholar]
  58. Mastronarde DN, McDonald KL, Ding R, McIntosh JR. 58.  1993. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123:1475–89 [Google Scholar]
  59. Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A. 59.  1997. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138:615–28 [Google Scholar]
  60. Kamasaki T, O'Toole E, Kita S, Osumi M, Usukura J. 60.  et al. 2013. Augmin-dependent microtubule nucleation at microtubule walls in the spindle. J. Cell Biol. 202:25–33 [Google Scholar]
  61. Inoué S, Sato H. 61.  1967. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J. Gen. Physiol. 50:Suppl.259–92 [Google Scholar]
  62. Salmon ED, Leslie RJ, Saxton WM, Karow ML, McIntosh JR. 62.  1984. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J. Cell Biol. 99:2165–74 [Google Scholar]
  63. Pearson CG, Gardner MK, Paliulis LV, Salmon ED, Odde DJ, Bloom K. 63.  2006. Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy. Mol. Biol. Cell 17:4069–79 [Google Scholar]
  64. Cheerambathur DK, Civelekoglu-Scholey G, Brust-Mascher I, Sommi P, Mogilner A, Scholey JM. 64.  2007. Quantitative analysis of an anaphase B switch: predicted role for a microtubule catastrophe gradient. J. Cell Biol. 177:995–1004 [Google Scholar]
  65. Greenan G, Brangwynne CP, Jaensch S, Gharakhani J, Julicher F, Hyman AA. 65.  2010. Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos. Curr. Biol. 20:353–58 [Google Scholar]
  66. Mitchison T, Evans L, Schulze E, Kirschner M. 66.  1986. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45:515–27 [Google Scholar]
  67. Karsenti E, Vernos I. 67.  2001. The mitotic spindle: a self-made machine. Science 294:543–47 [Google Scholar]
  68. Schweizer N, Weiss M, Maiato H. 68.  2014. The dynamic spindle matrix. Curr. Opin. Cell Biol. 28:1–7 [Google Scholar]
  69. Howard J, Hyman AA. 69.  2007. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19:31–35 [Google Scholar]
  70. Gadde S, Heald R. 70.  2004. Mechanisms and molecules of the mitotic spindle. Curr. Biol. 14:R797–805 [Google Scholar]
  71. Loughlin R, Heald R, Nédélec F. 71.  2010. A computational model predicts Xenopus meiotic spindle organization. J. Cell Biol. 191:1239–49 [Google Scholar]
  72. Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H. 72.  2004. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118:187–202 [Google Scholar]
  73. Dumont S, Mitchison TJ. 73.  2009. Force and length in the mitotic spindle. Curr. Biol. 19:R749–61 [Google Scholar]
  74. Tirnauer JS, Salmon ED, Mitchison TJ. 74.  2004. Microtubule plus-end dynamics in Xenopus egg extract spindles. Mol. Biol. Cell 15:1776–84 [Google Scholar]
  75. Mahoney NM, Goshima G, Douglass AD, Vale RD. 75.  2006. Making microtubules and mitotic spindles in cells without functional centrosomes. Curr. Biol. 16:564–69 [Google Scholar]
  76. Burbank KS, Groen AC, Perlman ZE, Fisher DS, Mitchison TJ. 76.  2006. A new method reveals microtubule minus ends throughout the meiotic spindle. J. Cell Biol. 175:369–75 [Google Scholar]
  77. Burbank KS, Mitchison TJ, Fisher DS. 77.  2007. Slide-and-cluster models for spindle assembly. Curr. Biol. 17:1373–83 [Google Scholar]
  78. Yang G, Houghtaling BR, Gaetz J, Liu JZ, Danuser G, Kapoor TM. 78.  2007. Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging. Nat. Cell Biol. 9:1233–42 [Google Scholar]
  79. Needleman DJ, Groen A, Ohi R, Maresca T, Mirny L, Mitchison T. 79.  2010. Fast microtubule dynamics in meiotic spindles measured by single molecule imaging: Evidence that the spindle environment does not stabilize microtubules. Mol. Biol. Cell 21:323–33 [Google Scholar]
  80. Lecland N, Luders J. 80.  2014. The dynamics of microtubule minus ends in the human mitotic spindle. Nat. Cell Biol. 16:770–78 [Google Scholar]
  81. Goshima G, Scholey JM. 81.  2010. Control of mitotic spindle length. Annu. Rev. Cell Dev. Biol. 26:21–57 [Google Scholar]
  82. Reber SB, Baumgart J, Widlund PO, Pozniakovsky A, Howard J. 82.  et al. 2013. XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules. Nat. Cell Biol. 15:1116–22 [Google Scholar]
  83. Hara Y, Kimura A. 83.  2013. An allometric relationship between mitotic spindle width, spindle length, and ploidy in Caenorhabditis elegans embryos. Mol. Biol. Cell 24:1411–19 [Google Scholar]
  84. Young S, Besson S, Welburn JP. 84.  2014. Length-dependent anisotropic scaling of spindle shape. Biol. Open 3:1217–23 [Google Scholar]
  85. Levy DL, Heald R. 85.  2012. Mechanisms of intracellular scaling. Annu. Rev. Cell Dev. Biol. 28:113–35 [Google Scholar]
  86. Wilbur JD, Heald R. 86.  2013. Mitotic spindle scaling during Xenopus development by kif2a and importin α. eLife 2:e00290 [Google Scholar]
  87. Hazel J, Krutkramelis K, Mooney P, Tomschik M, Gerow K. 87.  et al. 2013. Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 342:853–56 [Google Scholar]
  88. Good MC, Vahey MD, Skandarajah A, Fletcher DA, Heald R. 88.  2013. Cytoplasmic volume modulates spindle size during embryogenesis. Science 342:856–60 [Google Scholar]
  89. Brown KS, Blower MD, Maresca TJ, Grammer TC, Harland RM, Heald R. 89.  2007. Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J. Cell Biol. 176:765–70 [Google Scholar]
  90. Loughlin R, Wilbur JD, McNally FJ, Nédélec FJ, Heald R. 90.  2011. Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147:1397–407 [Google Scholar]
  91. Helmke KJ, Heald R. 91.  2014. TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts. J. Cell Biol. 206:385–93 [Google Scholar]
  92. Wollman R, Cytrynbaum EN, Jones JT, Meyer T, Scholey JM, Mogilner A. 92.  2005. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15:828–32 [Google Scholar]
  93. Paul R, Wollman R, Silkworth WT, Nardi IK, Cimini D, Mogilner A. 93.  2009. Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy. PNAS 106:15708–13 [Google Scholar]
  94. Liu L, Wiese C. 94.  2008. Xenopus NEDD1 is required for microtubule organization in Xenopus egg extracts. J. Cell Sci. 121:578–89 [Google Scholar]
  95. Luders J, Patel UK, Stearns T. 95.  2006. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat. Cell Biol. 8:137–47 [Google Scholar]
  96. Haren L, Remy MH, Bazin I, Callebaut I, Wright M, Merdes A. 96.  2006. NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172:505–15 [Google Scholar]
  97. Teixido-Travesa N, Villen J, Lacasa C, Bertran MT, Archinti M. 97.  et al. 2010. The γTuRC revisited: A comparative analysis of interphase and mitotic human γ TuRC redefines the set of core components and identifies the novel subunit GCP8. Mol. Biol. Cell 21:3963–72 [Google Scholar]
  98. Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ. 98.  2004. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15:3642–57 [Google Scholar]
  99. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y. 99.  2002. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13:3235–45 [Google Scholar]
  100. Gillingham AK, Munro S. 100.  2000. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep. 1:524–29 [Google Scholar]
  101. Zhu H, Coppinger JA, Jang CY, Yates JR 3rd, Fang G. 101.  2008. FAM29A promotes microtubule amplification via recruitment of the NEDD1-γ-tubulin complex to the mitotic spindle. J. Cell Biol. 183:835–48 [Google Scholar]
  102. Choi YK, Liu P, Sze SK, Dai C, Qi RZ. 102.  2010. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 191:1089–95 [Google Scholar]
  103. Khodjakov A, Rieder CL. 103.  1999. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146:585–96 [Google Scholar]
  104. Piehl M, Tulu US, Wadsworth P, Cassimeris L. 104.  2004. Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. PNAS 101:1584–88 [Google Scholar]
  105. Martinez-Campos M, Basto R, Baker J, Kernan M, Raff JW. 105.  2004. The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell Biol. 165:673–83 [Google Scholar]
  106. Dobbelaere J, Josue F, Suijkerbuijk S, Baum B, Tapon N, Raff J. 106.  2008. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLOS Biol. 6:e224 [Google Scholar]
  107. Albee AJ, Tao W, Wiese C. 107.  2006. Phosphorylation of maskin by Aurora-A is regulated by RanGTP and importin β. J. Biol. Chem. 281:38293–301 [Google Scholar]
  108. Gergely F, Draviam VM, Raff JW. 108.  2003. The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev. 17:336–41 [Google Scholar]
  109. Kirschner MW, Mitchison T. 109.  1986. Microtubule dynamics. Nature 324:621 [Google Scholar]
  110. Holy TE, Leibler S. 110.  1994. Dynamic instability of microtubules as an efficient way to search in space. PNAS 91:5682–85 [Google Scholar]
  111. Kirschner M, Mitchison T. 111.  1986. Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–42 [Google Scholar]
  112. Desai A, Mitchison TJ. 112.  1997. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13:83–117 [Google Scholar]
  113. Khodjakov A, Cole RW, Oakley BR, Rieder CL. 113.  2000. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10:59–67 [Google Scholar]
  114. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG. 114.  et al. 2006. Flies without centrioles. Cell 125:1375–86 [Google Scholar]
  115. Schuh M, Ellenberg J. 115.  2007. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–98 [Google Scholar]
  116. McKim KS, Hawley RS. 116.  1995. Chromosomal control of meiotic cell division. Science 270:1595–601 [Google Scholar]
  117. Rebollo E, Llamazares S, Reina J, Gonzalez C. 117.  2004. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes. PLOS Biol. 2:E8 [Google Scholar]
  118. Dinarina A, Pugieux C, Corral MM, Loose M, Spatz J. 118.  et al. 2009. Chromatin shapes the mitotic spindle. Cell 138:502–13 [Google Scholar]
  119. Dasso M. 119.  2002. The Ran GTPase: theme and variations. Curr. Biol. 12:R502–8 [Google Scholar]
  120. Hetzer M, Gruss OJ, Mattaj IW. 120.  2002. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat. Cell Biol. 4:E177–84 [Google Scholar]
  121. Kalab P, Pu RT, Dasso M. 121.  1999. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9:481–84 [Google Scholar]
  122. Ohba T, Nakamura M, Nishitani H, Nishimoto T. 122.  1999. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284:1356–58 [Google Scholar]
  123. Wilde A, Zheng Y. 123.  1999. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–62 [Google Scholar]
  124. Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW. 124.  1999. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–81 [Google Scholar]
  125. Kalab P, Weis K, Heald R. 125.  2002. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295:2452–56 [Google Scholar]
  126. Caudron M, Bunt G, Bastiaens P, Karsenti E. 126.  2005. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309:1373–76 [Google Scholar]
  127. Kalab P, Pralle A, Isacoff EY, Heald R, Weis K. 127.  2006. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440:697–701 [Google Scholar]
  128. Halpin D, Kalab P, Wang J, Weis K, Heald R. 128.  2011. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts. PLOS Biol. 9:e1001225 [Google Scholar]
  129. Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J. 129.  et al. 2001. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104:83–93 [Google Scholar]
  130. Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K. 130.  2001. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104:95–106 [Google Scholar]
  131. Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y. 131.  2001. Role of importin β in coupling Ran to downstream targets in microtubule assembly. Science 291:653–56 [Google Scholar]
  132. Wittmann T, Wilm M, Karsenti E, Vernos I. 132.  2000. TPX2, a novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149:1405–18 [Google Scholar]
  133. Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P. 133.  2006. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16:536–41 [Google Scholar]
  134. Schatz CA, Santarella R, Hoenger A, Karsenti E, Mattaj IW. 134.  et al. 2003. Importin α-regulated nucleation of microtubules by TPX2. EMBO J. 22:2060–70 [Google Scholar]
  135. Eyers PA, Maller JL. 135.  2004. Regulation of Xenopus Aurora A activation by TPX2. J. Biol. Chem. 279:9008–15 [Google Scholar]
  136. Bayliss R, Sardon T, Vernos I, Conti E. 136.  2003. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12:851–62 [Google Scholar]
  137. Tsai MY, Wiese C, Cao K, Martin O, Donovan P. 137.  et al. 2003. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat. Cell Biol. 5:242–48 [Google Scholar]
  138. Giet R, McLean D, Descamps S, Lee MJ, Raff JW. 138.  et al. 2002. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156:437–51 [Google Scholar]
  139. Scrofani J, Sardon T, Meunier S, Vernos I. 139.  2015. Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr. Biol. 25:131–40 [Google Scholar]
  140. Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S. 140.  et al. 2005. Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat. Cell Biol. 7:961–68 [Google Scholar]
  141. Chan J, Sambade A, Calder G, Lloyd C. 141.  2009. Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules. Plant Cell 21:2298–306 [Google Scholar]
  142. Janson ME, Setty TG, Paoletti A, Tran PT. 142.  2005. Efficient formation of bipolar microtubule bundles requires microtubule-bound γ-tubulin complexes. J. Cell Biol. 169:297–308 [Google Scholar]
  143. Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD. 143.  2008. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181:421–29 [Google Scholar]
  144. Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD. 144.  et al. 2009. The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. PNAS 106:6998–7003 [Google Scholar]
  145. Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R. 145.  et al. 2009. HAUS, the 8-subunit human augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 19:816–26 [Google Scholar]
  146. Hsia KC, Wilson-Kubalek EM, Dottore A, Hao Q, Tsai KL. 146.  et al. 2014. Reconstitution of the augmin complex provides insights into its architecture and function. Nat. Cell Biol. 16:852–63 [Google Scholar]
  147. Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD. 147.  2013. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152:768–77 [Google Scholar]
  148. Ho CM, Hotta T, Kong Z, Zeng CJ, Sun J. 148.  et al. 2011. Augmin plays a critical role in organizing the spindle and phragmoplast microtubule arrays in Arabidopsis. Plant Cell 23:2606–18 [Google Scholar]
  149. Hotta T, Kong Z, Ho CM, Zeng CJ, Horio T. 149.  et al. 2012. Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. Plant Cell 24:1494–509 [Google Scholar]
  150. Nakaoka Y, Miki T, Fujioka R, Uehara R, Tomioka A. 150.  et al. 2012. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24:1478–93 [Google Scholar]
  151. Liu T, Tian J, Wang G, Yu Y, Wang C. 151.  et al. 2014. Augmin triggers microtubule-dependent microtubule nucleation in interphase plant cells. Curr. Biol. 24:2708–13 [Google Scholar]
  152. Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R. 152.  1998. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8:903–13 [Google Scholar]
  153. Clausen T, Ribbeck K. 153.  2007. Self-organization of anastral spindles by synergy of dynamic instability, autocatalytic microtubule production, and a spatial signaling gradient. PLOS ONE 2:e244 [Google Scholar]
  154. Ma N, Tulu US, Ferenz NP, Fagerstrom C, Wilde A, Wadsworth P. 154.  2010. Poleward transport of TPX2 in the mammalian mitotic spindle requires dynein, Eg5, and microtubule flux. Mol. Biol. Cell 21:979–88 [Google Scholar]
  155. Kelly AE, Sampath SC, Maniar TA, Woo EM, Chait BT, Funabiki H. 155.  2007. Chromosomal enrichment and activation of the Aurora B pathway are coupled to spatially regulate spindle assembly. Dev. Cell 12:31–43 [Google Scholar]
  156. Maresca TJ, Groen AC, Gatlin JC, Ohi R, Mitchison TJ, Salmon ED. 156.  2009. Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr. Biol. 19:1210–15 [Google Scholar]
  157. Biggins S, Walczak CE. 157.  2003. Captivating capture: how microtubules attach to kinetochores. Curr. Biol. 13:R449–60 [Google Scholar]
  158. McGill M, Brinkley BR. 158.  1975. Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin. J. Cell Biol. 67:189–99 [Google Scholar]
  159. Witt PL, Ris H, Borisy GG. 159.  1980. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81:483–505 [Google Scholar]
  160. Snyder JA, McIntosh JR. 160.  1975. Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J. Cell Biol. 67:744–60 [Google Scholar]
  161. Khodjakov A, Copenagle L, Gordon MB, Compton DA, Kapoor TM. 161.  2003. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160:671–83 [Google Scholar]
  162. Maiato H, Rieder CL, Khodjakov A. 162.  2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167:831–40 [Google Scholar]
  163. LaFountain JR Jr, Oldenbourg R. 163.  2014. Kinetochore-driven outgrowth of microtubules is a central contributor to kinetochore fiber maturation in crane-fly spermatocytes. Mol. Biol. Cell 25:1437–45 [Google Scholar]
  164. Mishra RK, Chakraborty P, Arnaoutov A, Fontoura BM, Dasso M. 164.  2010. The Nup107–160 complex and γ-TuRC regulate microtubule polymerization at kinetochores. Nat. Cell Biol. 12:164–69 [Google Scholar]
  165. Arnaoutov A, Dasso M. 165.  2005. Ran-GTP regulates kinetochore attachment in somatic cells. Cell Cycle 4:1161–65 [Google Scholar]
  166. Bird AW, Hyman AA. 166.  2008. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J. Cell Biol. 182:289–300 [Google Scholar]
  167. Fu W, Chen H, Wang G, Luo J, Deng Z. 167.  et al. 2013. Self-assembly and sorting of acentrosomal microtubules by TACC3 facilitate kinetochore capture during the mitotic spindle assembly. PNAS 110:15295–300 [Google Scholar]
  168. Meunier S, Vernos I. 168.  2011. K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat. Cell Biol. 13:1406–14 [Google Scholar]
  169. Bucciarelli E, Pellacani C, Naim V, Palena A, Gatti M, Somma MP. 169.  2009. Drosophila Dgt6 interacts with Ndc80, Msps/XMAP215, and γ-tubulin to promote kinetochore-driven MT formation. Curr. Biol. 19:1839–45 [Google Scholar]
  170. Merdes A, Ramyar K, Vechio JD, Cleveland DW. 170.  1996. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–58 [Google Scholar]
  171. Verde F, Berrez JM, Antony C, Karsenti E. 171.  1991. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112:1177–87 [Google Scholar]
  172. Petry S, Pugieux C, Nédélec FJ, Vale RD. 172.  2011. Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. PNAS 108:14473–78 [Google Scholar]
  173. Hayward D, Metz J, Pellacani C, Wakefield JG. 173.  2014. Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation. Dev. Cell 28:81–93 [Google Scholar]
  174. Gergely F, Kidd D, Jeffers K, Wakefield JG, Raff JW. 174.  2000. D-TACC: A novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J. 19:241–52 [Google Scholar]
  175. Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R. 175.  2004. XRHAMM functions in Ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr. Biol. 14:1801–11 [Google Scholar]
  176. Trieselmann N, Armstrong S, Rauw J, Wilde A. 176.  2003. Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J. Cell Sci. 116:4791–98 [Google Scholar]
  177. Ems-McClung SC, Zheng Y, Walczak CE. 177.  2004. Importin α/β and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol. Biol. Cell 15:46–57 [Google Scholar]
  178. Maresca TJ, Niederstrasser H, Weis K, Heald R. 178.  2005. Xnf7 contributes to spindle integrity through its microtubule-bundling activity. Curr. Biol. 15:1755–61 [Google Scholar]
  179. Blower MD, Nachury M, Heald R, Weis K. 179.  2005. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121:223–34 [Google Scholar]
  180. Brown JA, Bharathi A, Ghosh A, Whalen W, Fitzgerald E, Dhar R. 180.  1995. A mutation in the Schizosaccharomyces pombe rae1 gene causes defects in poly(A)+ RNA export and in the cytoskeleton. J. Biol. Chem. 270:7411–19 [Google Scholar]
  181. Jeganathan KB, Malureanu L, van Deursen JM. 181.  2005. The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438:1036–39 [Google Scholar]
  182. Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW. 182.  2006. HURP is part of a Ran-dependent complex involved in spindle formation. Curr. Biol. 16:743–54 [Google Scholar]
  183. Wong J, Fang G. 183.  2006. HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J. Cell Biol. 173:879–91 [Google Scholar]
  184. Tsai MY, Wang S, Heidinger JM, Shumaker DK, Adam SA. 184.  et al. 2006. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311:1887–93 [Google Scholar]
  185. Ribbeck K, Raemaekers T, Carmeliet G, Mattaj IW. 185.  2007. A role for NuSAP in linking microtubules to mitotic chromosomes. Curr. Biol. 17:230–36 [Google Scholar]
  186. Yokoyama H, Rybina S, Santarella-Mellwig R, Mattaj IW, Karsenti E. 186.  2009. ISWI is a RanGTP-dependent MAP required for chromosome segregation. J. Cell Biol. 187:813–29 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error