Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid–associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Cooper A, Kennedy MW. 1.  2010. Biofoams and natural protein surfactants. Biophys. Chem. 151:96–104 [Google Scholar]
  2. Ron EZ, Rosenberg E. 2.  2001. Natural roles of biosurfactants. Environ. Microbiol. 3:229–36 [Google Scholar]
  3. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. 3.  2010. Natural functions of lipopeptides from Bacillus and. Pseudomonas : more than surfactants and antibiotics. FEMS Microbiol. Rev 34:1037–62 [Google Scholar]
  4. Peypoux F, Bonmatin JM, Wallach J. 4.  1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553–63 [Google Scholar]
  5. Mnif I, Ghribi D. 5.  2015. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104:129–47 [Google Scholar]
  6. Kinsinger RF, Shirk MC, Fall R. 6.  2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185:5627–31 [Google Scholar]
  7. Tsan P, Volpon L, Besson F, Lancelin JM. 7.  2007. Structure and dynamics of surfactin studied by NMR in micellar media. J. Am. Chem. Soc. 129:1968–77 [Google Scholar]
  8. Bonmatin JM, Genest M, Labbe H, Ptak M. 8.  1994. Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics. Biopolymers 34:975–86 [Google Scholar]
  9. Mnif I, Ghribi D. 9.  2015. Microbial derived surface active compounds: properties and screening concept. World J. Microbiol. Biotechnol. 31:1001–20 [Google Scholar]
  10. Heerklotz H, Seelig J. 10.  2007. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur. Biophys. J. 36:305–14 [Google Scholar]
  11. Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK. 11.  et al. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol 103:2331–39 [Google Scholar]
  12. Huang X, Lu Z, Bie X, Lu F, Zhao H, Yang S. 12.  2007. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl. Microbiol. Biotechnol 74:454–61 [Google Scholar]
  13. Le KY, Dastgheyb S, Ho TV, Otto M. 13.  2014. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front. Cell Infect. Microbiol. 4:167 [Google Scholar]
  14. Periasamy S, Chatterjee SS, Cheung GY, Otto M. 14.  2012. Phenol-soluble modulins in staphylococci: What are they originally for?. Commun. Integr. Biol. 5:275–77 [Google Scholar]
  15. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. 15.  2012. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLOS Pathog 8:e1002744 [Google Scholar]
  16. Schreiner J, Kretschmer D, Klenk J, Otto M, Buhring HJ. 16.  et al. 2013. Staphylococcus aureus phenol-soluble modulin peptides modulate dendritic cell functions and increase in vitro priming of regulatory T cells. J. Immunol. 190:3417–26 [Google Scholar]
  17. Uzoigwe C, Burgess JG, Ennis CJ, Rahman PK. 17.  2015. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 6:245 [Google Scholar]
  18. Hardegger M, Koch AK, Ochsner UA, Fiechter A, Reiser J. 18.  1994. Cloning and heterologous expression of a gene encoding an alkane-induced extracellular protein involved in alkane assimilation from Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60:3679–87 [Google Scholar]
  19. Toren A, Ron EZ, Bekerman R, Rosenberg E. 19.  2002. Solubilization of polyaromatic hydrocarbons by recombinant bioemulsifier AlnA. Appl. Microbiol. Biotechnol. 59:580–84 [Google Scholar]
  20. Toren A, Segal G, Ron EZ, Rosenberg E. 20.  2002. Structure–function studies of the recombinant protein bioemulsifier AlnA. Environ. Microbiol. 4:257–61 [Google Scholar]
  21. Walzer G, Rosenberg E, Ron EZ. 21.  2006. The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ. Microbiol. 8:1026–32 [Google Scholar]
  22. Kuchta K, Chi L, Fuchs H, Potter M, Steinbuchel A. 22.  2007. Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromolecules 8:657–62 [Google Scholar]
  23. Mezzina MP, Wetzler DE, Catone MV, Bucci H, Di Paola M, Pettinari MJ. 23.  2014. A phasin with many faces: structural insights on PhaP from Azotobacter sp. FA8. PLOS ONE 9:e103012 [Google Scholar]
  24. Arnaouteli S, MacPhee CE, Stanley-Wall NR. 24.  2016. Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Curr. Opin. Microbiol. 34:7–12 [Google Scholar]
  25. Kobayashi K, Iwano M. 25.  2012. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol. Microbiol. 85:51–66 [Google Scholar]
  26. Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M. 26.  et al. 2013. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. PNAS 110:13600–5 [Google Scholar]
  27. Brandani GB, Schor M, Morris R, Stanley-Wall N, MacPhee CE. 27.  et al. 2015. The bacterial hydrophobin BslA is a switchable ellipsoidal Janus nanocolloid. Langmuir 31:11558–63 [Google Scholar]
  28. Bromley KM, Morris RJ, Hobley L, Brandani G, Gillespie RM. 28.  et al. 2015. Interfacial self-assembly of a bacterial hydrophobin. PNAS 112:5419–24 [Google Scholar]
  29. Claessen D, de Jong W, Dijkhuizen L, Wosten HA. 29.  2006. Regulation of Streptomyces development: reach for the sky!. Trends Microbiol 14:313–19 [Google Scholar]
  30. Claessen D, Stokroos I, Deelstra HJ, Penninga NA, Bormann C. 30.  et al. 2004. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol. Microbiol. 53:433–43 [Google Scholar]
  31. Ekkers DM, Claessen D, Galli F, Stamhuis E. 31.  2014. Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl. Microbiol. Biotechnol. 98:4491–501 [Google Scholar]
  32. Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, Wosten HA. 32.  2005. Amyloids—a functional coat for microorganisms. Nat. Rev. Microbiol. 3:333–41 [Google Scholar]
  33. Di Berardo C, Capstick DS, Bibb MJ, Findlay KC, Buttner MJ, Elliot MA. 33.  2008. Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J. Bacteriol. 190:5879–89 [Google Scholar]
  34. Bokhove M, Claessen D, de Jong W, Dijkhuizen L, Boekema EJ, Oostergetel GT. 34.  2013. Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. J. Struct. Biol. 184:301–9 [Google Scholar]
  35. Hufnagel DA, Tukel C, Chapman MR. 35.  2013. Disease to dirt: the biology of microbial amyloids. PLOS Pathog 9:e1003740 [Google Scholar]
  36. Tillotson RD, Wosten HA, Richter M, Willey JM. 36.  1998. A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol. Microbiol 30:595–602 [Google Scholar]
  37. Willey JM, Willems A, Kodani S, Nodwell JR. 37.  2006. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol. Microbiol. 59:731–42 [Google Scholar]
  38. de Jong W, Vijgenboom E, Dijkhuizen L, Wosten HA, Claessen D. 38.  2012. SapB and the rodlins are required for development of Streptomyces coelicolor in high osmolarity media. FEMS Microbiol. Lett. 329:154–59 [Google Scholar]
  39. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K. 39.  et al. 2009. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–21 [Google Scholar]
  40. Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP. 40.  2008. Structural analysis of hydrophobins. Micron 39:773–84 [Google Scholar]
  41. Ren Q, Kwan AH, Sunde M. 41.  2013. Two forms and two faces, multiple states and multiple uses: properties and applications of the self-assembling fungal hydrophobins. Biopolymers 100:601–12 [Google Scholar]
  42. Pham CL, Rey A, Lo V, Soules M, Ren Q. 42.  et al. 2016. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci. Rep. 6:25288 [Google Scholar]
  43. Schor M, Reid JL, MacPhee CE, Stanley-Wall NR. 43.  2016. The diverse structures and functions of surfactant proteins. Trends Biochem. Sci. 41:610–20 [Google Scholar]
  44. De Simone A, Kitchen C, Kwan AH, Sunde M, Dobson CM, Frenkel D. 44.  2012. Intrinsic disorder modulates protein self-assembly and aggregation. PNAS 109:6951–56 [Google Scholar]
  45. Macindoe I, Kwan AH, Ren Q, Morris VK, Yang W. 45.  et al. 2012. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. PNAS 109:E804–11 [Google Scholar]
  46. Ren Q, Kwan AH, Sunde M. 46.  2014. Solution structure and interface-driven self-assembly of NC2, a new member of the class II hydrophobin proteins. Proteins 82:990–1003 [Google Scholar]
  47. Ohtaki S, Maeda H, Takahashi T, Yamagata Y, Hasegawa F. 47.  et al. 2006. Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl. Environ. Microbiol. 72:2407–13 [Google Scholar]
  48. Baccelli I. 48.  2014. Cerato-platanin family proteins: one function for multiple biological roles?. Front. Plant Sci. 5:769 [Google Scholar]
  49. Bonazza K, Gaderer R, Neudl S, Przylucka A, Allmaier G. 49.  et al. 2015. The fungal cerato-platanin protein EPL1 forms highly ordered layers at hydrophobic/hydrophilic interfaces. Soft Matter 11:1723–32 [Google Scholar]
  50. Gaderer R, Bonazza K, Seidl-Seiboth V. 50.  2014. Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl. Microbiol. Biotechnol. 98:4795–803 [Google Scholar]
  51. Gomes EV, Costa Mdo N, de Paula RG, de Azevedo RR, da Silva FL. 51.  et al. 2015. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Sci. Rep. 5:17998 [Google Scholar]
  52. Frischmann A, Neudl S, Gaderer R, Bonazza K, Zach S. 52.  et al. 2013. Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus Trichoderma atroviride. J. Biol. Chem. 288:4278–87 [Google Scholar]
  53. de Oliveira AL, Gallo M, Pazzagli L, Benedetti CE, Cappugi G. 53.  et al. 2011. The structure of the elicitor Cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double ψβ-barrel fold and carbohydrate binding. J. Biol. Chem. 286:17560–68 [Google Scholar]
  54. Baccelli I, Luti S, Bernardi R, Scala A, Pazzagli L. 54.  2014. Cerato-platanin shows expansin-like activity on cellulosic materials. Appl. Microbiol. Biotechnol. 98:175–84 [Google Scholar]
  55. Barsottini MR de O, de Oliveira JF, Adamoski D, Teixeira PJ, do Prado PF. 55.  et al. 2013. Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. Mol. Plant-Microbe Interact. 26:1281–93 [Google Scholar]
  56. Wosten HA, Bohlmann R, Eckerskorn C, Lottspeich F, Bolker M, Kahmann R. 56.  1996. A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J. 15:4274–81 [Google Scholar]
  57. Kershaw MJ, Talbot NJ. 57.  1998. Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet. Biol. 23:18–33 [Google Scholar]
  58. Teertstra WR, van der Velden GJ, de Jong JF, Kruijtzer JA, Liskamp RM. 58.  et al. 2009. The filament-specific Rep1-1 repellent of the phytopathogen Ustilago maydis forms functional surface-active amyloid-like fibrils. J. Biol. Chem. 284:9153–59 [Google Scholar]
  59. Fanning S, Mitchell AP. 59.  2012. Fungal biofilms. PLOS Pathog 8:e1002585 [Google Scholar]
  60. Brown NA, Ries LNA, Reis TF, Rajendran R, Corrêa dos Santos RA. 60.  et al. 2016. RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. Biotechnol. Biofuels 9:145 [Google Scholar]
  61. Cooper A, Kennedy MW, Fleming RI, Wilson EH, Videler H. 61.  et al. 2005. Adsorption of frog foam nest proteins at the air-water interface. Biophys. J. 88:2114–25 [Google Scholar]
  62. Mackenzie CD, Smith BO, Meister A, Blume A, Zhao X. 62.  et al. 2009. Ranaspumin-2: structure and function of a surfactant protein from the foam nests of a tropical frog. Biophys. J. 96:4984–92 [Google Scholar]
  63. Fleming RI, Mackenzie CD, Cooper A, Kennedy MW. 63.  2009. Foam nest components of the túngara frog: a cocktail of proteins conferring physical and biological resilience. Proc. Biol. Sci. 276:1787–95 [Google Scholar]
  64. Cavalcante Hissa D, Arruda Bezerra G, Birner-Gruenberger R, Paulino Silva L, Uson I. 64.  et al. 2014. Unique crystal structure of a novel surfactant protein from the foam nest of the frog Leptodactylus vastus. ChemBioChem 15:393–98 [Google Scholar]
  65. Beeley JG, Eason R, Snow DH. 65.  1986. Isolation and characterization of latherin, a surface-active protein from horse sweat. Biochem. J. 235:645–50 [Google Scholar]
  66. McDonald RE, Fleming RI, Beeley JG, Bovell DL, Lu JR. 66.  et al. 2009. Latherin: a surfactant protein of horse sweat and saliva. PLOS ONE 4:e5726 [Google Scholar]
  67. Vance SJ, McDonald RE, Cooper A, Smith BO, Kennedy MW. 67.  2013. The structure of latherin, a surfactant allergen protein from horse sweat and saliva. J. R. Soc. Interface 10:20130453 [Google Scholar]
  68. Gakhar L, Bartlett JA, Penterman J, Mizrachi D, Singh PK. 68.  et al. 2010. PLUNC is a novel airway surfactant protein with anti-biofilm activity. PLOS ONE 5:e9098 [Google Scholar]
  69. Garland AL, Walton WG, Coakley RD, Tan CD, Gilmore RC. 69.  et al. 2013. Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways. PNAS 110:15973–78 [Google Scholar]
  70. Ning F, Wang C, Berry KZ, Kandasamy P, Liu H. 70.  et al. 2014. Structural characterization of the pulmonary innate immune protein SPLUNC1 and identification of lipid ligands. FASEB J 28:5349–60 [Google Scholar]
  71. Walton WG, Ahmad S, Little MS, Kim CS, Tyrrell J. 71.  et al. 2016. Structural features essential to the antimicrobial functions of human SPLUNC1. Biochemistry 55:2979–91 [Google Scholar]
  72. Liu Y, Bartlett JA, Di ME, Bomberger JM, Chan YR. 72.  et al. 2013. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. Am. J. Pathol. 182:1519–31 [Google Scholar]
  73. Garcia-Caballero A, Rasmussen JE, Gaillard E, Watson MJ, Olsen JC. 73.  et al. 2009. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. PNAS 106:11412–17 [Google Scholar]
  74. Di YP. 74.  2011. Functional roles of SPLUNC1 in the innate immune response against Gram-negative bacteria. Biochem. Soc. Trans. 39:1051–55 [Google Scholar]
  75. Sayeed S, Nistico L, St Croix C, Di YP. 75.  2013. Multifunctional role of human SPLUNC1 in Pseudomonas aeruginosa infection. Infect. Immun. 81:285–91 [Google Scholar]
  76. Wright JR. 76.  2005. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 5:58–68 [Google Scholar]
  77. Hoppe HJ, Reid KB. 77.  1994. Trimeric C-type lectin domains in host defence. Structure 2:1129–33 [Google Scholar]
  78. Khubchandani KR, Snyder JM. 78.  2001. Surfactant protein A (SP-A): the alveolus and beyond. FASEB J 15:59–69 [Google Scholar]
  79. Johansson J, Curstedt T. 79.  1997. Molecular structures and interactions of pulmonary surfactant components. Eur. J. Biochem. 244:675–93 [Google Scholar]
  80. Haagsman HP, White RT, Schilling J, Lau K, Benson BJ. 80.  et al. 1989. Studies of the structure of lung surfactant protein SP-A. Am. J. Physiol. 257:L421–29 [Google Scholar]
  81. Voss T, Eistetter H, Schafer KP, Engel J. 81.  1988. Macromolecular organization of natural and recombinant lung surfactant protein SP 28–36. Structural homology with the complement factor C1q. J. Mol. Biol. 201:219–27 [Google Scholar]
  82. Crouch E, Persson A, Chang D, Heuser J. 82.  1994. Molecular structure of pulmonary surfactant protein D (SP-D). J. Biol. Chem. 269:17311–19 [Google Scholar]
  83. Clark JC, Wert SE, Bachurski CJ, Stahlman MT, Stripp BR. 83.  et al. 1995. Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. PNAS 92:7794–98 [Google Scholar]
  84. Ikegami M, Whitsett JA, Martis PC, Weaver TE. 84.  2005. Reversibility of lung inflammation caused by SP-B deficiency. Am. J. Physiol. Lung Cell Mol. Physiol. 289:L962–70 [Google Scholar]
  85. Andersson M, Curstedt T, Jornvall H, Johansson J. 85.  1995. An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett 362:328–32 [Google Scholar]
  86. Perez-Gil J, Cruz A, Casals C. 86.  1993. Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Biochim. Biophys. Acta 1168:261–70 [Google Scholar]
  87. Vandenbussche G, Clercx A, Clercx M, Curstedt T, Johansson J. 87.  et al. 1992. Secondary structure and orientation of the surfactant protein SP-B in a lipid environment. a Fourier transform infrared spectroscopy study. Biochemistry 31:9169–76 [Google Scholar]
  88. Zaltash S, Palmblad M, Curstedt T, Johansson J, Persson B. 88.  2000. Pulmonary surfactant protein B: a structural model and a functional analogue. Biochim. Biophys. Acta 1466:179–86 [Google Scholar]
  89. Olmeda B, Garcia-Alvarez B, Gomez MJ, Martinez-Calle M, Cruz A, Perez-Gil J. 89.  2015. A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB J 29:4236–47 [Google Scholar]
  90. Johansson J, Nilsson G, Stromberg R, Robertson B, Jornvall H, Curstedt T. 90.  1995. Secondary structure and biophysical activity of synthetic analogues of the pulmonary surfactant polypeptide SP-C. Biochem. J. 307:Pt 2535–41 [Google Scholar]
  91. Perez-Gil J. 91.  2008. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim. Biophys. Acta 1778:1676–95 [Google Scholar]
  92. Perez-Gil J, Weaver TE. 92.  2010. Pulmonary surfactant pathophysiology: current models and open questions. Physiology 25:132–41 [Google Scholar]
  93. Dalgleish DG, Corredig M. 93.  2012. The structure of the casein micelle of milk and its changes during processing. Annu. Rev. Food Sci. Technol. 3:449–67 [Google Scholar]
  94. Fox PF. 94.  2003. Milk proteins: general and historical aspects. Advanced Dairy Chemistry, Vol. 1 Proteins: Parts A and B ed. PF Fox, PLH McSweeney 1–48 Boston: Springer [Google Scholar]
  95. Dickinson E. 95.  1989. Surface and emulsifying properties of caseins. J. Dairy Res. 56:471–77 [Google Scholar]
  96. Swaisgood HE. 96.  1993. Review and update of casein chemistry. J. Dairy Sci. 76:3054–61 [Google Scholar]
  97. Farrell HM, Malin EL, Brown EM, Qi PX. 97.  2006. Casein micelle structure: What can be learned from milk synthesis and structural biology?. Curr. Opin. Colloid Interface Sci. 11:135–47 [Google Scholar]
  98. Swaisgood HE. 98.  2003. Chemistry of the caseins. Advanced Dairy Chemistry, Vol. 1 Proteins: Parts A and B PF Fox, PLH McSweeney 139–201 Boston: Springer [Google Scholar]
  99. Horne DS. 99.  2006. Casein micelle structure: models and muddles. Curr. Opin. Colloid Interface Sci. 11:148–53 [Google Scholar]
  100. McGann TC, Donnelly WJ, Kearney RD, Buchheim W. 100.  1980. Composition and size distribution of bovine casein micelles. Biochim. Biophys. Acta 630:261–70 [Google Scholar]
  101. Griffin MC, Roberts GC. 101.  1985. A 1H-n.m.r. study of casein micelles. Biochem. J. 228:273–76 [Google Scholar]
  102. Dalgleish DG. 102.  1989. Principles, products, and practice: caseins, casein micelles and caseinates. Int. J. Soc. Dairy Technol. 42:91–92 [Google Scholar]
  103. Holt C, Horne DS. 103.  1996. The hairy casein micelle: evolution of the concept and its implications for dairy technology. Neth. Milk Dairy J. 50:85–111 [Google Scholar]
  104. De Kruif CG, Holt C. 104.  2003. Casein micelle structure, functions and interactions. Advanced Dairy Chemistry, Vol. 1 Proteins: Parts A and B PF Fox, PLH McSweeney 233–76 Boston: Springer [Google Scholar]
  105. Rasmussen LK, Højrup P, Petersen TE. 105.  1992. Localization of two interchain disulfide bridges in dimers of bovine αs2-casein: parallel and antiparallel alignments of the polypeptide chains. Eur. J. Biochem. 203:381–86 [Google Scholar]
  106. Rasmussen LK, Højrup P, Petersen TE. 106.  1992. The multimeric structure and disulfide-bonding pattern of bovine κ-casein. Eur. J. Biochem. 207:215–22 [Google Scholar]
  107. Groves ML, Dower HJ, Farrell HM Jr.. 107.  1992. Reexamination of the polymeric distributions of κ-casein isolated from bovine milk. J. Protein Chem. 11:21–28 [Google Scholar]
  108. Farrell HM Jr., Cooke PH, Wickham ED, Piotrowski EG, Hoagland PD. 108.  2003. Environmental influences on bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J. Protein Chem. 22:259–73 [Google Scholar]
  109. Thorn DC, Meehan S, Sunde M, Rekas A, Gras SL. 109.  et al. 2005. Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αS- and β-casein. Biochemistry 44:17027–36 [Google Scholar]
  110. Thorn DC, Ecroyd H, Sunde M, Poon S, Carver JA. 110.  2008. Amyloid fibril formation by bovine milk αs2-casein occurs under physiological conditions yet is prevented by its natural counterpart, αs1-casein. Biochemistry 47:3926–36 [Google Scholar]
  111. Holt C, Carver JA, Ecroyd H, Thorn DC. 111.  2013. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods. J. Dairy Sci. 96:6127–46 [Google Scholar]
  112. Khodarahmi R, Beyrami M, Soori H. 112.  2008. Appraisal of casein's inhibitory effects on aggregation accompanying carbonic anhydrase refolding and heat-induced ovalbumin fibrillogenesis. Arch. Biochem. Biophys. 477:67–76 [Google Scholar]
  113. Carrotta R, Canale C, Diaspro A, Trapani A, Biagio PL, Bulone D. 113.  2012. Inhibiting effect of αs1-casein on Aβ1–40 fibrillogenesis. Biochim. Biophys. Acta 1820:124–32 [Google Scholar]
  114. Dickinson E. 114.  2010. Flocculation of protein-stabilized oil-in-water emulsions. Colloids Surf. B 81:130–40 [Google Scholar]
  115. Kimpel F, Schmitt JJ. 115.  2015. Review: Milk proteins as nanocarrier systems for hydrophobic nutraceuticals. J. Food Sci. 80:R2361–66 [Google Scholar]
  116. Mohamed A, Hojilla-Evangelista MP, Peterson SC, Biresaw G. 116.  2007. Barley protein isolate: thermal, functional, rheological, and surface properties. J. Am. Oil Chem. Soc. 84:281–88 [Google Scholar]
  117. Salt LJ, Robertson JA, Jenkins JA, Mulholland F, Mills EN. 117.  2005. The identification of foam-forming soluble proteins from wheat (Triticum aestivum) dough. Proteomics 5:1612–23 [Google Scholar]
  118. Foegeding EA, Luck PJ, Davis JP. 118.  2006. Factors determining the physical properties of protein foams. Food Hydrocoll 20:284–92 [Google Scholar]
  119. Chove BE, Grandison AS, Lewis MJ. 119.  2007. Some functional properties of fractionated soy protein isolates obtained by microfiltration. Food Hydrocoll 21:1379–88 [Google Scholar]
  120. Wei DX, Chen CB, Fang G, Li SY, Chen GQ. 120.  2011. Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl. Microbiol. Biotechnol. 91:1037–47 [Google Scholar]
  121. Maestro B, Galan B, Alfonso C, Rivas G, Prieto MA, Sanz JM. 121.  2013. A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440. PLOS ONE 8:e56904 [Google Scholar]
  122. Paris S, Debeaupuis JP, Crameri R, Carey M, Charles F. 122.  et al. 2003. Conidial hydrophobins of Aspergillus fumigatus. Appl. Environ. Microbiol. 69:1581–88 [Google Scholar]
  123. Casals C, Canadas O. 123.  2012. Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. Biochim. Biophys. Acta 1818:2550–62 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error