Multidrug resistance is a global threat as the clinically available potent antibiotic drugs are becoming exceedingly scarce. For example, increasing drug resistance among gram-positive bacteria is responsible for approximately one-third of nosocomial infections. As ribosomes are a major target for these drugs, they may serve as suitable objects for novel development of next-generation antibiotics. Three-dimensional structures of ribosomal particles from obtained by X-ray crystallography have shed light on fine details of drug binding sites and have revealed unique structural motifs specific for this pathogenic strain, which may be used for the design of novel degradable pathogen-specific, and hence, environmentally friendly drugs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Yonath A. 1.  2010. Hibernating bears, antibiotics, and the evolving ribosome (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 49:4341–54 [Google Scholar]
  2. Yonath A, Muessig J, Tesche B, Lorenz S, Erdmann VA, Wittmann HG. 2.  1980. Crystallization of the large ribosomal subunit from Bacillus stearothermophilus. Biochem. Int. 1:428–35 [Google Scholar]
  3. Hope H, Frolow F, von Bohlen K, Makowski I, Kratky C. 3.  et al. 1989. Cryocrystallography of ribosomal particles. Acta Crystallogr. Sect. B 45:190–99 [Google Scholar]
  4. Yonath A, Leonard KR, Wittmann HG. 4.  1987. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236:813–16 [Google Scholar]
  5. Jaskolski M, Dauter Z, Wlodawer A. 5.  2014. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. FEBS J 281:3985–4009 [Google Scholar]
  6. Shalev M, Kondob J, Kopelyanskiyc D, Jaffec CL, Adir N, Baasov T. 6.  2013. Identification of the molecular attributes required for aminoglycoside activity against Leishmania. PNAS 110:13333–38 [Google Scholar]
  7. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 7.  2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20 [Google Scholar]
  8. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M. 8.  et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102:615–23 [Google Scholar]
  9. Wimberly BT, Brodersen DE, Clemons WM Jr., Morgan-Warren RJ, Carter AP. 9.  et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39 [Google Scholar]
  10. Brodersen DE, Clemons WM Jr., Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 10.  2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–54 [Google Scholar]
  11. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 11.  2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48 [Google Scholar]
  12. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. 12.  et al. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–88 [Google Scholar]
  13. Schluenzen F, Zarivach R, Harms J, Bashan A, Tocilj A. 13.  et al. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–21 [Google Scholar]
  14. Pioletti M, Schluenzen F, Harms J, Zarivach R, Gluehmann M. 14.  et al. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–39 [Google Scholar]
  15. Harms J, Bartels H, Schluenzen F, Yonath A. 15.  2003. Antibiotics acting on the translational machinery. J. Cell Sci. 116:1391–93 [Google Scholar]
  16. Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HA. 16.  et al. 2003. Structural insight into the antibiotic action of telithromycin against resistant mutants. J. Bacteriol. 185:4276–79 [Google Scholar]
  17. Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J. 17.  et al. 2003. Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11:91–102 [Google Scholar]
  18. Harms J, Schluenzen F, Fucini P, Bartels H, Yonath A. 18.  2004. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol 2:41–10 [Google Scholar]
  19. Schlunzen F, Pyetan E, Fucini P, Yonath A, Harms JM. 19.  2004. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol. 54:1287–94 [Google Scholar]
  20. Tu D, Blaha G, Moore PB, Steitz TA. 20.  2005. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–70 [Google Scholar]
  21. Wilson DN, Harms JM, Nierhaus KH, Schluenzen F, Fucini P. 21.  2005. Species-specific antibiotic-ribosome interactions: implications for drug development. Biol. Chem. 386:1239–52 [Google Scholar]
  22. Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM. 22.  et al. 2006. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat. Struct. Mol. Biol. 13:871–78 [Google Scholar]
  23. Borovinskaya MA, Shoji S, Holton JM, Fredrick K, Cate JH. 23.  2007. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 17:545–52 [Google Scholar]
  24. Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM. 24.  et al. 2007. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14:727–32 [Google Scholar]
  25. Schroeder SJ, Blaha G, Tirado-Rives J, Steitz TA, Moore PB. 25.  2007. The structures of antibiotics bound to the E site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole. J. Mol. Biol. 367:1471–79 [Google Scholar]
  26. Davidovich C, Bashan A, Auerbach-Nevo T, Yaggie RD, Gontarek RR, Yonath A. 26.  2007. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. PNAS 104:4291–96 [Google Scholar]
  27. Pyetan E, Baram D, Auerbach-Nevo T, Yonath A. 27.  2007. Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel. Pure Appl. Chem. 79:955–68 [Google Scholar]
  28. Borovinskaya MA, Shoji S, Fredrick K, Cate JH. 28.  2008. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA 14:1590–99 [Google Scholar]
  29. Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P. 29.  2008. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. PNAS 105:13339–44 [Google Scholar]
  30. Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T. 30.  et al. 2008. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 30:26–38 [Google Scholar]
  31. Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB. 31.  et al. 2008. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J. Med. Chem 513353–56 [Google Scholar]
  32. Dunkle JA, Xiong L, Mankin AS, Cate JH. 32.  2010. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. PNAS 107:17152–57 [Google Scholar]
  33. Bulkley D, Innis CA, Blaha G, Steitz TA. 33.  2010. Revisiting the structures of several antibiotics bound to the bacterial ribosome. PNAS 107:17158–63 [Google Scholar]
  34. Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA. 34.  2010. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol. 17:289–93 [Google Scholar]
  35. Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M. 35.  et al. 2010. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. PNAS 107:1983–88 [Google Scholar]
  36. Ben-Shem A, Jenner L, Yusupova G, Yusupov M. 36.  2010. Crystal structure of the eukaryotic ribosome. Science 330:1203–9 [Google Scholar]
  37. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. 37.  2011. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–29 [Google Scholar]
  38. Belousoff MJ, Shapira T, Bashan A, Zimmerman E, Rozenberg H. 38.  et al. 2011. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. PNAS 108:2717–22 [Google Scholar]
  39. Bulkley D, Johnson F, Steitz TA. 39.  2012. The antibiotic thermorubin inhibits protein synthesis by binding to inter-subunit bridge B2a of the ribosome. J. Mol. Biol. 416:571–78 [Google Scholar]
  40. Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G. 40.  2012. A new understanding of the decoding principle on the ribosome. Nature 484:256–59 [Google Scholar]
  41. Blaha GM, Polikanov YS, Steitz TA. 41.  2012. Elements of ribosomal drug resistance and specificity. Curr. Opin. Struct. Biol. 22:750–58 [Google Scholar]
  42. Zimmerman E, Bashan A, Yonath A. 42.  2014. Antibiotics at the ribosomal exit tunnel–selected structural aspects. Antibiotics: Targets, Mechanisms and Resistance CO Gualerzi, L Brandi, A Fabbretti, CL Pon 509–24 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  43. Wong W, Bai XC, Brown A, Fernandez IS, Hanssen E. 43.  et al. 2014. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 2014:03080 [Google Scholar]
  44. Olivier NB, Altman RB, Noeske J, Basarab GS, Code E. 44.  et al. 2014. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome. PNAS 111:16274–79 [Google Scholar]
  45. Polikanov YS, Szal T, Jiang F, Gupta P, Matsuda R. 45.  et al. 2014. Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Mol. Cell 56:541–50 [Google Scholar]
  46. Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH. 46.  2015. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 22:336–41 [Google Scholar]
  47. Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S. 47.  et al. 2015. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. . PNAS 112:E5805–14 [Google Scholar]
  48. Arenz S, Nguyen F, Beckmann R, Wilson DN. 48.  2015. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. PNAS 112:5401–6 [Google Scholar]
  49. Amunts A, Fiedorczuk K, Truong TT, Chandler J, Greenberg EP, Ramakrishnan V. 49.  2015. Bactobolin A binds to a site on the 70S ribosome distinct from previously seen antibiotics. J. Mol. Biol. 27:753–55 [Google Scholar]
  50. Krupkin M, Wekselman I, Matzov D, Eyal Z, Diskin Posner Y. 50.  et al. 2016. Avilamycin and evernimicin induce structural changes in rProteins uL16 and CTC that enhance the inhibition of A-site tRNA binding. PNAS 113:E6796–E6805 [Google Scholar]
  51. Greber BJ, Ban N. 51.  2016. Structure and function of the mitochondrial ribosome. Annu. Rev. Biochem. 85:103–32 [Google Scholar]
  52. Kandasamy J, Atia-Glikin D, Shulman E, Shapira K, Shavit M. 52.  et al. 2012. Increased selectivity toward cytoplasmic versus mitochondrial ribosome confers improved efficiency of synthetic aminoglycosides in fixing damaged genes: a strategy for treatment of genetic diseases caused by nonsense mutations. J. Med. Chem 1310630–43 [Google Scholar]
  53. Gunn G, Dai Y, Du M, Belakhov V, Kandasamy J. 53.  et al. 2014. Long-term nonsense suppression therapy moderates MPS I-H disease progression. Mol. Genet. Metab. 111:374–81 [Google Scholar]
  54. Shalev M, Kondo J, Kopelyanskiy D, Jaffe CL, Adir N, Baasov T. 54.  2013. Identification of the molecular attributes required for aminoglycoside activity against Leishmania. PNAS 110:13333–38 [Google Scholar]
  55. Gibbons A. 55.  2015. Resistance to antibiotics found in isolated Amazonian tribe. Sci. NewsApr. 17
  56. D'Costa VM, King CE, Kalan L, Morar M, Sung WW. 56.  et al. 2011. Antibiotic resistance is ancient. Nature 477:457–61 [Google Scholar]
  57. Davies J, Davies D. 57.  2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:417–33 [Google Scholar]
  58. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. 58.  2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 31:1107–11 [Google Scholar]
  59. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. 59.  2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8:251–59 [Google Scholar]
  60. Piddock LJ. 60.  2006. Multidrug-resistance efflux pumps—not just for resistance. Nat. Rev. Microbiol. 4:629–36 [Google Scholar]
  61. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. 61.  1996. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 40:2562–66 [Google Scholar]
  62. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. 62.  2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47:3675–81 [Google Scholar]
  63. O'Neill AJ, Chopra I. 63.  2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol. Microbiol. 59:664–76 [Google Scholar]
  64. Dönhöfer A, Franckenberg S, Wickles S, Berninghausen O, Beckmann R, Wilson DN. 64.  2012. Structural basis for TetM-mediated tetracycline resistance. PNAS 16:16900–5 [Google Scholar]
  65. Li W, Atkinson GC, Thakor NS, Allas U, Lu CC. 65.  et al. 2013. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 4:1477 [Google Scholar]
  66. Klitgaard RN, Ntokou E, Nørgaard K, Biltoft D, Hansen LH. 66.  et al. 2015. Mutations in the bacterial ribosomal protein L3 and their association with antibiotic resistance. Antimicrob. Agents Chemother. 59:3518–28 [Google Scholar]
  67. Long KS, Vester B. 67.  2012. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother. 56:603–12 [Google Scholar]
  68. Lin Y, Li Y, Zhu N, Han Y, Jiang W. 68.  et al. 2014. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob. Agents Chemother. 58:2038–44 [Google Scholar]
  69. Sothiselvam S, Liu B, Han W, Ramu H, Klepacki D. 69.  et al. 2014. Macrolide antibiotics allosterically predispose the ribosome for translation arrest. PNAS 111:9804–9 [Google Scholar]
  70. Davidovich C, Bashan A, Yonath A. 70.  2008. Structural basis for cross-resistance to ribosomal PTC antibiotics. PNAS 105:20665–70 [Google Scholar]
  71. Davis AR, Gohara DW, Yap MN. 71.  2014. Sequence selectivity of macrolide-induced translational attenuation. PNAS 111:15379–84 [Google Scholar]
  72. Wekselman I, Zimmerman E, Rozenberg H, Bashan A, Kjeldgaard J. 72.  et al. 2016. The ribosomal protein L22 modulates the shape of the nascent protein exit tunnel. Structure In press
  73. Tenson T, Xiong L, Kloss P, Mankin AS. 73.  1997. Erythromycin resistance peptides selected from random peptide libraries. J. Biol. Chem. 272:17425–30 [Google Scholar]
  74. Smith LK, Mankin AS. 74.  2008. Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrob. Agents Chemother. 52:1703–12 [Google Scholar]
  75. Llano-Sotelo B, Klepacki D, Mankin AS. 75.  2009. Selection of small peptides, inhibitors of translation. J. Mol. Biol. 391:813–19 [Google Scholar]
  76. Ramu H, Mankin A, Vazquez-Laslop N. 76.  2009. Programmed drug-dependent ribosome stalling. Mol. Microbiol. 71:811–24 [Google Scholar]
  77. Vazquez-Laslop N, Klepacki D, Mulhearn DC, Ramu H, Krasnykh O. 77.  et al. 2011. Role of antibiotic ligand in nascent peptide-dependent ribosome stalling. PNAS 108:10496–501 [Google Scholar]
  78. LaMarre JM, Locke JB, Shaw KJ, Mankin AS. 78.  2011. Low fitness cost of the multidrug resistance gene cfr. Antimicrob. Agents Chemother. 55:3714–19 [Google Scholar]
  79. Kannan K, Mankin AS. 79.  2011. Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann. NY Acad. Sci. 1241:33–47 [Google Scholar]
  80. Kannan K, Vazquez-Laslop N, Mankin AS. 80.  2012. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151:508–20 [Google Scholar]
  81. Gupta P, Sothiselvam S, Vazquez-Laslop N, Mankin AS. 81.  2013. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat. Commun. 4:1984:1–9 [Google Scholar]
  82. Gupta P, Kannan K, Mankin AS, Vazquez-Laslop N. 82.  2013. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol. Cell 52:629–42 [Google Scholar]
  83. Arenz S, Ramu H, Gupta P, Berninghausen O, Beckmann R. 83.  et al. 2014. Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. Nat. Commun. 5:3501 [Google Scholar]
  84. Pon CL, Fabbretti A, Brandi L. 84.  2014. Antibiotics targeting translation initiation in prokaryotes. Antibiotics: Targets, Mechanisms and Resistance CO Gualerzi, L Brandi, A Fabbretti, CL Pon 411–36 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  85. Pantosti A, Sanchini A, Monaco M. 85.  2007. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2:323–34 [Google Scholar]
  86. LaMarre JM, Howden BP, Mankin AS. 86.  2011. Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance. Antimicrob. Agents Chemother. 55:2989–91 [Google Scholar]
  87. Kurosu M, Siricilla S, Mitachi K. 87.  2013. Advances in MRSA drug discovery: Where are we and where do we need to be?. Expert Opin. Drug Discov. 8:1095–116 [Google Scholar]
  88. Walsh C. 88.  2003. Where will new antibiotics come from?. Nat. Rev. Microbiol. 1:65–70 [Google Scholar]
  89. Fischbach MA, Walsh CT. 89.  2009. Antibiotics for emerging pathogens. Science 325:1089–93 [Google Scholar]
  90. Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM. 90.  et al. 2016. A platform for the discovery of new macrolide antibiotics. Nature 533:338–45 [Google Scholar]
  91. Whicher JR, Dutta S, Hansen DA, Hale WA, Chemler JA. 91.  et al. 2014. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510:560–64 [Google Scholar]
  92. Dutta S, Whicher JR, Hansen DA, Hale WA, Chemler JA. 92.  et al. 2014. Structure of a modular polyketide synthase. Nature 510:512–17 [Google Scholar]
  93. Jordan A, Gathergood N. 93.  2013. Designing safer and greener antibiotics. Antibiotics 2:419–38 [Google Scholar]
  94. Martinez JL. 94.  2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157:2893–902 [Google Scholar]
  95. Liljas A, Ehrenberg M. 95.  2013. Structural Aspects of Protein Synthesis Singapore: World Sci, 2nd ed..
  96. Poehlsgaard J, Douthwaite S. 96.  2005. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3:870–81 [Google Scholar]
  97. Franceschi F, Duffy EM. 97.  2006. Structure-based drug design meets the ribosome. Biochem. Pharmacol. 71:1016–25 [Google Scholar]
  98. Jain A, Dixit P. 98.  2008. Multidrug resistant to extensively drug resistant tuberculosis: What is next?. J. Biosci. 33:605–16 [Google Scholar]
  99. Sohmen D, Harms JM, Schlunzen F, Wilson DN. 99.  2009. SnapShot: antibiotic inhibition of protein synthesis I. Cell 138:1248 [Google Scholar]
  100. Wilson DN. 100.  2009. The A-Z of bacterial translation inhibitors. Crit. Rev. Biochem. Mol. Biol. 44:393–433 [Google Scholar]
  101. Wilson DN. 101.  2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12:35–48 [Google Scholar]
  102. Gualerzi CO, Brandi L, Fabbretti A, Pon CL. 102.  2014. Antibiotics: Targets, Mechanisms and Resistance Weinheim, Ger.: Wiley-VCH
  103. Auerbach-Nevo T, Baram D, Bashan A, Belousoff M, Breiner E. 103.  et al. 2016. Ribosomal antibiotics: contemporary challenges. Antibiotics 5:324 [Google Scholar]
  104. Boyd B, Castaner J. 104.  2006. Retapamulin—pleuromutilin antibiotic. Drugs Future 31:107–13 [Google Scholar]
  105. Eyal Z, Matzov D, Krupkin M, Paukner S, Riedl R. 105.  et al. 2016. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep. 6:39004 [Google Scholar]
  106. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D. 106.  et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–94 [Google Scholar]
  107. Davidovich C. 107.  2010. Targeting functional centers of the ribosome PhD Thesis, Weizmann Institute of Science, Rehovot, Israel
  108. Weller J, Hill WE. 108.  1991. Probing the initiation complex formation on E. coli ribosomes using short complementary DNA oligomers. Biochimie 73:971–81 [Google Scholar]
  109. Meyer HA, Triana-Alonso F, Spahn CM, Twardowski T, Sobkiewicz A, Nierhaus KH. 109.  1996. Effects of antisense DNA against the alpha-sarcin stem-loop structure of the ribosomal 23S rRNA. Nucleic Acids Res 24:3996–4002 [Google Scholar]
  110. Goh S, Loeffler A, Lloyd DH, Nair SP, Good L. 110.  2015. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol 15:262 [Google Scholar]
  111. Dremann DN, Chow CS. 111.  2016. The development of peptide ligands that target helix 69 rRNA of bacterial ribosomes. Bioorg. Med. Chem 244486–91 [Google Scholar]
  112. Seefeldt AC, Graf M, Perebaskine N, Nguyen F, Arenz S. 112.  et al. 2016. Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res 44:2429–38 [Google Scholar]
  113. Walsh CT, Acker MG, Bowers AA. 113.  2010. Thiazolyl peptide antibiotic biosynthesis: a cascade of post-translational modifications on ribosomal nascent proteins. J. Biol. Chem. 285:27525–31 [Google Scholar]
  114. Brandi L, Fabbretti A, La Teana A, Abbondi M, Losi D. 114.  et al. 2006. Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic. PNAS 103:39–44 [Google Scholar]
  115. Aarestrup FM, Jensen LB. 115.  2000. Presence of variations in ribosomal protein L16 corresponding to susceptibility of enterococci to oligosaccharides (avilamycin and evernimicin). Antimicrob. Agents Chemother. 44:3425–27 [Google Scholar]
  116. Weitnauer G, Hauser G, Hofmann C, Linder U, Boll R. 116.  et al. 2004. Novel avilamycin derivatives with improved polarity generated by targeted gene disruption. Chem. Biol. 11:1403–11 [Google Scholar]
  117. Belova L, Tenson T, Xiong L, McNicholas PM, Mankin AS. 117.  2001. A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit. PNAS 98:3726–31 [Google Scholar]
  118. Mikolajka A, Liu H, Chen Y, Starosta AL, Marquez V. 118.  et al. 2011. Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. Chem. Biol. 18:589–600 [Google Scholar]
  119. Arenz S, Juette MF, Graf M, Nguyen F, Huter P. 119.  et al. 2016. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. PNAS 113:7527–32 [Google Scholar]
  120. Spera RV Jr., Farber BF. 120.  1994. Multidrug-resistant Enterococcus faecium. An untreatable nosocomial pathogen. Drugs 48:678–88 [Google Scholar]
  121. Gongadze GM, Korepanov AP, Korobeinikova AV, Garber MB. 121.  2008. Bacterial 5S rRNA-binding proteins of the CTC family. Biochemistry 73:1405–17 [Google Scholar]
  122. Pai R, Gertz RE, Beall B. 122.  2006. Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J. Clin. Microbiol. 44:124–31 [Google Scholar]
  123. Yonath A. 123.  2002. High-resolution structures of large ribosomal subunits from mesophilic eubacteria and halophilic archaea at various functional states. Curr. Protein Pept. Sci. 3:67–78 [Google Scholar]
  124. Fedorov R, Meshcheryakov V, Gongadze G, Fomenkova N, Nevskaya N. 124.  et al. 2001. Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins. Acta Crystallogr. Sect. D 57:968–76 [Google Scholar]
  125. Webster TA, Sismaet HJ, Chan IP, Goluch ED. 125.  2015. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms. Analyst 140:7195–201 [Google Scholar]
  126. Kannan K, Kanabar P, Schryer D, Florin T, Oh E. 126.  et al. 2014. The general mode of translation inhibition by macrolide antibiotics. PNAS 111:15958–63 [Google Scholar]
  127. Billal DS, Feng J, Leprohon P, Legare D, Ouellette M. 127.  2011. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genom 12:512 [Google Scholar]
  128. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H. 128.  et al. 2007. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. PNAS 104:9451–56 [Google Scholar]
  129. Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N. 129.  et al. 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352:aad9822 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error