Epidermal growth factor (EGF) and insulin receptor tyrosine kinases (RTKs) exemplify how receptor location is coupled to signal transduction. Extracellular binding of ligands to these RTKs triggers their concentration into vesicles that bud off from the cell surface to generate intracellular signaling endosomes. On the exposed cytosolic surface of these endosomes, RTK autophosphorylation selects the downstream signaling proteins and lipids to effect growth factor and polypeptide hormone action. This selection is followed by the recruitment of protein tyrosine phosphatases that inactivate the RTKs and deliver them by membrane fusion and fission to late endosomes. Coincidentally, proteinases inside the endosome cleave the EGF and insulin ligands. Subsequent inward budding of the endosomal membrane generates multivesicular endosomes. Fusion with lysosomes then results in RTK degradation and downregulation. Through the spatial positioning of RTKs in target cells for EGF and insulin action, the temporal extent of signaling, attenuation, and downregulation is regulated.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI. 1.  et al. 2000. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6:87–97 [Google Scholar]
  2. Kadowaki T, Kubota N, Ueki K, Yamauchi T. 2.  2012. SnapShot: physiology of insulin signaling. Cell 148:834–834.e1 [Google Scholar]
  3. Boucher J, Kleinridders A, Kahn CR. 3.  2014. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6:a009191 [Google Scholar]
  4. Kang LI, Mars WM, Michalopoulos GK. 4.  2012. Signals and cells involved in regulating liver regeneration. Cells 1:1261–92 [Google Scholar]
  5. Natarajan A, Wagner B, Sibilia M. 5.  2007. The EGF receptor is required for efficient liver regeneration. PNAS 104:17081–86 [Google Scholar]
  6. Yarden Y, Shilo BZ. 6.  2007. SnapShot: EGFR signaling pathway. Cell 131:1018 [Google Scholar]
  7. Bergeron JJ, Levine G, Sikstrom R, O'Shaughnessy D, Kopriwa B. 7.  et al. 1977. Polypeptide hormone binding sites in vivo: initial localization of 125I-labeled insulin to hepatocyte plasmalemma as visualized by electron microscope radioautography. PNAS 74:5051–55 [Google Scholar]
  8. Bergeron JJ, Sikstrom R, Hand AR, Posner BI. 8.  1979. Binding and uptake of 125I-insulin into rat liver hepatocytes and endothelium. An in vivo radioautographic study. J. Cell Biol. 80:427–43 [Google Scholar]
  9. Khan MN, Posner BI, Khan RJ, Bergeron JJ. 9.  1982. Internalization of insulin into rat liver Golgi elements. Evidence for vesicle heterogeneity and the path of intracellular processing. J. Biol. Chem. 257:5969–76 [Google Scholar]
  10. Posner BI, Patel B, Verma AK, Bergeron JJ. 10.  1980. Uptake of insulin by plasmalemma and Golgi subcellular fractions of rat liver. J. Biol. Chem. 255:735–41 [Google Scholar]
  11. Dahan S, Ahluwalia JP, Wong L, Posner BI, Bergeron JJ. 11.  1994. Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes. J. Cell Biol. 127:1859–69 [Google Scholar]
  12. Khan MN, Savoie S, Bergeron JJ, Posner BI. 12.  1986. Characterization of rat liver endosomal fractions. In vivo activation of insulin-stimulable receptor kinase in these structures. J. Biol. Chem. 261:8462–72 [Google Scholar]
  13. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D. 13.  et al. 1994. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269:4596–604 [Google Scholar]
  14. Bevan AP, Burgess JW, Drake PG, Shaver A, Bergeron JJ, Posner BI. 14.  1995. Selective activation of the rat hepatic endosomal insulin receptor kinase. Role for the endosome in insulin signaling. J. Biol. Chem. 270:10784–91 [Google Scholar]
  15. Carpentier JL, Gorden P, Anderson RG, Goldstein JL, Brown MS. 15.  et al. 1982. Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J. Cell Biol. 95:73–77 [Google Scholar]
  16. Cohen S, Fava RA. 16.  1985. Internalization of functional epidermal growth factor:receptor/kinase complexes in A-431 cells. J. Biol. Chem. 260:12351–58 [Google Scholar]
  17. Dunn WA, Connolly TP, Hubbard AL. 17.  1986. Receptor-mediated endocytosis of epidermal growth factor by rat hepatocytes: receptor pathway. J. Cell Biol. 102:24–36 [Google Scholar]
  18. Dunn WA, Hubbard AL. 18.  1984. Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics. J. Cell Biol. 98:2148–59 [Google Scholar]
  19. Fortian A, Sorkin A. 19.  2014. Live-cell fluorescence imaging reveals high stoichiometry of Grb2 binding to the EGF receptor sustained during endocytosis. J. Cell Sci. 127:432–44 [Google Scholar]
  20. Haigler HT, McKanna JA, Cohen S. 20.  1979. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J. Cell Biol. 81:382–95 [Google Scholar]
  21. Miller K, Beardmore J, Kanety H, Schlessinger J, Hopkins CR. 21.  1986. Localization of the epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol. 102:500–9 [Google Scholar]
  22. Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ. 22.  1994. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13:4269–77 [Google Scholar]
  23. Kay DG, Lai WH, Uchihashi M, Khan MN, Posner BI, Bergeron JJ. 23.  1986. Epidermal growth factor receptor kinase translocation and activation in vivo. J. Biol. Chem. 261:8473–80 [Google Scholar]
  24. Lai WH, Cameron PH, Doherty JJ 2nd, Posner BI, Bergeron JJ. 24.  1989. Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization. J. Cell Biol. 109:2751–60 [Google Scholar]
  25. Lai WH, Cameron PH, Wada I, Doherty JJ 2nd, Kay DG. 25.  et al. 1989. Ligand-mediated internalization, recycling, and downregulation of the epidermal growth factor receptor in vivo. J. Cell Biol. 109:2741–49 [Google Scholar]
  26. Wada I, Lai WH, Posner BI, Bergeron JJ. 26.  1992. Association of the tyrosine phosphorylated epidermal growth factor receptor with a 55-kD tyrosine phosphorylated protein at the cell surface and in endosomes. J. Cell Biol. 116:321–30 [Google Scholar]
  27. Authier F, Di Guglielmo GM, Danielsen GM, Bergeron JJ. 27.  1998. Uptake and metabolic fate of [HisA8,HisB4,GluB10,HisB27]insulin in rat liver in vivo. Biochem. J. 332:Pt. 2421–30 [Google Scholar]
  28. Authier F, Metioui M, Bell AW, Mort JS. 28.  1999. Negative regulation of epidermal growth factor signaling by selective proteolytic mechanisms in the endosome mediated by cathepsin B. J. Biol. Chem. 274:33723–31 [Google Scholar]
  29. Authier F, Metioui M, Fabrega S, Kouach M, Briand G. 29.  2002. Endosomal proteolysis of internalized insulin at the C-terminal region of the B chain by cathepsin D. J. Biol. Chem. 277:9437–46 [Google Scholar]
  30. Authier F, Rachubinski RA, Posner BI, Bergeron JJ. 30.  1994. Endosomal proteolysis of insulin by an acidic thiol metalloprotease unrelated to insulin degrading enzyme. J. Biol. Chem. 269:3010–16 [Google Scholar]
  31. Hamel FG, Posner BI, Bergeron JJ, Frank BH, Duckworth WC. 31.  1988. Isolation of insulin degradation products from endosomes derived from intact rat liver. J. Biol. Chem. 263:6703–8 [Google Scholar]
  32. Villaseñor R, Nonaka H, Del Conte-Zerial P, Kalaidzidis Y, Zerial M. 32.  2015. Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes. eLife 4:e06156 [Google Scholar]
  33. Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I. 33.  2010. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464:783–87 [Google Scholar]
  34. Wiley HS, Cunningham DD. 34.  1982. The endocytotic rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J. Biol. Chem. 257:4222–29 [Google Scholar]
  35. Hofman EG, Bader AN, Voortman J, van den Heuvel DJ, Sigismund S. 35.  et al. 2010. Ligand-induced EGF receptor oligomerization is kinase-dependent and enhances internalization. J. Biol. Chem. 285:39481–89 [Google Scholar]
  36. Wiley HS, Cunningham DD. 36.  1981. A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell 25:433–40 [Google Scholar]
  37. Bitsikas V, Correa IR Jr, Nichols BJ. 37.  2014. Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3e03970 [Google Scholar]
  38. Rappoport JZ, Simon SM. 38.  2009. Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J. Cell Sci. 122:1301–5 [Google Scholar]
  39. Jura N, Endres NF, Engel K, Deindl S, Das R. 39.  et al. 2009. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–307 [Google Scholar]
  40. Goh LK, Huang F, Kim W, Gygi S, Sorkin A. 40.  2010. Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J. Cell Biol. 189:871–83 [Google Scholar]
  41. Huang F, Jiang X, Sorkin A. 41.  2003. Tyrosine phosphorylation of the β2 subunit of clathrin adaptor complex AP-2 reveals the role of a di-leucine motif in the epidermal growth factor receptor trafficking. J. Biol. Chem. 278:43411–17 [Google Scholar]
  42. Taylor MJ, Lampe M, Merrifield CJ. 42.  2012. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLOS Biol. 10:e1001302 [Google Scholar]
  43. Taylor MJ, Perrais D, Merrifield CJ. 43.  2011. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLOS Biol. 9:e1000604 [Google Scholar]
  44. Wang Z, Moran MF. 44.  1996. Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science 272:1935–39 [Google Scholar]
  45. Sousa LP, Lax I, Shen H, Ferguson SM, De Camilli P, Schlessinger J. 45.  2012. Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane. PNAS 109:4419–24 [Google Scholar]
  46. Schmees C, Villaseñor R, Zheng W, Ma H, Zerial M. 46.  et al. 2012. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V. Mol. Biol. Cell 23:2571–82 [Google Scholar]
  47. Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y. 47.  et al. 2015. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–65 [Google Scholar]
  48. Renard HF, Simunovic M, Lemiere J, Boucrot E, Garcia-Castillo MD. 48.  et al. 2015. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:493–96 [Google Scholar]
  49. Foret L, Dawson JE, Villaseñor R, Collinet C, Deutsch A. 49.  et al. 2012. A general theoretical framework to infer endosomal network dynamics from quantitative image analysis. Curr. Biol. 22:1381–90 [Google Scholar]
  50. Rink J, Ghigo E, Kalaidzidis Y, Zerial M. 50.  2005. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–49 [Google Scholar]
  51. Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K. 51.  et al. 2001. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol. Cell 7:421–32 [Google Scholar]
  52. Mace G, Miaczynska M, Zerial M, Nebreda AR. 52.  2005. Phosphorylation of EEA1 by p38 MAP kinase regulates mu opioid receptor endocytosis. EMBO J. 24:3235–46 [Google Scholar]
  53. Lim B, Dsilva CJ, Levario TJ, Lu H, Schupbach T. 53.  et al. 2015. Dynamics of inductive ERK signaling in the Drosophila embryo. Curr. Biol. 25:1784–90 [Google Scholar]
  54. Li C, Baquiran G, Gu F, Tremblay ML, Fazel A. 54.  et al. 2006. Insulin receptor kinase-associated phosphotyrosine phosphatases in hepatic endosomes: assessing the role of phosphotyrosine phosphatase-1B. Endocrinology 147:912–18 [Google Scholar]
  55. Naguib A, Bencze G, Cho H, Zheng W, Tocilj A. 55.  et al. 2015. PTEN functions by recruitment to cytoplasmic vesicles. Mol. Cell 58:255–68 [Google Scholar]
  56. Albeck JG, Mills GB, Brugge JS. 56.  2013. Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol. Cell 49:249–61 [Google Scholar]
  57. Raiborg C, Wenzel EM, Stenmark H. 57.  2015. ER-endosome contact sites: molecular compositions and functions. EMBO J. 34:1848–58 [Google Scholar]
  58. Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK. 58.  2014. ER contact sites define the position and timing of endosome fission. Cell 159:1027–41 [Google Scholar]
  59. Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO. 59.  et al. 2015. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520:234–38 [Google Scholar]
  60. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI. 60.  2002. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295:1708–11 [Google Scholar]
  61. Yudushkin IA, Schleifenbaum A, Kinkhabwala A, Neel BG, Schultz C, Bastiaens PI. 61.  2007. Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science 315:115–19 [Google Scholar]
  62. Steinman RM, Brodie SE, Cohn ZA. 62.  1976. Membrane flow during pinocytosis. A stereologic analysis. J. Cell Biol. 68:665–87 [Google Scholar]
  63. Steinman RM, Mellman IS, Muller WA, Cohn ZA. 63.  1983. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96:1–27 [Google Scholar]
  64. Doherty JJ 2nd, Kay DG, Lai WH, Posner BI, Bergeron JJ. 64.  1990. Selective degradation of insulin within rat liver endosomes. J. Cell Biol. 110:35–42 [Google Scholar]
  65. Diment S, Leech MS, Stahl PD. 65.  1988. Cathepsin D is membrane-associated in macrophage endosomes. J. Biol. Chem. 263:6901–7 [Google Scholar]
  66. Diment S, Stahl P. 66.  1985. Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J. Biol. Chem. 260:15311–17 [Google Scholar]
  67. Brankatschk B, Wichert SP, Johnson SD, Schaad O, Rossner MJ, Gruenberg J. 67.  2012. Regulation of the EGF transcriptional response by endocytic sorting. Sci. Signal 5:ra21 [Google Scholar]
  68. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M. 68.  2003. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21:315–18 [Google Scholar]
  69. Bennett AM, Hausdorff SF, O'Reilly AM, Freeman RM, Neel BG. 69.  1996. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Mol. Cell. Biol. 16:1189–202 [Google Scholar]
  70. Schulze WX, Deng L, Mann M. 70.  2005. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1:2005.0008 [Google Scholar]
  71. Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N. 71.  et al. 2013. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499:166–71 [Google Scholar]
  72. Tong J, Taylor P, Moran MF. 72.  2014. Proteomic analysis of the epidermal growth factor receptor (EGFR) interactome and post-translational modifications associated with receptor endocytosis in response to EGF and stress. Mol. Cell. Proteomics 13:1644–58 [Google Scholar]
  73. Haines E, Saucier C, Claing A. 73.  2014. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. J. Biol. Chem. 289:5687–703 [Google Scholar]
  74. Argenzio E, Bange T, Oldrini B, Bianchi F, Peesari R. 74.  et al. 2011. Proteomic snapshot of the EGF-induced ubiquitin network. Mol. Syst. Biol. 7:462–76 [Google Scholar]
  75. Kazazic M, Bertelsen V, Pedersen KW, Vuong TT, Grandal MV. 75.  et al. 2009. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic 10:235–45 [Google Scholar]
  76. Zhang Z, Zhang T, Wang S, Gong Z, Tang C. 76.  et al. 2014. Molecular mechanism for Rabex-5 GEF activation by Rabaptin-5. eLife 3:e02687 [Google Scholar]
  77. Selbach M, Mann M. 77.  2006. Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat. Methods 3:981–83 [Google Scholar]
  78. Balbis A, Baquiran G, Bergeron JJ, Posner BI. 78.  2000. Compartmentalization and insulin-induced translocations of insulin receptor substrates, phosphatidylinositol 3-kinase, and protein kinase B in rat liver. Endocrinology 141:4041–49 [Google Scholar]
  79. Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR. 79.  et al. 2000. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J. Clin. Investig. 105:199–205 [Google Scholar]
  80. Braccini L, Ciraolo E, Campa CC, Perino A, Longo DL. 80.  et al. 2015. PI3K-C2gamma is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat. Commun. 6:7400 [Google Scholar]
  81. Caruso M, Ma D, Msallaty Z, Lewis M, Seyoum B. 81.  et al. 2014. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes. Diabetes 63:1933–47 [Google Scholar]
  82. Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. 82.  2006. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:2171–79 [Google Scholar]
  83. Kruger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M. 83.  2008. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. PNAS 105:2451–56 [Google Scholar]
  84. Zeigerer A, Bogorad RL, Sharma K, Gilleron J, Seifert S. 84.  et al. 2015. Regulation of liver metabolism by the endosomal GTPase Rab5. Cell Rep. 11:884–92 [Google Scholar]
  85. Pan BT, Johnstone RM. 85.  1983. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–78 [Google Scholar]
  86. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L. 86.  et al. 2008. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10:619–24 [Google Scholar]
  87. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR. 87.  et al. 2012. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–56 [Google Scholar]
  88. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B. 88.  et al. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18:883–91 [Google Scholar]
  89. Bissig C, Gruenberg J. 89.  2014. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 24:19–25 [Google Scholar]
  90. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R. 90.  et al. 2015. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–57 [Google Scholar]
  91. Renfrew CA, Hubbard AL. 91.  1991. Degradation of epidermal growth factor receptor in rat liver. Membrane topology through the lysosomal pathway. J. Biol. Chem. 266:21265–73 [Google Scholar]
  92. Gireud M, Sirisaengtaksin N, Tsunoda S, Bean AJ. 92.  2015. Cell-free reconstitution of multivesicular body (MVB) cargo sorting. Methods Mol. Biol.1270115–24 [Google Scholar]
  93. Vogel GF, Ebner HL, de Araujo ME, Schmiedinger T, Eiter O. 93.  et al. 2015. Ultrastructural morphometry points to a new role for LAMTOR2 in regulating the endo/lysosomal system. Traffic 16:617–34 [Google Scholar]
  94. Zhang A, He X, Zhang L, Yang L, Woodman P, Li W. 94.  2014. Biogenesis of lysosome-related organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments. J. Biol. Chem. 289:29180–94 [Google Scholar]
  95. Ploper D, De Robertis EM. 95.  2015. The MITF family of transcription factors: role in endolysosomal biogenesis, Wnt signaling, and oncogenesis. Pharmacol. Res. 99:36–43 [Google Scholar]
  96. Ploper D, Taelman VF, Robert L, Perez BS, Titz B. 96.  et al. 2015. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. PNAS 112:E420–29 [Google Scholar]
  97. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP. 97.  et al. 2010. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–48 [Google Scholar]
  98. Reis CR, Chen PH, Srinivasan S, Aguet F, Mettlen M, Schmid SL. 98.  2015. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 34:2111–210 [Google Scholar]
  99. Marshall S. 99.  1985. Kinetics of insulin receptor internalization and recycling in adipocytes. Shunting of receptors to a degradative pathway by inhibitors of recycling. J. Biol. Chem. 260:4136–44 [Google Scholar]
  100. Marshall S, Green A, Olefsky JM. 100.  1981. Evidence for recycling of insulin receptors in isolated rat adipocytes. J. Biol. Chem. 256:11464–70 [Google Scholar]
  101. Marshall S, Olefsky JM. 101.  1983. Separate intracellular pathways for insulin receptor recycling and insulin degradation in isolated rat adipocytes. J. Cell Physiol. 117:195–203 [Google Scholar]
  102. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA. 102.  et al. 2015. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–94 [Google Scholar]
  103. Bar-Peled L, Sabatini DM. 103.  2014. Regulation of mTORC1 by amino acids. Trends Cell Biol. 24:400–6 [Google Scholar]
  104. Xu Y, Parmar A, Roux E, Balbis A, Dumas V. 104.  et al. 2012. Epidermal growth factor-induced vacuolar (H+)-ATPase assembly: a role in signaling via mTORC1 activation. J. Biol. Chem. 287:26409–22 [Google Scholar]
  105. Soliman MA, Abdel Rahman AM, Lamming DW, Birsoy K, Pawling J. 105.  et al. 2014. The adaptor protein p66Shc inhibits mTOR-dependent anabolic metabolism. Sci. Signal 7:ra17 [Google Scholar]
  106. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. 106.  2003. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat. Cell Biol. 5:410–21 [Google Scholar]
  107. Hayes S, Chawla A, Corvera S. 107.  2002. TGFβ receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J. Cell Biol. 158:1239–49 [Google Scholar]
  108. Itoh F, Divecha N, Brocks L, Oomen L, Janssen H. 108.  et al. 2002. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling. Genes Cells 7:321–31 [Google Scholar]
  109. Panopoulou E, Gillooly DJ, Wrana JL, Zerial M, Stenmark H. 109.  et al. 2002. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J. Biol. Chem. 277:18046–52 [Google Scholar]
  110. Runyan CE, Schnaper HW, Poncelet AC. 110.  2005. The role of internalization in transforming growth factor β1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J. Biol. Chem. 280:8300–8 [Google Scholar]
  111. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. 111.  1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95:779–91 [Google Scholar]
  112. Schwartz EA, Reaven E, Topper JN, Tsao PS. 112.  2005. Transforming growth factor-β receptors localize to caveolae and regulate endothelial nitric oxide synthase in normal human endothelial cells. Biochem. J. 390:199–206 [Google Scholar]
  113. Zhang XL, Topley N, Ito T, Phillips A. 113.  2005. Interleukin-6 regulation of transforming growth factor (TGF)-β receptor compartmentalization and turnover enhances TGF-β1 signaling. J. Biol. Chem. 280:12239–45 [Google Scholar]
  114. Zwaagstra JC, Collins C, Langlois MJ, O'Connor-McCourt MD. 114.  2008. Analysis of the contribution of receptor subdomains to the cooperative binding and internalization of transforming growth factor-β (TGF-β) type I and type II receptors. Exp. Cell Res. 314:2553–68 [Google Scholar]
  115. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K. 115.  et al. 2001. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276:12477–80 [Google Scholar]
  116. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H. 116.  et al. 2000. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6:1365–75 [Google Scholar]
  117. Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM. 117.  et al. 2005. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 19:297–308 [Google Scholar]
  118. Duan X, Liang YY, Feng XH, Lin X. 118.  2006. Protein serine/threonine phosphatase PPM1A dephosphorylates Smad1 in the bone morphogenetic protein signaling pathway. J. Biol. Chem. 281:36526–32 [Google Scholar]
  119. Lin X, Duan X, Liang YY, Su Y, Wrighton KH. 119.  et al. 2006. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling. Cell 125:915–28 [Google Scholar]
  120. Ito T, Williams JD, Fraser DJ, Phillips AO. 120.  2004. Hyaluronan regulates transforming growth factor-β1 receptor compartmentalization. J. Biol. Chem. 279:25326–32 [Google Scholar]
  121. Ehrlich M, Shmuely A, Henis YI. 121.  2001. A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-β receptor. J. Cell Sci. 114:1777–86 [Google Scholar]
  122. Yao D, Ehrlich M, Henis YI, Leof EB. 122.  2002. Transforming growth factor-β receptors interact with AP2 by direct binding to β2 subunit. Mol. Biol. Cell 13:4001–12 [Google Scholar]
  123. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. 123.  1997. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem. 272:6525–33 [Google Scholar]
  124. Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP. 124.  2001. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J. Biol. Chem. 276:6727–38 [Google Scholar]
  125. He K, Yan X, Li N, Dang S, Xu L. 125.  et al. 2015. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res. 25:738–52 [Google Scholar]
  126. Zerial M, McBride H. 126.  2001. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2:107–17 [Google Scholar]
  127. Luttrell LM. 127.  2008. Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol. Biotechnol. 39:239–64 [Google Scholar]
  128. Neer EJ. 128.  1995. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80:249–57 [Google Scholar]
  129. Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R. 129.  et al. 2009. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5:734–42 [Google Scholar]
  130. Lohse MJ, Nuber S, Hoffmann C. 130.  2012. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol. Rev. 64:299–336 [Google Scholar]
  131. Vilardaga JP, Bunemann M, Feinstein TN, Lambert N, Nikolaev VO. 131.  et al. 2009. GPCR and G proteins: drug efficacy and activation in live cells. Mol. Endocrinol. 23:590–99 [Google Scholar]
  132. Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C. 132.  et al. 2009. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLOS Biol. 7:e1000172 [Google Scholar]
  133. Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K. 133.  2009. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat. Chem. Biol. 5:428–34 [Google Scholar]
  134. Kuna RS, Girada SB, Asalla S, Vallentyne J, Maddika S. 134.  et al. 2013. Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 305:E161–70 [Google Scholar]
  135. Merriam LA, Baran CN, Girard BM, Hardwick JC, May V, Parsons RL. 135.  2013. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability. J. Neurosci. 33:4614–22 [Google Scholar]
  136. Feinstein TN, Yui N, Webber MJ, Wehbi VL, Stevenson HP. 136.  et al. 2013. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J. Biol. Chem. 288:27849–60 [Google Scholar]
  137. Luttrell LM, Gesty-Palmer D. 137.  2010. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol. Rev. 62:305–30 [Google Scholar]
  138. Sorkin A, von Zastrow M. 138.  2009. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10:609–22 [Google Scholar]
  139. Rosciglione S, Theriault C, Boily MO, Paquette M, Lavoie C. 139.  2014. s regulates the post-endocytic sorting of G protein-coupled receptors. Nat. Commun. 5:4556 [Google Scholar]
  140. Vieira AV, Lamaze C, Schmid SL. 140.  1996. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–89 [Google Scholar]
  141. Wang Y, Pennock S, Chen X, Wang Z. 141.  2002. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol. Cell. Biol. 22:7279–90 [Google Scholar]
  142. Irannejad R, Tsvetanova NG, Lobingier BT, von Zastrow M. 142.  2015. Effects of endocytosis on receptor-mediated signaling. Curr. Opin. Cell Biol. 35:137–43 [Google Scholar]
  143. Miaczynska M. 143.  2013. Effects of membrane trafficking on signaling by receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 5:a009035 [Google Scholar]
  144. Kruger J, Brachs S, Trappiel M, Kintscher U, Meyborg H. 144.  et al. 2015. Enhanced insulin signaling in density-enhanced phosphatase-1 (DEP-1) knockout mice. Mol. Metab. 4:325–36 [Google Scholar]
  145. Liberali P, Snijder B, Pelkmans L. 145.  2014. A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157:1473–87 [Google Scholar]
  146. Noda NN, Fujioka Y. 146.  2015. Atg1 family kinases in autophagy initiation. Cell. Mol. Life Sci. 72:3083–96 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error