1932

Abstract

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family—ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012300
2018-06-20
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012300.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012300&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Thomson A, Gray H 1998. Bio-inorganic chemistry. Curr. Opin. Chem. Biol. 2:155–58
    [Google Scholar]
  2. 2.  Winkler JR, Gray HB 2014. Electron flow through metalloproteins. Chem. Rev. 114:3369–80
    [Google Scholar]
  3. 3.  Valko M, Morris H, Cronin MTD 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12:1161–208
    [Google Scholar]
  4. 4.  Raymond KN, Carrano CJ 1979. Coordination chemistry and microbial iron transport. Acc. Chem. Res. 12:183–90
    [Google Scholar]
  5. 5.  Lankford CE, Byers BR. 1973. Bacterial assimilation of iron. Crit. Rev. Microbiol. 2:273–331
    [Google Scholar]
  6. 6.  Raymond KN, Allred BE, Sia AK 2015. Coordination chemistry of microbial iron transport. Acc. Chem. Res. 48:2496–505
    [Google Scholar]
  7. 7.  Becker KW, Skaar EP 2014. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol. Rev. 38:1235–49
    [Google Scholar]
  8. 8.  Palmer LD, Skaar EP 2016. Transition metals and virulence in bacteria. Annu. Rev. Genet. 50:67–91
    [Google Scholar]
  9. 9.  Haas H, Eisendle M, Turgeon BG 2008. Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 46:149–87
    [Google Scholar]
  10. 10.  Buděšínský M, Budzikiewicz H, Procházka Ž 1980. Nicotianamine, a possible phytosiderophore of general occurrence. Phytochemistry 19:2295–97
    [Google Scholar]
  11. 11.  Springer SD, Butler A 2016. Microbial ligand coordination: consideration of biological significance. Coord. Chem. Rev. 306:628–35
    [Google Scholar]
  12. 12.  Johnstone TC, Nolan EM 2015. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44:6320–39
    [Google Scholar]
  13. 13.  Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WDC 2014. Metallophores and trace metal biogeochemistry. Aquat. Geochem. 21:159–95
    [Google Scholar]
  14. 14.  Harrington JM, Parker DL, Bargar JR, Jarzecki AA, Tebo BM et al. 2012. Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. Geochim. Cosmochim. Acta 88:106–19
    [Google Scholar]
  15. 15.  Parker DL, Sposito G, Tebo BM 2004. Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium. Geochim. Cosmochim. Acta 68:4809–20
    [Google Scholar]
  16. 16.  Parker DL, Lee S-W, Geszvain K, Davis RE, Gruffaz C et al. 2014. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1. Front. Microbiol. 5:202
    [Google Scholar]
  17. 17.  Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A et al. 2016. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 352:1105–9
    [Google Scholar]
  18. 18.  Chivers PT, Benanti EL, Heil-Chapdelaine V, Iwig JS, Rowe JL 2012. Identification of Ni-(L-His)2 as a substrate for NikABCDE-dependent nickel uptake in Escherichia coli. Metallomics 4:1043–50
    [Google Scholar]
  19. 19.  Lebrette H, Borezee-Durant E, Martin L, Richaud P, Boeri Erba E, Cavazza C 2015. Novel insights into nickel import in Staphylococcus aureus: the positive role of free histidine and structural characterization of a new thiazolidine-type nickel chelator. Metallomics 7:613–21
    [Google Scholar]
  20. 20.  Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD 2014. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol. Microbiol. 93:759–75
    [Google Scholar]
  21. 21.  Hesketh A, Kock H, Mootien S, Bibb M 2009. The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 74:1427–44
    [Google Scholar]
  22. 22.  Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J et al. 2013. Gold biomineralization by a metallophore from a gold-associated microbe. Nat. Chem. Biol. 9:241–43
    [Google Scholar]
  23. 23.  Wichard T, Mishra B, Myneni SCB, Bellenger J-P, Kraepiel AML 2009. Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nat. Geosci. 2:625–29
    [Google Scholar]
  24. 24.  Liermann LJ, Guynn RL, Anbar A, Brantley SL 2005. Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem. Geol. 220:285–302
    [Google Scholar]
  25. 25.  Dassama LMK, Kenney GE, Rosenzweig AC 2016. Methanobactins: from genome to function. Metallomics 9:7–20
    [Google Scholar]
  26. 26.  Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N et al. 2004. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–15
    [Google Scholar]
  27. 27.  Knapp CW, Fowle DA, Kulczycki E, Roberts JA, Graham DW 2007. Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources. PNAS 104:12040–45
    [Google Scholar]
  28. 28.  Dassama LMK, Kenney GE, Ro SY, Zielazinski EL, Rosenzweig AC 2016. Methanobactin transport machinery. PNAS 113:13027–32
    [Google Scholar]
  29. 29.  Osman D, Cavet JS 2008. Copper homeostasis in bacteria. Adv. Appl. Microbiol. 65:217–47
    [Google Scholar]
  30. 30.  Festa RA, Thiele DJ 2011. Copper: an essential metal in biology. Curr. Biol. 21:R877–83
    [Google Scholar]
  31. 31.  Semrau JD, DiSpirito AA, Yoon S 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34:496–531
    [Google Scholar]
  32. 32.  Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P 1993. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–43
    [Google Scholar]
  33. 33.  Lieberman RL, Rosenzweig AC 2005. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–82
    [Google Scholar]
  34. 34.  Stanley SH, Prior SD, Leak DJ, Dalton H 1983. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5:487–92
    [Google Scholar]
  35. 35.  Nielsen AK, Gerdes K, Murrell JC 1997. Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol. Microbiol 25:399–409
    [Google Scholar]
  36. 36.  Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE et al. 2003. The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath. J. Bacteriol. 185:5755–64
    [Google Scholar]
  37. 37.  Phelps PA, Agarwal SK, Speitel GE, Georgiou G 1992. Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Environ. Microbiol. 58:3701–8
    [Google Scholar]
  38. 38.  Fitch MW, Graham DW, Arnold RG, Agarwal SK, Phelps PA et al. 1993. Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 59:2771–76
    [Google Scholar]
  39. 39.  Téllez CM, Gaus KP, Graham DW, Arnold RG, Guzman RZ 1998. Isolation of copper biochelates from Methylosinus trichosporium OB3b and soluble methane monooxygenase mutants. Appl. Environ. Microbiol. 64:1115–22
    [Google Scholar]
  40. 40.  DiSpirito AA, Zahn JA, Graham DW, Kim HJ, Larive CK et al. 1998. Copper-binding compounds from Methylosinus trichosporium OB3b. J. Bacteriol. 180:3606–13
    [Google Scholar]
  41. 41.  Behling LA, Hartsel SC, Lewis DE, DiSpirito AA, Choi DW et al. 2008. NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings. J. Am. Chem. Soc. 130:12604–5
    [Google Scholar]
  42. 42.  El Ghazouani A, Baslé A, Firbank SJ, Knapp CW, Gray J et al. 2011. Copper-binding properties and structures of methanobactins from Methylosinus trichosporium OB3b. Inorg. Chem. 50:1378–91
    [Google Scholar]
  43. 43.  Kim HJ, Galeva N, Larive CK, Alterman M, Graham DW 2005. Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b. Biochemistry 44:5140–48
    [Google Scholar]
  44. 44.  Blanco-Lomas M, Funes-Ardoiz I, Campos PJ, Sampedro D 2013. Oxazolone-based photoswitches: synthesis and properties. Eur. J. Org. Chem. 2013:6611–18
    [Google Scholar]
  45. 45.  Krentz BD, Mulheron HJ, Semrau JD, DiSpirito AA, Bandow NL et al. 2010. A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions. Biochemistry 49:10117–30
    [Google Scholar]
  46. 46.  Hakemian AS, Tinberg CE, Kondapalli KC, Telser J, Hoffman BM et al. 2005. The copper chelator methanobactin from Methylosinus trichosporium OB3b binds copper(I). J. Am. Chem. Soc. 127:17142–43
    [Google Scholar]
  47. 47.  Choi DW, Antholine WE, Do YS, Semrau JD, Kisting CJ et al. 2005. Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxy-genase in Methylococcus capsulatus Bath. Microbiology 151:3417–26
    [Google Scholar]
  48. 48.  Choi DW, Zea CJ, Do YS, Semrau JD, Antholine WE et al. 2006. Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b. Biochemistry 45:1442–53
    [Google Scholar]
  49. 49.  Pesch M-L, Christl I, Hoffmann M, Kraemer SM, Kretzschmar R 2012. Copper complexation of methanobactin isolated from Methylosinus trichosporium OB3b: pH-dependent speciation and modeling. J. Inorg. Biochem. 116:55–62
    [Google Scholar]
  50. 50.  Kulczycki E, Fowle DA, Knapp CW, Graham DW, Roberts JA 2007. Methanobactin-promoted dissolution of Cu-substituted borosilicate glass. Geobiology 5:251–63
    [Google Scholar]
  51. 51.  Pesch M-L, Hoffmann M, Christl I, Kraemer SM, Kretzschmar R 2012. Competitive ligand exchange between Cu–humic acid complexes and methanobactin. Geobiology 11:44–54
    [Google Scholar]
  52. 52.  Ho A, Kerckhof F-M, Lüke C, Reim A, Krause S et al. 2012. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ. Microbiol. Rep. 5:335–45
    [Google Scholar]
  53. 53.  Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee S-W et al. 2006. Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J. Inorg. Biochem. 100:2150–61
    [Google Scholar]
  54. 54.  Choi DW, Semrau JD, Antholine WE, Hartsel SC, Anderson RC et al. 2008. Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs. J. Inorg. Biochem. 102:1571–80
    [Google Scholar]
  55. 55.  Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC 2010. Oxidation of methane by a biological dicopper centre. Nature 465:115–19
    [Google Scholar]
  56. 56.  Sirajuddin S, Barupala D, Helling S, Marcus K, Stemmler TL, Rosenzweig AC 2014. Effects of zinc on particulate methane monooxygenase activity and structure. J. Biol. Chem. 289:21782–94
    [Google Scholar]
  57. 57.  Balasubramanian R, Rosenzweig AC 2008. Copper methanobactin: a molecule whose time has come. Curr. Opin. Chem. Biol. 12:245–49
    [Google Scholar]
  58. 58.  Stein LY, Yoon S, Semrau JD, DiSpirito AA, Crombie A et al. 2010. Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J. Bacteriol. 192:6497–98
    [Google Scholar]
  59. 59.  Kenney GE, Rosenzweig AC 2013. Genome mining for methanobactins. BMC Biol 11:17
    [Google Scholar]
  60. 60.  Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J et al. 2013. Methanobactin and MmoD work in concert to act as the “copper-switch” in methanotrophs. Environ. Microbiol. 15:3077–86
    [Google Scholar]
  61. 61.  Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30:108–60
    [Google Scholar]
  62. 62.  DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S 2016. Methanobactin and the link between copper and bacterial methane oxidation. Microbiol. Mol. Biol. Rev. 80:387–409
    [Google Scholar]
  63. 63.  Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG 2006. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded CuICuII forms. J. Am. Chem. Soc. 128:5834–50
    [Google Scholar]
  64. 64.  Lawton TJ, Kenney GE, Hurley JD, Rosenzweig AC 2016. The CopC family: structural and bioinformatic insights into a diverse group of periplasmic copper binding proteins. Biochemistry 55:2278–90
    [Google Scholar]
  65. 65.  Cha JS, Cooksey DA 1993. Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl. Environ. Microbiol. 59:1671–74
    [Google Scholar]
  66. 66.  Dash BP, Alles M, Bundschuh FA, Richter O 2015. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans. Biochim. Biophys. Acta 1847:202–11
    [Google Scholar]
  67. 67.  Abriata LA, Banci L, Bertini I, Ciofi-Baffoni S, Gkazonis P et al. 2008. Mechanism of CuA assembly. Nat. Chem. Biol. 4:599–601
    [Google Scholar]
  68. 68.  Lewinson O, Lee AT, Rees DC 2009. A P-type ATPase importer that discriminates between essential and toxic transition metals. PNAS 106:4677–82
    [Google Scholar]
  69. 69.  Dobrindt U, Hochhut B, Hentschel U, Hacker J 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2:414–24
    [Google Scholar]
  70. 70.  Escolar L, Pérez-Martín J, de Lorenzo V 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181:6223–29
    [Google Scholar]
  71. 71.  Kenney GE, Sadek M, Rosenzweig AC 2016. Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 8:931–40
    [Google Scholar]
  72. 72.  Gu W, Semrau JD 2017. Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 101:8499–516
    [Google Scholar]
  73. 73.  Larsen Ø, Karlsen OA 2015. Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases. MicrobiologyOpen 5:254–67
    [Google Scholar]
  74. 74.  El Ghazouani A, Baslé A, Gray J, Graham DW, Firbank SJ, Dennison C 2012. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria. PNAS 109:8400–4
    [Google Scholar]
  75. 75.  Kenney GE, Goering AW, Ross MO, DeHart CJ, Thomas PM et al. 2016. Characterization of methanobactin from Methylosinus sp. LW4. J. Am. Chem. Soc. 138:11124–27
    [Google Scholar]
  76. 76.  Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE et al. 1979. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J. Am. Chem. Soc. 101:6097–104
    [Google Scholar]
  77. 77.  Bandow NL, Gilles VS, Freesmeier B, Semrau JD, Krentz B et al. 2012. Spectral and copper binding properties of methanobactin from the facultative methanotroph Methylocystis strain SB2. J. Inorg. Biochem. 110:72–82
    [Google Scholar]
  78. 78.  Burkhart BJ, Hudson GA, Dunbar KL, Mitchell DA 2015. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11:564–70
    [Google Scholar]
  79. 79.  Melby JO, Dunbar KL, Trinh NQ, Mitchell DA 2012. Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J. Am. Chem. Soc. 134:5309–16
    [Google Scholar]
  80. 80.  Sivonen K, Leikoski N, Fewer DP, Jokela J 2010. Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86:1213–25
    [Google Scholar]
  81. 81.  Molohon KJ, Melby JO, Lee J, Evans BS, Dunbar KL et al. 2011. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem. Biol. 6:1307–13
    [Google Scholar]
  82. 82.  Haft DH, Basu MK, Mitchell DA 2010. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol 8:70
    [Google Scholar]
  83. 83.  Fuchs SW, Lackner G, Morinaka BI, Morishita Y, Asai T et al. 2016. A lanthipeptide-like N-terminal leader region guides peptide epimerization by radical SAM epimerases: implications for RiPP evolution. Angew. Chem. Int. Ed. Engl. 128:12330–33
    [Google Scholar]
  84. 84.  Ortega MA, van der Donk WA 2016. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem. Biol. 23:31–44
    [Google Scholar]
  85. 85.  Cox CL, Doroghazi JR, Mitchell DA 2015. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genom 16:778
    [Google Scholar]
  86. 86.  Rix U, Zheng J, Remsing Rix LL, Greenwell L, Yang K, Rohr J 2004. The dynamic structure of jadomycin B and the amino acid incorporation step of its biosynthesis. J. Am. Chem. Soc. 126:4496–97
    [Google Scholar]
  87. 87.  Banala S, Süssmuth RD 2010. Thioamides in nature: in search of secondary metabolites in anaerobic microorganisms. ChemBioChem 11:1335–37
    [Google Scholar]
  88. 88.  Izawa M, Kawasaki T, Hayakawa Y 2013. Cloning and heterologous expression of the thioviridamide biosynthesis gene cluster from Streptomyces olivoviridis. Appl. Environ. Microbiol 79:7110–13
    [Google Scholar]
  89. 89.  Lincke T, Behnken S, Ishida K, Roth M, Hertweck C 2010. Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed. Engl 122:2055–57
    [Google Scholar]
  90. 90.  Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA 2014. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat. Chem. Biol. 10:823–29
    [Google Scholar]
  91. 91.  Dunbar KL, Melby JO, Mitchell DA 2012. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 8:569–75
    [Google Scholar]
  92. 92.  Kenney GE, Dassama LMK, Pandelia M-E, Gizzi AS, Martinie RJ et al. 2018. The biosynthesis of methanobactin. Science 359:1411–16
    [Google Scholar]
  93. 93.  Medzihradszky KF, Darula Z, Perlson E, Fainzilber M, Chalkley RJ et al. 2004. O-sulfonation of serine and threonine: mass spectrometric detection and characterization of a new posttranslational modification in diverse proteins throughout the eukaryotes. Mol. Cell. Proteom. 3:429–40
    [Google Scholar]
  94. 94.  Wang T, Cook I, Falany CN, Leyh TS 2014. Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1. J. Biol. Chem. 289:26474–80
    [Google Scholar]
  95. 95.  Howard-Jones AR, Walsh CT 2006. Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, and RebC on chromopyrrolic acid. J. Am. Chem. Soc. 128:12289–98
    [Google Scholar]
  96. 96.  Walsh CT, Wencewicz TA 2012. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30:175–200
    [Google Scholar]
  97. 97.  Gu W, Baral BS, DiSpirito AA, Semrau JD 2017. An aminotransferase is responsible for the deamination of the N-terminal leucine and required for formation of oxazolone ring A in methanobactin of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 83:e02619–16
    [Google Scholar]
  98. 98.  Lagedroste M, Smits SHJ, Schmitt L 2017. Substrate specificity of the secreted nisin leader peptidase NisP. Biochemistry 56:4005–14
    [Google Scholar]
  99. 99.  Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y 2006. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol. Sci. 27:587–93
    [Google Scholar]
  100. 100.  He X, Szewczyk P, Karyakin A, Evin M, Hong W-X et al. 2010. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–94
    [Google Scholar]
  101. 101.  Kuroda T, Tsuchiya T 2009. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta 1794:763–68
    [Google Scholar]
  102. 102.  Balasubramanian R, Kenney GE, Rosenzweig AC 2011. Dual pathways for copper uptake by methanotrophic bacteria. J. Biol. Chem. 286:37313–19
    [Google Scholar]
  103. 103.  Schalk IJ, Yue WW, Buchanan SK 2004. Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol. Microbiol. 54:14–22
    [Google Scholar]
  104. 104.  Noinaj N, Guillier M, Barnard TJ, Buchanan SK 2010. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64:43–60
    [Google Scholar]
  105. 105.  Schauer K, Rodionov DA, de Reuse H 2008. New substrates for TonB-dependent transport: Do we only see the ‘tip of the iceberg’?. Trends Biochem. Sci. 33:330–38
    [Google Scholar]
  106. 106.  Koebnik R. 2005. TonB-dependent trans-envelope signalling: The exception or the rule?. Trends Microbiol 13:343–47
    [Google Scholar]
  107. 107.  Braun V, Mahren S, Ogierman M 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr. Opin. Microbiol. 6:173–80
    [Google Scholar]
  108. 108.  Rédly GA, Poole K 2005. FpvIR control of fpvA ferric pyoverdine receptor gene expression in Pseudomonas aeruginosa: demonstration of an interaction between FpvI and FpvR and identification of mutations in each compromising this interaction. J. Bacteriol. 187:5648–57
    [Google Scholar]
  109. 109.  Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R 2012. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 86:628–44
    [Google Scholar]
  110. 110.  Farhan Ul-Haque M, Kalidass B, Vorobev AV, Baral BS, DiSpirito AA, Semrau JD 2015. Methanobactin from Methylocystis strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 81:2466–73
    [Google Scholar]
  111. 111.  Gu W, Farhan Ul Haque M, Baral BS, Turpin EA, Bandow NL et al. 2016. A TonB-dependent transporter is responsible for methanobactin uptake by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 82:1917–23
    [Google Scholar]
  112. 112.  Greenwald J, Nader M, Celia H, Gruffaz C, Geoffroy V et al. 2009. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol. Microbiol. 72:1246–59
    [Google Scholar]
  113. 113.  Kenney GE, Rosenzweig AC 2012. Chemistry and biology of the copper chelator methanobactin. ACS Chem. Biol. 7:260–68
    [Google Scholar]
  114. 114.  Novikova M, Metlitskaya A, Datsenko K, Kazakov T, Kazakov A et al. 2007. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol. 189:8361–65
    [Google Scholar]
  115. 115.  Sleigh SH, Tame JR, Dodson EJ, Wilkinson AJ 1997. Peptide binding in OppA, the crystal structures of the periplasmic oligopeptide binding protein in the unliganded form and in complex with lysyllysine. Biochemistry 36:9747–58
    [Google Scholar]
  116. 116.  Schalk IJ, Guillon L 2013. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44:1267–77
    [Google Scholar]
  117. 117.  Imperi F, Tiburzi F, Visca P 2009. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. PNAS 106:20440–45
    [Google Scholar]
  118. 118.  Jones CM, Wells RM, Madduri AVR, Renfrow MB, Ratledge C et al. 2014. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. PNAS 111:1945–50
    [Google Scholar]
  119. 119.  Hannauer M, Barda Y, Mislin GLA, Shanzer A, Schalk IJ 2010. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J. Bacteriol. 192:1212–20
    [Google Scholar]
  120. 120.  Miethke M, Hou J, Marahiel MA 2011. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50:10951–64
    [Google Scholar]
  121. 121.  Helland R, Fjellbirkeland A, Karlsen OA, Ve T, Lillehaug JR, Jensen HB 2008. An oxidized tryptophan facilitates copper binding in Methylococcus capsulatus-secreted protein MopE. J. Biol. Chem. 283:13897–904
    [Google Scholar]
  122. 122.  Johnson KA, Ve T, Larsen Ø, Pedersen R-B, Lillehaug JR et al. 2014. CorA is a copper repressible surface-associated copper(I)-binding protein produced in Methylomicrobium album BG8. PLOS ONE 9:e87750
    [Google Scholar]
  123. 123.  Vita N, Platsaki S, Baslé A, Allen SJ, Paterson NG et al. 2015. A four-helix bundle stores copper for methane oxidation. Nature 525:140–43
    [Google Scholar]
  124. 124.  Ross MO, Rosenzweig AC 2016. A tale of two methane monooxygenases. J. Biol. Inorg. Chem. 22:307–19
    [Google Scholar]
  125. 125.  Reimmann C. 2012. Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aerugi-nosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. Microbiology 158:1317–24
    [Google Scholar]
  126. 126.  Ferguson AD, Amezcua CA, Halabi NM, Chelliah Y, Rosen MK et al. 2007. Signal transduction pathway of TonB-dependent transporters. PNAS 104:513–18
    [Google Scholar]
  127. 127.  Youard ZA, Reimmann C 2010. Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. Microbiology 156:1722–82
    [Google Scholar]
  128. 128.  Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME 2016. Electroporation-based genetic manipulation in Type I methanotrophs. Appl. Environ. Microbiol. 82:2062–69
    [Google Scholar]
  129. 129.  Collins ML, Buchholz LA, Remsen CC 1991. Effect of copper on Methylomonas albus BG8. Appl. Environ. Microbiol. 57:1261–64
    [Google Scholar]
  130. 130.  Brantner CA, Buchholz LA, McSwain CL, Newcomb LL, Remsen CC, Collins MLP 1997. Intracytoplasmic membrane formation in Methylomicrobium album BG8 is stimulated by copper in the growth medium. Can. J. Microbiol. 43:672–76
    [Google Scholar]
  131. 131.  Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF et al. 2005. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol. Microbiol. 58:682–92
    [Google Scholar]
  132. 132.  Merkx M, Lippard SJ 2002. Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 277:5858–65
    [Google Scholar]
  133. 133.  Lipscomb JD. 1994. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48:371–99
    [Google Scholar]
  134. 134.  Ali MH, Murrell JC 2009. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology 155:761–71
    [Google Scholar]
  135. 135.  Stafford GP, Scanlan J, McDonald IR, Murrell JC 2003. rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology 149:1771–84
    [Google Scholar]
  136. 136.  Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA 2008. Involvement of BmoR and BmoG in n-alkane metabolism in “Pseudomonas butanovora. .” Microbiology 154:139–47
    [Google Scholar]
  137. 137.  Coleman NV, Yau S, Wilson NL, Nolan LM, Migocki MD et al. 2010. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environ. Microbiol. Rep. 3:297–307
    [Google Scholar]
  138. 138.  Xin JY, Lin K, Wang Y Xia C-G 2014. Methanobactin-mediated synthesis of gold nanoparticles supported over Al2O3 toward an efficient catalyst for glucose oxidation. Int. J. Mol. Sci 15:21603–20
    [Google Scholar]
  139. 139.  Kalidass B, Farhan Ul-Haque M, Baral BS, DiSpirito AA, Semrau JD 2014. Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper. Appl. Environ. Microbiol. 81:1024–31
    [Google Scholar]
  140. 140.  Zammit CM, Weiland F, Brugger J, Wade B, Winderbaum LJ et al. 2016. Proteomic responses to gold(III)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics 8:1204–16
    [Google Scholar]
  141. 141.  Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA et al. 2009. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. PNAS 106:17757–62
    [Google Scholar]
  142. 142.  Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N et al. 2010. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLOS ONE 5:e10433
    [Google Scholar]
  143. 143.  von Rozycki T, Nies DH 2009. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 96:115–39
    [Google Scholar]
  144. 144.  Vorobev AV, Jagadevan S, Baral BS, DiSpirito AA, Freemeier BC et al. 2013. Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 79:5918–26
    [Google Scholar]
  145. 145.  Baral BS, Bandow NL, Vorobev AV, Freemeier BC, Bergman BH et al. 2014. Mercury binding by methanobactin from Methylocystis strain SB2. J. Inorg. Biochem. 141C:161–69
    [Google Scholar]
  146. 146.  Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA et al. 2017. Methylmercury uptake and degradation by methanotrophs. Sci. Adv. 3:e1700041
    [Google Scholar]
  147. 147.  Boden R, Murrell JC 2011. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 324:106–10
    [Google Scholar]
  148. 148.  Baesman SM, Miller LG, Wei JH, Cho Y, Matys ED et al. 2015. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment. Microorganisms 3:290–309
    [Google Scholar]
  149. 149.  Hanson RS, Hanson TE 1996. Methanotrophic bacteria. Microbiol. Rev. 60:439–71
    [Google Scholar]
  150. 150.  Costello AM, Lidstrom ME 1999. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl. Environ. Microbiol. 65:5066–74
    [Google Scholar]
  151. 151.  Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN et al. 2007. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing “signature” fatty acids of type I methanotrophs. Int. J. Syst. Evol. Microbiol 57:472–79
    [Google Scholar]
  152. 152.  Wartiainen I, Hestnes AG, McDonald IR, Svenning MM 2006. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). Int. J. Syst. Evol. Microbiol 56:541–47
    [Google Scholar]
  153. 153.  Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM 2007. Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:874–78
    [Google Scholar]
  154. 154.  Diaz JM, Hansel CM, Voelker BM, Mendes CM, Andeer PF, Zhang T 2013. Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340:1223–26
    [Google Scholar]
  155. 155.  Johnson CL. 2006. Methanobactin: a potential novel biopreservative for use against the foodborne pathogen Listeria monocytogenes PhD Thesis, Iowa State Univ Ames, IA:
    [Google Scholar]
  156. 156.  Hecht SM. 2000. Bleomycin: new perspectives on the mechanism of action. J. Nat. Prod. 63:158–68
    [Google Scholar]
  157. 157.  Seipke RF, Kaltenpoth M, Hutchings MI 2012. Streptomyces as symbionts: an emerging and widespread theme?. FEMS Microbiol. Rev. 36:862–76
    [Google Scholar]
  158. 158.  Bode HB. 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13:224–30
    [Google Scholar]
  159. 159.  Mansson M, Gram L, Larsen TO 2011. Production of bioactive secondary metabolites by marine Vibrionaceae. Mar. Drugs 9:1440–68
    [Google Scholar]
  160. 160.  Wöhler F. 1963. The treatment of haemochromatosis with desferrioxamine. Acta Haematol. 30:65–87
    [Google Scholar]
  161. 161.  Moeschlin S, Schnider U 1963. Treatment of primary and secondary hemochromatosis and acute iron poisoning with a new, potent iron-eliminating agent (desferrioxamine-B). N. Engl. J. Med. 269:57–66
    [Google Scholar]
  162. 162.  Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML 2007. Wilson's disease. Lancet 369:397–408
    [Google Scholar]
  163. 163.  Medici V, Rossaro L, Sturniolo GC 2007. Wilson disease—a practical approach to diagnosis, treatment and follow-up. Digest. Liver Dis. 39:601–9
    [Google Scholar]
  164. 164.  Ding X, Xie H, Kang YJ 2011. The significance of copper chelators in clinical and experimental application. J. Nutr. Biochem. 22:301–10
    [Google Scholar]
  165. 165.  Summer KH, Lichtmannegger J, Bandow NL, Choi DW, DiSpirito AA, Michalke B 2011. The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson disease. J. Trace Elem. Med. Biol. 25:36–41
    [Google Scholar]
  166. 166.  Lichtmannegger J, Leitzinger C, Wimmer R, Schmitt S, Schulz S et al. 2016. Methanobactin reverses acute liver failure in a rat model of Wilson disease. J. Clin. Investig. 126:2721–35
    [Google Scholar]
  167. 167.  Desai V, Kaler SG 2008. Role of copper in human neurological disorders. Am. J. Clin. Nutr. 88:855S–8S
    [Google Scholar]
  168. 168.  Choi DW, Bandow NL, McEllistrem MT, Semrau JD, Antholine WE et al. 2010. Spectral and thermodynamic properties of methanobactin from γ-proteobacterial methane oxidizing bacteria: a case for copper competition on a molecular level. J. Inorg. Biochem. 104:1240–47
    [Google Scholar]
  169. 169.  Karlsen OA, Berven FS, Stafford GP, Larsen Ø, Murrell JC et al. 2003. The surface-associated and secreted MopE protein of Methylococcus capsulatus (Bath) responds to changes in the concentration of copper in the growth medium. Appl. Environ. Microbiol. 69:2386–88
    [Google Scholar]
  170. 170.  Ve T, Mathisen K, Helland R, Karlsen OA, Fjellbirkeland A et al. 2012. The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper. PLOS ONE 7:e43146
    [Google Scholar]
  171. 171.  Koepke J, Olkhova E, Angerer H, Müller H 2009. High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. Biochim. Biophys. Acta 1787:635–45
    [Google Scholar]
  172. 172.  Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M et al. 2003. Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 Å resolution. Biochem. J. 369:77–88
    [Google Scholar]
  173. 173.  Anttila J, Heinonen P, Nenonen T, Pino A, Iwaï H et al. 2011. Is coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans?. Biochim. Biophys. Acta 1807:311–18
    [Google Scholar]
  174. 174.  Azzouzi A, Steunou A-S, Durand A, Khalfaoui-Hassani B, Bourbon M-L et al. 2013. Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+-ATPase mutant copA of Rubrivivax gelatinosus. Mol. Microbiol 88:339–51
    [Google Scholar]
  175. 175.  Perry RD, Balbo PB, Jones HA, Fetherston JD, DeMoll E 1999. Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145:1181–90
    [Google Scholar]
  176. 176.  Carniel E. 2001. The Yersinia high-pathogenicity island: an iron-uptake island. Microb. Infect. 3:561–69
    [Google Scholar]
  177. 177.  Payne SM. 1994. Detection, isolation, and characterization of siderophores. Methods Enzymol. 235:329–44
    [Google Scholar]
  178. 178.  Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP 2012. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 8:731–36
    [Google Scholar]
  179. 179.  Stafford SL, Bokil NJ, Achard MES, Kapetanovic R, Schembri MA et al. 2013. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci. Rep. 33:e00049
    [Google Scholar]
  180. 180.  Chaturvedi KS, Hung CS, Giblin DE, Urushidani S, Austin AM et al. 2013. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem. Biol. 9:551–61
    [Google Scholar]
  181. 181.  Koh E-I, Hung CS, Parker KS, Crowley JR, Giblin DE, Henderson JP 2015. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 7:1011–22
    [Google Scholar]
  182. 182.  Koh E-I, Robinson AE, Bandara N, Rogers BE, Henderson JP 2017. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat. Chem. Biol. 13:1016–21
    [Google Scholar]
  183. 183.  Amano S-I, Sakurai T, Endo K, Takano H, Beppu T et al. 2011. A cryptic antibiotic triggered by monensin. J. Antibiot. 64:703
    [Google Scholar]
  184. 184.  Wang L, Zhu M, Zhang Q, Zhang X, Yang P et al. 2017. Diisonitrile natural product SF2768 functions as a chalkophore that mediates copper acquisition in Streptomyces thioluteus. ACS Chem. Biol 12:3067–75
    [Google Scholar]
  185. 185.  Harris NC, Sato M, Herman NA, Twigg F, Cai W et al. 2017. Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. PNAS 114:7025–30
    [Google Scholar]
  186. 186.  Stephan UW, Schmidke I, Stephan VW, Scholz G 1996. The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90
    [Google Scholar]
  187. 187.  Irtelli B, Petrucci WA, Navari-Izzo F 2009. Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess. J. Exp. Bot. 60:269–77
    [Google Scholar]
  188. 188.  Gi M, Lee K-M, Kim SC, Yoon J-H, Yoon SS, Choi JY 2015. A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus. Sci. Rep. 5:14644–59
    [Google Scholar]
  189. 189.  McFarlane JS, Lamb AL 2017. Biosynthesis of an opine metallophore by Pseudomonas aeruginosa. Biochemistry 56:5967–71
    [Google Scholar]
  190. 190.  Mastropasqua MC, D'Orazio M, Cerasi M, Pacello F, Gismondi A et al. 2017. Growth of Pseudomonas aeruginosa in zinc poor environments is promoted by a nicotianamine-related metallophore. Mol. Microbiol. 106:543–61
    [Google Scholar]
  191. 191.  Lhospice S, Gomez NO, Ouerdane L, Brutesco C, Ghssein G et al. 2017. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Sci. Rep. 7:17132
    [Google Scholar]
  192. 192.  Schalk IJ, Guillon L 2013. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ. Microbiol. 15:1661–73
    [Google Scholar]
  193. 193.  Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary A-M 2012. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans 41:2820–34
    [Google Scholar]
  194. 194.  Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ 2009. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ. Microbiol. 11:1079–91
    [Google Scholar]
  195. 195.  Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ 2010. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ. Microbiol. Rep. 2:419–25
    [Google Scholar]
  196. 196.  Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR 2006. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol 188:7242–56
    [Google Scholar]
  197. 197.  Frangipani E, Slaveykova VI, Reimmann C, Haas D 2008. Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation. J. Bacteriol. 190:6706–17
    [Google Scholar]
  198. 198.  Cortese MS, Paszczynski A, Lewis TA, Sebat JL, Borek V, Crawford RL 2002. Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas sp. and the biological activities of the formed complexes. Biometals 15:103–20
    [Google Scholar]
  199. 199.  Stolworthy JC, Paszczynski A, Korus R, Crawford RL 2001. Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Biodegradation 12:411–18
    [Google Scholar]
  200. 200.  Ockels W, Römer A, Budzikiewicz H, Korth H, Pulverer G 1978. An Fe (II) complex of pyridine-2,6-di-(monothiocarboxylic acid)-a novel bacterial metabolic product. Tetrahedron Lett 19:3341–42
    [Google Scholar]
  201. 201.  Leach LH. 2006. Identification and characterization of Pseudomonas membrane transporters necessary for utilization of the siderophore pyridine-2,6-bis(thiocarboxylic acid) (PDTC). Microbiology 152:3157–66
    [Google Scholar]
  202. 202.  Leach LH, Morris JC, Lewis TA 2006. The role of the siderophore pyridine-2,6-bis (thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601. Biometals 20:717–26
    [Google Scholar]
  203. 203.  Lewis TA, Paszczynski A, Gordon-Wylie SW, Jeedigunta S, Lee CH, Crawford RL 2001. Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid). Environ. Sci. Technol. 35:552–59
    [Google Scholar]
  204. 204.  Plowman JE, Loehr TM, Goldman SJ, Sanders-Loehr J 1984. Structure and siderophore activity of ferric schizokinen. J. Inorg. Biochem. 20:183–97
    [Google Scholar]
  205. 205.  McKnight DM, Morel FMM 1980. Copper complexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr. 25:62–71
    [Google Scholar]
  206. 206.  Clarke SE, Stuart J, Sanders-Loehr J 1987. Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity. Appl. Environ. Microbiol. 53:917–22
    [Google Scholar]
  207. 207.  Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K et al. 2008. Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. J. Bacteriol. 190:7500–7
    [Google Scholar]
  208. 208.  Nicolaisen K, Hahn A, Valdebenito M, Moslavac S, Samborski A et al. 2010. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1798:2131–40
    [Google Scholar]
  209. 209.  Moffett JW. 1995. Temporal and spatial variability of copper complexation by strong chelators in the Sargasso Sea. Deep-Sea Res. Part I 42:1273–95
    [Google Scholar]
  210. 210.  Mann EL, Ahlgren N, Moffett JW, Chisholm SW 2002. Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol. Oceanogr. 47:976–88
    [Google Scholar]
  211. 211.  Moffett JW, Brand LE 1996. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol. Oceanogr. 41:388–95
    [Google Scholar]
  212. 212.  Wiramanaden CIE, Cullen JT, Ross ARS, Orians KJ 2008. Cyanobacterial copper-binding ligands isolated from artificial seawater cultures. Mar. Chem. 110:28–41
    [Google Scholar]
  213. 213.  Ito Y, Butler A 2005. Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol. Oceanogr. 50:1918–23
    [Google Scholar]
  214. 214.  Boiteau RM, Till CP, Ruacho A, Bundy RM, Hawco NJ et al. 2016. Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect. Front. Mar. Sci. 3:243
    [Google Scholar]
  215. 215.  Kenney GE, Rosenzweig AC 2018. Methanobactins: maintaining copper homeostasis in methanotrophs and beyond. J. Biol. Chem. 293:4606–15
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012300
Loading
/content/journals/10.1146/annurev-biochem-062917-012300
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error