1932

Abstract

Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012448
2018-06-20
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012448.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012448&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  van Meer G, Voelker DR, Feigenson GW 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9:112–24
    [Google Scholar]
  2. 2.  Brügger B. 2014. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu. Rev. Biochem. 83:79–98
    [Google Scholar]
  3. 3.  Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H et al. 2010. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–27
    [Google Scholar]
  4. 4.  Üretmen Kagıalı ZC, Şentürk A, Özkan Küçük NE, Qureshi MH, Özlü N 2017. Proteomics in cell division. Proteomics 17:1600100
    [Google Scholar]
  5. 5.  Eggert US, Mitchison TJ, Field CM 2006. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75:543–66
    [Google Scholar]
  6. 6.  Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A et al. 2014. Dividing cells regulate their lipid composition and localization. Cell 156:428–39
    [Google Scholar]
  7. 7.  Head BP, Patel HH, Insel PA 2014. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta 1838:532–45
    [Google Scholar]
  8. 8.  Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR et al. 2009. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50:Suppl.S9–14
    [Google Scholar]
  9. 9.  Muro E, Atilla-Gokcumen GE, Eggert US 2014. Lipids in cell biology: How can we understand them better?. Mol. Biol. Cell 25:1819–23
    [Google Scholar]
  10. 10.  Jackson CL, Walch L, Verbavatz JM 2016. Lipids and their trafficking: an integral part of cellular organization. Dev. Cell 39:139–53
    [Google Scholar]
  11. 11.  Sharpe HJ, Stevens TJ, Munro S 2010. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142:158–69
    [Google Scholar]
  12. 12.  Walther TC, Farese RV 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81:687–714
    [Google Scholar]
  13. 13.  Resh MD. 2016. Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res. 63:120–31
    [Google Scholar]
  14. 14.  Bernardino de la Serna J, Schutz GJ, Eggeling C, Cebecauer M 2016. There is no simple model of the plasma membrane organization. Front. Cell Dev. Biol. 4:106
    [Google Scholar]
  15. 15.  Orešič M, Hänninen VA, Vidal-Puig A 2008. Lipidomics: a new window to biomedical frontiers. Trends Biotechnol 26:647–52
    [Google Scholar]
  16. 16.  Echard A. 2012. Phosphoinositides and cytokinesis: the “PIP” of the iceberg. Cytoskeleton 69:893–912
    [Google Scholar]
  17. 17.  Field SJ, Madson N, Kerr ML, Galbraith KA, Kennedy CE et al. 2005. PtdIns(4,5)P2 functions at the cleavage furrow during cytokinesis. Curr. Biol. 15:1407–12
    [Google Scholar]
  18. 18.  Cauvin C, Echard A 2015. Phosphoinositides: lipids with informative heads and mastermind functions in cell division. Biochim. Biophys. Acta 1851:832–43
    [Google Scholar]
  19. 19.  D'Souza K, Epand RM 2014. Enrichment of phosphatidylinositols with specific acyl chains. Biochim. Biophys. Acta 1838:1501–8
    [Google Scholar]
  20. 20.  Naguib A, Bencze G, Engle DD, Chio II, Herzka T et al. 2015. P53 mutations change phosphatidylinositol acyl chain composition. Cell Rep 10:8–19
    [Google Scholar]
  21. 21.  Wakelam MJ. 2014. The uses and limitations of the analysis of cellular phosphoinositides by lipidomic and imaging methodologies. Biochim. Biophys. Acta 1841:1102–7
    [Google Scholar]
  22. 22.  del Solar V, Lizardo DY, Li N, Hurst JJ, Brais CJ, Atilla-Gokcumen GE 2015. Differential regulation of specific sphingolipids in colon cancer cells during staurosporine-induced apoptosis. Chem. Biol. 22:1662–70
    [Google Scholar]
  23. 23.  Lizardo DY, Lin YL, Gokcumen O, Atilla-Gokcumen GE 2017. Regulation of lipids is central to replicative senescence. Mol. Biosyst. 13:498–509
    [Google Scholar]
  24. 24.  Rossy J, Ma Y, Gaus K 2014. The organisation of the cell membrane: Do proteins rule lipids?. Curr. Opin. Chem. Biol. 20:54–59
    [Google Scholar]
  25. 25.  Barelli H, Antonny B 2016. Lipid unsaturation and organelle dynamics. Curr. Opin. Cell Biol. 41:25–32
    [Google Scholar]
  26. 26.  Prosser SL, Pelletier L 2017. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell. Biol. 18:187–201
    [Google Scholar]
  27. 27.  D'Avino PP, Giansanti MG, Petronczki M 2015. Cytokinesis in animal cells. Cold Spring Harb. Perspect. Biol. 7:a015834
    [Google Scholar]
  28. 28.  Gould GW. 2016. Animal cell cytokinesis: the role of dynamic changes in the plasma membrane proteome and lipidome. Semin. Cell Dev. Biol. 53:64–73
    [Google Scholar]
  29. 29.  Lekomtsev S, Su KC, Pye VE, Blight K, Sundaramoorthy S et al. 2012. Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 492:276–79
    [Google Scholar]
  30. 30.  Mierzwa B, Gerlich DW 2014. Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31:525–38
    [Google Scholar]
  31. 31.  Lancaster OM, Baum B 2014. Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin. Cell Dev. Biol. 34:109–15
    [Google Scholar]
  32. 32.  Skop AR, Liu H, Yates J, Meyer BJ, Heald R 2004. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305:61–66
    [Google Scholar]
  33. 33.  Atilla-Gokcumen GE, Castoreno AB, Sasse S, Eggert US 2010. Making the cut: the chemical biology of cytokinesis. ACS Chem. Biol. 5:79–90
    [Google Scholar]
  34. 34.  Szafer-Glusman E, Giansanti MG, Nishihama R, Bolival B, Pringle J et al. 2008. A role for very-long-chain fatty acids in furrow ingression during cytokinesis in Drosophila spermatocytes. Curr. Biol. 18:1426–31
    [Google Scholar]
  35. 35.  Schneiter R, Brugger B, Amann CM, Prestwich GD, Epand RF et al. 2004. Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes. Biochem. J. 381:941–49
    [Google Scholar]
  36. 36.  Atilla-Gokcumen GE, Bedigian AV, Sasse S, Eggert US 2011. Inhibition of glycosphingolipid biosynthesis induces cytokinesis failure. J. Am. Chem. Soc. 133:10010–13
    [Google Scholar]
  37. 37.  Abe M, Makino A, Hullin-Matsuda F, Kamijo K, Ohno-Iwashita Y et al. 2012. A role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis. Mol. Cell. Biol. 32:1396–407
    [Google Scholar]
  38. 38.  Hicks AM, DeLong CJ, Thomas MJ, Samuel M, Cui Z 2006. Unique molecular signatures of glycerophospholipid species in different rat tissues analyzed by tandem mass spectrometry. Biochim. Biophys. Acta 1761:1022–29
    [Google Scholar]
  39. 39.  Bengoechea-Alonso MT, Ericsson J 2016. The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth. Cell Cycle 15:2753–65
    [Google Scholar]
  40. 40.  Blank HM, Maitra N, Polymenis M 2017. Lipid biosynthesis: when the cell cycle meets protein synthesis?. Cell Cycle 16:905–6
    [Google Scholar]
  41. 41.  Blank HM, Perez R, He C, Maitra N, Metz R et al. 2017. Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. EMBO J 36:487–502
    [Google Scholar]
  42. 42.  Scaglia N, Tyekucheva S, Zadra G, Photopoulos C, Loda M 2014. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle 13:859–68
    [Google Scholar]
  43. 43.  Makarova M, Gu Y, Chen JS, Beckley JR, Gould KL, Oliferenko S 2016. Temporal regulation of lipin activity diverged to account for differences in mitotic programs. Curr. Biol. 26:237–43
    [Google Scholar]
  44. 44.  Zhang J, Yang Y, Wu J 2010. Palmitate impairs cytokinesis associated with RhoA inhibition. Cell Res 20:492–94
    [Google Scholar]
  45. 45.  Stumpf CR, Moreno MV, Olshen AB, Taylor BS, Ruggero D 2013. The translational landscape of the mammalian cell cycle. Mol. Cell 52:574–82
    [Google Scholar]
  46. 46.  Beloribi-Djefaflia S, Vasseur S, Guillaumond F 2016. Lipid metabolic reprogramming in cancer cells. Oncogenesis 5:e189
    [Google Scholar]
  47. 47.  Fernández C, Lobo MdT, Gómez-Coronado D, Lasunción MA 2004. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp. Cell Res. 300:109–20
    [Google Scholar]
  48. 48.  Ng MM, Chang F, Burgess DR 2005. Movement of membrane domains and requirement of membrane signaling molecules for cytokinesis. Dev. Cell 9:781–90
    [Google Scholar]
  49. 49.  Emoto K, Inadome H, Kanaho Y, Narumiya S, Umeda M 2005. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J. Biol. Chem. 280:37901–7
    [Google Scholar]
  50. 50.  Emoto K, Umeda M 2000. An essential role for a membrane lipid in cytokinesis. Regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J. Cell Biol. 149:1215–24
    [Google Scholar]
  51. 51.  Byfield FJ, Aranda-Espinoza H, Romanenko VG, Rothblat GH, Levitan I 2004. Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophys. J. 87:3336–43
    [Google Scholar]
  52. 52.  Kraft ML. 2017. Sphingolipid organization in the plasma membrane and the mechanisms that influence it. Front. Cell Dev. Biol. 4:154
    [Google Scholar]
  53. 53.  Watanabe H, Okahara K, Naito-Matsui Y, Abe M, Go S et al. 2016. Psychosine-triggered endomitosis is modulated by membrane sphingolipids through regulation of phosphoinositide 4,5-bisphosphate production at the cleavage furrow. Mol. Biol. Cell 27:2037–50
    [Google Scholar]
  54. 54.  Hawkins-Salsbury JA, Parameswar AR, Jiang X, Schlesinger PH, Bongarzone E et al. 2013. Psychosine, the cytotoxic sphingolipid that accumulates in globoid cell leukodystrophy, alters membrane architecture. J. Lipid Res. 54:3303–11
    [Google Scholar]
  55. 55.  Hu CK, Coughlin M, Mitchison TJ 2012. Midbody assembly and its regulation during cytokinesis. Mol. Biol. Cell 23:1024–34
    [Google Scholar]
  56. 56.  Arai Y, Sampaio JL, Wilsch-Brauninger M, Ettinger AW, Haffner C, Huttner WB 2015. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis. Front. Cell. Neurosci. 9:325
    [Google Scholar]
  57. 57.  Welte MA. 2015. Expanding roles for lipid droplets. Curr. Biol. 25:R470–81
    [Google Scholar]
  58. 58.  Renvoise B, Parker RL, Yang D, Bakowska JC, Hurley JH, Blackstone C 2010. SPG20 protein spartin is recruited to midbodies by ESCRT-III protein Ist1 and participates in cytokinesis. Mol. Biol. Cell 21:3293–303
    [Google Scholar]
  59. 59.  Pakkanen KI, Duelund L, Qvortrup K, Pedersen JS, Ipsen JH 2011. Mechanics and dynamics of triglyceride-phospholipid model membranes: Implications for cellular properties and function. Biochim. Biophys. Acta 1808:1947–56
    [Google Scholar]
  60. 60.  Benaud C, Le Dez G, Mironov S, Galli F, Reboutier D, Prigent C 2015. Annexin A2 is required for the early steps of cytokinesis. EMBO Rep 16:481–89
    [Google Scholar]
  61. 61.  Tomas A, Futter C, Moss SE 2004. Annexin 11 is required for midbody formation and completion of the terminal phase of cytokinesis. J. Cell Biol. 165:813–22
    [Google Scholar]
  62. 62.  Wollert T, Hurley JH 2010. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464:864–69
    [Google Scholar]
  63. 63.  Salzer U, Kostan J, Djinovic-Carugo K 2017. Deciphering the BAR code of membrane modulators. Cell. Mol. Life Sci. 74:2413–38
    [Google Scholar]
  64. 64.  McMahon HT, Gallop JL 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96
    [Google Scholar]
  65. 65.  Ma MP, Chircop M 2012. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J. Cell Sci. 125:4372–82
    [Google Scholar]
  66. 66.  Eichmann TO, Lass A 2015. DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling. Cell. Mol. Life Sci. 72:3931–52
    [Google Scholar]
  67. 67.  Kunkel GT, Maceyka M, Milstien S, Spiegel S 2013. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat. Rev. Drug Discov. 12:688–702
    [Google Scholar]
  68. 68.  Gillies L, Lee SC, Long JS, Ktistakis N, Pyne NJ, Pyne S 2009. The sphingosine 1-phosphate receptor 5 and sphingosine kinases 1 and 2 are localised in centrosomes: possible role in regulating cell division. Cell Signal 21:675–84
    [Google Scholar]
  69. 69.  Kotelevets N, Fabbro D, Huwiler A, Zangemeister-Wittke U 2012. Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis. PLOS ONE 7:e39209
    [Google Scholar]
  70. 70.  Andrieu G, Ledoux A, Branka S, Bocquet M, Gilhodes J et al. 2017. Sphingosine 1-phosphate signaling through its receptor S1P5 promotes chromosome segregation and mitotic progression. Sci. Signal. 10:eaah4007
    [Google Scholar]
  71. 71.  Hannun YA, Bell RM 1989. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–7
    [Google Scholar]
  72. 72.  Haag M, Schmidt A, Sachsenheimer T, Brugger B 2012. Quantification of signaling lipids by nano-electrospray ionization tandem mass spectrometry (nano-ESI MS/MS). Metabolites 2:57–76
    [Google Scholar]
  73. 73.  Nadler A, Reither G, Feng S, Stein F, Reither S et al. 2013. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew. Chem. Int. Ed. 52:6330–34
    [Google Scholar]
  74. 74.  Madani S, Hichami A, Legrand A, Belleville J, Khan NA 2001. Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C. FASEB J 15:2595–601
    [Google Scholar]
  75. 75.  Guttinger S, Laurell E, Kutay U 2009. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell. Biol. 10:178–91
    [Google Scholar]
  76. 76.  Deacon EM, Pettitt TR, Webb P, Cross T, Chahal H et al. 2002. Generation of diacylglycerol molecular species through the cell cycle: a role for 1-stearoyl, 2-arachidonyl glycerol in the activation of nuclear protein kinase C-βII at G2/M. J. Cell Sci. 115:983–89
    [Google Scholar]
  77. 77.  Mall M, Walter T, Gorjánácz M, Davidson IF, Nga Ly-Hartig TB et al. 2012. Mitotic lamin disassembly is triggered by lipid-mediated signaling. J. Cell Biol. 198:981–90
    [Google Scholar]
  78. 78.  Saurin AT, Durgan J, Cameron AJ, Faisal A, Marber MS, Parker PJ 2008. The regulated assembly of a PKCε complex controls the completion of cytokinesis. Nat. Cell Biol. 10:891–901
    [Google Scholar]
  79. 79.  Brownlow N, Pike T, Crossland V, Claus J, Parker P 2014. Regulation of the cytokinesis cleavage furrow by PKCε. Biochem. Soc. Trans. 42:1534–37
    [Google Scholar]
  80. 80.  Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–75
    [Google Scholar]
  81. 81.  Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC et al. 2011. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334:380–85
    [Google Scholar]
  82. 82.  Larsen JB, Jensen MB, Bhatia VK, Pedersen SL, Bjørnholm T et al. 2015. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 11:192–94
    [Google Scholar]
  83. 83.  Hodge RG, Ridley AJ 2016. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell. Biol. 17:496–510
    [Google Scholar]
  84. 84.  Baker PR, Armando AM, Campbell JL, Quehenberger O, Dennis EA 2014. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J. Lipid Res. 55:2432–42
    [Google Scholar]
  85. 85.  Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G 2006. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78:779–87
    [Google Scholar]
  86. 86.  Murphy RC, Hankin JA, Barkley RM 2009. Imaging of lipid species by MALDI mass spectrometry. J. Lipid Res. 50:Suppl.S317–22
    [Google Scholar]
  87. 87.  Schober Y, Guenther S, Spengler B, Rompp A 2012. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal. Chem. 84:6293–97
    [Google Scholar]
  88. 88.  Robinson MA, Graham DJ, Castner DG 2012. ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts. Anal. Chem. 84:4880–85
    [Google Scholar]
  89. 89.  Eggeling C. 2015. Super-resolution optical microscopy of lipid plasma membrane dynamics. Essays Biochem 57:69–80
    [Google Scholar]
  90. 90.  Sezgin E. 2017. Super-resolution optical microscopy for studying membrane structure and dynamics. J. Phys. Condens. Matter 29:273001
    [Google Scholar]
  91. 91.  Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–62
    [Google Scholar]
  92. 92.  Takakura H, Zhang Y, Erdmann RS, Thompson AD, Lin Y et al. 2017. Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat. Biotechnol. 35:773–80
    [Google Scholar]
  93. 93.  Storck EM, Serwa RA, Tate EW 2013. Chemical proteomics: a powerful tool for exploring protein lipidation. Biochem. Soc. Trans. 41:56–61
    [Google Scholar]
  94. 94.  Tate EW, Kalesh KA, Lanyon-Hogg T, Storck EM, Thinon E 2015. Global profiling of protein lipidation using chemical proteomic technologies. Curr. Opin. Chem. Biol. 24:48–57
    [Google Scholar]
  95. 95.  Castoreno AB, Eggert US 2011. Small molecule probes of cellular pathways and networks. ACS Chem. Biol. 6:86–94
    [Google Scholar]
  96. 96.  Höglinger D, Nadler A, Haberkant P, Kirkpatrick J, Schifferer M et al. 2017. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. PNAS 114:1566–71
    [Google Scholar]
  97. 97.  Niphakis MJ, Lum KM, Cognetta AB 3rd, Correia BE, Ichu TA et al. 2015. A global map of lipid-binding proteins and their ligandability in cells. Cell 161:1668–80
    [Google Scholar]
  98. 98.  Peng T, Yuan X, Hang HC 2014. Turning the spotlight on protein-lipid interactions in cells. Curr. Opin. Chem. Biol. 21:144–53
    [Google Scholar]
  99. 99.  Haberkant P, Holthuis JC 2014. Fat & fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta 1841:1022–30
    [Google Scholar]
  100. 100.  Banani SF, Lee HO, Hyman AA, Rosen MK 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  101. 101.  Li L, Shi X, Guo X, Li H, Xu C 2014. Ionic protein-lipid interaction at the plasma membrane: What can the charge do?. Trends Biochem. Sci. 39:130–40
    [Google Scholar]
  102. 102.  Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP et al. 2007. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–27
    [Google Scholar]
  103. 103.  Thoresen SB, Campsteijn C, Vietri M, Schink KO, Liestøl K et al. 2014. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat. Cell Biol. 16:547–57
    [Google Scholar]
  104. 104.  Piekny AJ, Maddox AS 2010. The myriad roles of Anillin during cytokinesis. Semin. Cell Dev. Biol. 21:881–91
    [Google Scholar]
  105. 105.  Altan-Bonnet N, Phair RD, Polishchuk RS, Weigert R, Lippincott-Schwartz J 2003. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. PNAS 100:13314–19
    [Google Scholar]
  106. 106.  Hanai A, Ohgi M, Yagi C, Ueda T, Shin HW, Nakayama K 2016. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J. Biochem. 159:201–8
    [Google Scholar]
  107. 107.  Chesneau L, Dambournet D, Machicoane M, Kouranti I, Fukuda M et al. 2012. An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol. 22:147–53
    [Google Scholar]
  108. 108.  Levay M, Settleman J, Ligeti E 2009. Regulation of the substrate preference of p190RhoGAP by PKC-mediated phosphorylation of a phospholipid binding site. Biochemistry 48:8615–23
    [Google Scholar]
  109. 109.  Manukyan A, Ludwig K, Sanchez-Manchinelly S, Parsons SJ, Stukenberg PT 2015. A complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells. J. Cell Sci. 128:50–60
    [Google Scholar]
  110. 110.  Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA 2006. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol. Biol. Cell 17:2476–87
    [Google Scholar]
  111. 111.  Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA 2014. Capping protein regulators fine-tune actin assembly dynamics. Nat. Rev. Mol. Cell Biol. 15:677–89
    [Google Scholar]
  112. 112.  Terry SJ, Donà F, Osenberg P, Carlton JG, Eggert US 2018. Capping protein regulates actin dynamics during cytokinetic midbody maturation. PNAS In press
    [Google Scholar]
  113. 113.  D'Avino PP. 2017. Citron kinase—renaissance of a neglected mitotic kinase. J. Cell Sci. 130:1701–8
    [Google Scholar]
  114. 114.  Kusano K, Abe H, Obinata T 1999. Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol. Cell. Biochem. 190:133–41
    [Google Scholar]
  115. 115.  Su KC, Takaki T, Petronczki M 2011. Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis. Dev. Cell 21:1104–15
    [Google Scholar]
  116. 116.  Kunda P, Rodrigues NT, Moeendarbary E, Liu T, Ivetic A et al. 2012. PP1-mediated moesin dephosphorylation couples polar relaxation to mitotic exit. Curr. Biol. 22:231–36
    [Google Scholar]
  117. 117.  Carlton JG, Martin-Serrano J 2007. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–12
    [Google Scholar]
  118. 118.  Zhang X, Bedigian AV, Wang W, Eggert US 2012. G protein-coupled receptors participate in cytokinesis. Cytoskeleton 69:810–18
    [Google Scholar]
  119. 119.  Zhang X, Wang W, Bedigian AV, Coughlin ML, Mitchison TJ, Eggert US 2012. Dopamine receptor D3 regulates endocytic sorting by a Prazosin-sensitive interaction with the coatomer COPI. PNAS 109:12485–90
    [Google Scholar]
  120. 120.  Zhang X, Eggert US 2013. Non-traditional roles of G protein-coupled receptors in basic cell biology. Mol. Biosyst. 9:586–95
    [Google Scholar]
  121. 121.  Pellinen T, Tuomi S, Arjonen A, Wolf M, Edgren H et al. 2008. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev. Cell 15:371–85
    [Google Scholar]
  122. 122.  Platica M, Ionescu A, Ivan E, Holland JF, Mandeli J, Platica O 2011. PAR, a protein involved in the cell cycle, is functionally related to chromosomal passenger proteins. Int. J. Oncol. 38:777–85
    [Google Scholar]
  123. 123.  Hadders MA, Agromayor M, Obita T, Perisic O, Caballe A et al. 2012. ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. PNAS 109:17424–29
    [Google Scholar]
  124. 124.  Rohn JL, Patel JV, Neumann B, Bulkescher J, McHedlishvili N et al. 2014. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr. Biol. 24:2598–605
    [Google Scholar]
  125. 125.  Gohla A, Birkenfeld J, Bokoch GM 2005. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat. Cell Biol. 7:21–29
    [Google Scholar]
  126. 126.  Thoresen SB, Pedersen NM, Liestol K, Stenmark H 2010. A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp. Cell Res. 316:3368–78
    [Google Scholar]
  127. 127.  Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E et al. 2015. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350:aac7365
    [Google Scholar]
  128. 128.  Schmidt A, Durgan J, Magalhaes A, Hall A 2007. Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J 26:1624–36
    [Google Scholar]
  129. 129.  Wolf A, Keil R, Gotzl O, Mun A, Schwarze K et al. 2006. The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nat. Cell Biol. 8:1432–40
    [Google Scholar]
  130. 130.  Wilson GM, Fielding AB, Simon GC, Yu X, Andrews PD et al. 2005. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 16:849–60
    [Google Scholar]
  131. 131.  Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X et al. 2005. Rab11-FIP3 and FIP4 interact with Arf6 and the Exocyst to control membrane traffic in cytokinesis. EMBO J 24:3389–99
    [Google Scholar]
  132. 132.  Kouranti I, Sachse M, Arouche N, Goud B, Echard A 2006. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr. Biol. 16:1719–25
    [Google Scholar]
  133. 133.  Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M et al. 2011. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat. Cell Biol. 13:981–88
    [Google Scholar]
  134. 134.  Chen XW, Inoue M, Hsu SC, Saltiel AR 2006. RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J. Biol. Chem. 281:38609–16
    [Google Scholar]
  135. 135.  Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C et al. 2008. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 27:2375–87
    [Google Scholar]
  136. 136.  Holly RM, Mavor LM, Zuo Z, Blankenship JT 2015. A rapid, membrane-dependent pathway directs furrow formation through RalA in the early Drosophila embryo. Development 142:2316–28
    [Google Scholar]
  137. 137.  Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J et al. 2007. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26:2262–73
    [Google Scholar]
  138. 138.  Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, Inagaki M 2000. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19:6059–64
    [Google Scholar]
  139. 139.  Hagemann N, Ackermann N, Christmann J, Brier S, Yu F, Erdmann KS 2013. The serologically defined colon cancer antigen-3 interacts with the protein tyrosine phosphatase PTPN13 and is involved in the regulation of cytokinesis. Oncogene 32:4602–13
    [Google Scholar]
  140. 140.  Bridges AA, Gladfelter AS 2015. Septin form and function at the cell cortex. J. Biol. Chem. 290:17173–80
    [Google Scholar]
  141. 141.  Estey MP, Di Ciano-Oliveira C, Froese CD, Fung KYY, Steels JD et al. 2013. Mitotic regulation of SEPT9 protein by cyclin-dependent kinase 1 (Cdk1) and Pin1 protein is important for the completion of cytokinesis. J. Biol. Chem. 288:30075–86
    [Google Scholar]
  142. 142.  Connell JW, Lindon C, Luzio JP, Reid E 2009. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10:42–56
    [Google Scholar]
  143. 143.  Kizhatil K, Yoon W, Mohler PJ, Davis LH, Hoffman JA, Bennett V 2007. Ankyrin-G and β2-spectrin collaborate in biogenesis of lateral membrane of human bronchial epithelial cells. J. Biol. Chem. 282:2029–37
    [Google Scholar]
  144. 144.  Mukai A, Mizuno E, Kobayashi K, Matsumoto M, Nakayama KI et al. 2008. Dynamic regulation of ubiquitylation and deubiquitylation at the central spindle during cytokinesis. J. Cell Sci. 121:1325–33
    [Google Scholar]
  145. 145.  Smith TC, Fang Z, Luna EJ 2010. Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton 67:346–64
    [Google Scholar]
  146. 146.  Hasegawa H, Hyodo T, Asano E, Ito S, Maeda M et al. 2013. The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing. J. Cell Sci. 126:3627–37
    [Google Scholar]
  147. 147.  Smith TC, Fridy PC, Li Y, Basil S, Arjun S et al. 2013. Supervillin binding to myosin II and synergism with anillin are required for cytokinesis. Mol. Biol. Cell 24:3603–19
    [Google Scholar]
  148. 148.  Lee Y, Chung S, Baek IK, Lee TH, Paik SY, Lee J 2013. UNC119a bridges the transmission of Fyn signals to Rab11, leading to the completion of cytokinesis. Cell Cycle 12:1303–15
    [Google Scholar]
  149. 149.  Sagona AP, Nezis IP, Pedersen NM, Liestol K, Poulton J et al. 2010. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat. Cell Biol. 12:362–71
    [Google Scholar]
  150. 150.  Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J 2011. Lipid analysis by thin-layer chromatography—a review of the current state. J. Chromatogr. A 1218:2754–74
    [Google Scholar]
  151. 151.  Schuhmann K, Almeida R, Baumert M, Herzog R, Bornstein SR, Shevchenko A 2012. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom. 47:96–104
    [Google Scholar]
  152. 152.  Quehenberger O, Armando AM, Dennis EA 2011. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography–mass spectrometry. Biochim. Biophys. Acta 1811:648–56
    [Google Scholar]
  153. 153.  Laboureur L, Ollero M, Touboul D 2015. Lipidomics by supercritical fluid chromatography. Int. J. Mol. Sci. 16:13868–84
    [Google Scholar]
  154. 154.  Yang K, Han X 2016. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci. 41:954–69
    [Google Scholar]
  155. 155.  Atilla-Gokcumen GE, Eggert US 2015. A comparative LC-MS based profiling approach to analyze lipid composition in tissue culture systems. Methods Mol. Biol. 1232:103–13
    [Google Scholar]
  156. 156.  Basit A, Pontis S, Piomelli D, Armirotti A 2016. Ion mobility mass spectrometry enhances low-abundance species detection in untargeted lipidomics. Metabolomics 12:50
    [Google Scholar]
  157. 157.  Fuchs B, Schiller J 2009. Application of MALDI-TOF mass spectrometry in lipidomics. Eur. J. Lipid Sci. Technol. 111:83–98
    [Google Scholar]
  158. 158.  Kucharska I, Tamm LK 2017. Solution NMR provides new insight into lipid–protein interaction. Biochemistry 56:4291–92
    [Google Scholar]
  159. 159.  Sezgin E, Schwille P 2011. Fluorescence techniques to study lipid dynamics. Cold Spring Harb. Perspect. Biol. 3:a009803
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012448
Loading
/content/journals/10.1146/annurev-biochem-062917-012448
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error