1932

Abstract

Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps—initiation, cargo selection, maturation, and fission—and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012644
2018-06-20
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012644.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012644&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Conner SD, Schmid SL 2002. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell Biol. 156:921–29
    [Google Scholar]
  2. 2.  Robinson MS. 2015. Forty years of clathrin-coated vesicles. Traffic 16:1210–38
    [Google Scholar]
  3. 3.  Schmid EM, McMahon HT 2007. Integrating molecular and network biology to decode endocytosis. Nature 448:883–88
    [Google Scholar]
  4. 4.  Antonny B, Burd C, De Camilli P, Chen E, Daumke O et al. 2016. Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–84
    [Google Scholar]
  5. 5.  Morlot S, Roux A 2013. Mechanics of dynamin-mediated membrane fission. Annu. Rev. Biophys. 42:629–49
    [Google Scholar]
  6. 6.  Schmid SL, Frolov VA 2011. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 27:79–105
    [Google Scholar]
  7. 7.  Gaidarov I, Santini F, Warren RA, Keen JH 1999. Spatial control of coated pit dynamics in living cells. Nat. Cell Biol. 1:1–7
    [Google Scholar]
  8. 8.  Merrifield CJ, Feldman ME, Wan L, Almers W 2002. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4:691–98
    [Google Scholar]
  9. 9.  Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K et al. 2004. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118:591–605
    [Google Scholar]
  10. 10.  Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H et al. 2009. Cargo and dynamin regulate clathrin-coated pit maturation. PLOS Biol 7:e57
    [Google Scholar]
  11. 11.  Taylor MJ, Perrais D, Merrifield CJ 2011. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLOS Biol 9:e1000604
    [Google Scholar]
  12. 12.  Maxfield FR, McGraw TE 2004. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5:121–32
    [Google Scholar]
  13. 13.  Burston HE, Maldonado-Baez L, Davey M, Montpetit B, Schluter C et al. 2009. Regulators of yeast endocytosis identified by systematic quantitative analysis. J. Cell Biol. 185:1097–110
    [Google Scholar]
  14. 14.  Kaksonen M, Toret CP, Drubin DG 2005. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:305–20
    [Google Scholar]
  15. 15.  Boulant S, Kural C, Zeeh JC, Ubelmann F, Kirchhausen T 2011. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13:1124–31
    [Google Scholar]
  16. 16.  Kural C, Akatay AA, Gaudin R, Chen BC, Legant WR et al. 2015. Asymmetric formation of coated pits on dorsal and ventral surfaces at the leading edges of motile cells and on protrusions of immobile cells. Mol. Biol. Cell 26:2044–53
    [Google Scholar]
  17. 17.  Saffarian S, Kirchhausen T 2008. Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys. J. 94:2333–42
    [Google Scholar]
  18. 18.  Keyel PA, Watkins SC, Traub LM 2004. Endocytic adaptor molecules reveal an endosomal population of clathrin by total internal reflection fluorescence microscopy. J. Biol. Chem. 279:13190–204
    [Google Scholar]
  19. 19.  Mattheyses AL, Atkinson CE, Simon SM 2011. Imaging single endocytic events reveals diversity in clathrin, dynamin and vesicle dynamics. Traffic 12:1394–406
    [Google Scholar]
  20. 20.  Merrifield CJ, Perrais D, Zenisek D 2005. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606
    [Google Scholar]
  21. 21.  Rappoport JZ, Simon SM 2003. Real-time analysis of clathrin-mediated endocytosis during cell migration. J. Cell Sci. 116:847–55
    [Google Scholar]
  22. 22.  Grassart A, Cheng AT, Hong SH, Zhang F, Zenzer N et al. 2014. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J. Cell Biol. 205:721–35
    [Google Scholar]
  23. 23.  Rappoport JZ, Taha BW, Lemeer S, Benmerah A, Simon SM 2003. The AP-2 complex is excluded from the dynamic population of plasma membrane-associated clathrin. J. Biol. Chem. 278:47357–60
    [Google Scholar]
  24. 24.  Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S et al. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5:695–702
    [Google Scholar]
  25. 25.  Aguet F, Antonescu CN, Mettlen M, Schmid SL, Danuser G 2013. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26:279–91
    [Google Scholar]
  26. 26.  Lampe M, Vassilopoulos S, Merrifield C 2016. Clathrin coated pits, plaques and adhesion. J. Struct. Biol. 196:48–56
    [Google Scholar]
  27. 27.  Mettlen M, Stoeber M, Loerke D, Antonescu CN, Danuser G, Schmid SL 2009. Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits. Mol. Biol. Cell 20:3251–60
    [Google Scholar]
  28. 28.  Doyon JB, Zeitler B, Cheng J, Cheng AT, Cherone JM et al. 2011. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13:331–37
    [Google Scholar]
  29. 29.  Hong SH, Cortesio CL, Drubin DG 2015. Machine-learning-based analysis in genome-edited cells reveals the efficiency of clathrin-mediated endocytosis. Cell Rep 12:2121–30
    [Google Scholar]
  30. 30.  Mettlen M, Danuser G 2014. Imaging and modeling the dynamics of clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 6:a017038
    [Google Scholar]
  31. 31.  Saffarian S, Cocucci E, Kirchhausen T 2009. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLOS Biol 7:e1000191
    [Google Scholar]
  32. 32.  Batchelder EM, Yarar D 2010. Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol. Biol. Cell 21:3070–79
    [Google Scholar]
  33. 33.  Maupin P, Pollard TD 1983. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J. Cell Biol. 96:51–62
    [Google Scholar]
  34. 34.  Elkhatib N, Bresteau E, Baschieri F, Rioja AL, van Niel G et al. 2017. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 356:eaal4713
    [Google Scholar]
  35. 35.  Grove J, Metcalf DJ, Knight AE, Wavre-Shapton ST, Sun T et al. 2014. Flat clathrin lattices: stable features of the plasma membrane. Mol. Biol. Cell 25:3581–94
    [Google Scholar]
  36. 36.  Cureton DK, Massol RH, Whelan SP, Kirchhausen T 2010. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLOS Pathog 6:e1001127
    [Google Scholar]
  37. 37.  Skruzny M, Brach T, Ciuffa R, Rybina S, Wachsmuth M, Kaksonen M 2012. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. PNAS 109:E2533–42
    [Google Scholar]
  38. 38.  Traub LM. 2009. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10:583–96
    [Google Scholar]
  39. 39.  Bonifacino JS, Traub LM 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72:395–447
    [Google Scholar]
  40. 40.  Ohno H, Stewart J, Fournier MC, Bosshart H, Rhee I et al. 1995. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269:1872–75
    [Google Scholar]
  41. 41.  Maurer ME, Cooper JA 2006. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci. 119:4235–46
    [Google Scholar]
  42. 42.  Garuti R, Jones C, Li WP, Michaely P, Herz J et al. 2005. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits. J. Biol. Chem. 280:40996–1004
    [Google Scholar]
  43. 43.  Hopkins CR, Miller K, Beardmore JM 1985. Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake. J. Cell Sci. Suppl. 3:173–86
    [Google Scholar]
  44. 44.  Trowbridge IS, Collawn JF, Hopkins CR 1993. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9:129–61
    [Google Scholar]
  45. 45.  Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL 2002. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–28
    [Google Scholar]
  46. 46.  Henry AG, Hislop JN, Grove J, Thorn K, Marsh M, von Zastrow M 2012. Regulation of endocytic clathrin dynamics by cargo ubiquitination. Dev. Cell 23:519–32
    [Google Scholar]
  47. 47.  Miller WE, Lefkowitz RJ 2001. Expanding roles for β-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol. 13:139–45
    [Google Scholar]
  48. 48.  Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S et al. 2002. A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J 21:303–13
    [Google Scholar]
  49. 49.  Bertelsen V, Sak MM, Breen K, Rodland MS, Johannessen LE et al. 2011. A chimeric pre-ubiquitinated EGF receptor is constitutively endocytosed in a clathrin-dependent, but kinase-independent manner. Traffic 12:507–20
    [Google Scholar]
  50. 50.  de Melker AA, van der Horst G, Borst J 2004. c-Cbl directs EGF receptors into an endocytic pathway that involves the ubiquitin-interacting motif of Eps15. J. Cell Sci. 117:5001–12
    [Google Scholar]
  51. 51.  Regan-Klapisz E, Sorokina I, Voortman J, de Keizer P, Roovers RC et al. 2005. Ubiquilin recruits Eps15 into ubiquitin-rich cytoplasmic aggregates via a UIM-UBL interaction. J. Cell Sci. 118:4437–50
    [Google Scholar]
  52. 52.  Confalonieri S, Salcini AE, Puri C, Tacchetti C, Di Fiore PP 2000. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J. Cell Biol. 150:905–12
    [Google Scholar]
  53. 53.  Pitcher C, Honing S, Fingerhut A, Bowers K, Marsh M 1999. Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation. Mol. Biol. Cell 10:677–91
    [Google Scholar]
  54. 54.  Miettinen HM, Matter K, Hunziker W, Rose JK, Mellman I 1992. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J. Cell Biol. 116:875–88
    [Google Scholar]
  55. 55.  Liu AP, Aguet F, Danuser G, Schmid SL 2010. Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J. Cell Biol. 191:1381–93
    [Google Scholar]
  56. 56.  Kadlecova Z, Spielman SJ, Loerke D, Mohanakrishnan A, Reed DK, Schmid SL 2017. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J. Cell Biol. 216:167–79
    [Google Scholar]
  57. 57.  Puthenveedu MA, von Zastrow M 2006. Cargo regulates clathrin-coated pit dynamics. Cell 127:113–24
    [Google Scholar]
  58. 58.  Mettlen M, Loerke D, Yarar D, Danuser G, Schmid SL 2010. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 188:919–33
    [Google Scholar]
  59. 59.  Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ 2002. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109:523–35
    [Google Scholar]
  60. 60.  Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC et al. 2010. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141:1220–29
    [Google Scholar]
  61. 61.  Kirchhausen T, Owen D, Harrison SC 2014. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 6:a016725
    [Google Scholar]
  62. 62.  Mishra SK, Hawryluk MJ, Brett TJ, Keyel PA, Dupin AL et al. 2004. Dual engagement regulation of protein interactions with the AP-2 adaptor α appendage. J. Biol. Chem. 279:46191–203
    [Google Scholar]
  63. 63.  Schmid EM, Ford MG, Burtey A, Praefcke GJ, Peak-Chew SY et al. 2006. Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLOS. Biol. 4:e262
    [Google Scholar]
  64. 64.  Praefcke GJ, Ford MG, Schmid EM, Olesen LE, Gallop JL et al. 2004. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J 23:4371–83
    [Google Scholar]
  65. 65.  Shih W, Gallusser A, Kirchhausen T 1995. A clathrin-binding site in the hinge of the β2 chain of mammalian AP-2 complexes. J. Biol. Chem. 270:31083–90
    [Google Scholar]
  66. 66.  Owen DJ, Vallis Y, Pearse BMF, McMahon HT, Evans PR 2000. The structure and function of the β2-adaptin appendage domain. EMBO J 19:4216–27
    [Google Scholar]
  67. 67.  Edeling MA, Mishra SK, Keyel PA, Steinhauser AL, Collins BM et al. 2006. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10:329–42
    [Google Scholar]
  68. 68.  Cocucci E, Aguet F, Boulant S, Kirchhausen T 2012. The first five seconds in the life of a clathrin-coated pit. Cell 150:495–507
    [Google Scholar]
  69. 69.  Hinrichsen L, Harborth J, Andrees L, Weber K, Ungewickell EJ 2003. Effect of clathrin heavy chain- and α-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem. 278:45160–70
    [Google Scholar]
  70. 70.  Motley AM, Berg N, Taylor MJ, Sahlender DA, Hirst J et al. 2006. Functional analysis of AP-2 α and μ2 subunits. Mol. Biol. Cell 17:5298–308
    [Google Scholar]
  71. 71.  Kelly BT, Graham SC, Liska N, Dannhauser PN, Honing S et al. 2014. Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345:459–63
    [Google Scholar]
  72. 72.  Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y et al. 2010. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328:1281–84
    [Google Scholar]
  73. 73.  Ritter B, Philie J, Girard M, Tung EC, Blondeau F, McPherson PS 2003. Identification of a family of endocytic proteins that define a new α-adaptin ear-binding motif. EMBO Rep 4:1089–95
    [Google Scholar]
  74. 74.  Umasankar PK, Ma L, Thieman JR, Jha A, Doray B et al. 2014. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. eLife 3:e04137
    [Google Scholar]
  75. 75.  Ma L, Umasankar PK, Wrobel AG, Lymar A, McCoy AJ et al. 2016. Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 clathrin adaptor for cargo binding. Dev. Cell 37:428–43
    [Google Scholar]
  76. 76.  Hollopeter G, Lange JJ, Zhang Y, Vu TN, Gu M et al. 2014. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. eLife 3:e03648
    [Google Scholar]
  77. 77.  Miller SE, Sahlender DA, Graham SC, Honing S, Robinson MS et al. 2011. The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147:1118–31
    [Google Scholar]
  78. 78.  Miller SE, Mathiasen S, Bright NA, Pierre F, Kelly BT et al. 2015. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33:163–75
    [Google Scholar]
  79. 79.  Ritter B, Murphy S, Dokainish H, Girard M, Gudheti MV et al. 2013. NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. PLOS Biol 11:e1001670
    [Google Scholar]
  80. 80.  Brach T, Godlee C, Moeller-Hansen I, Boeke D, Kaksonen M 2014. The initiation of clathrin-mediated endocytosis is mechanistically highly flexible. Curr. Biol. 24:548–54
    [Google Scholar]
  81. 81.  Nunez D, Antonescu C, Mettlen M, Liu A, Schmid SL et al. 2011. Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic 12:1868–78
    [Google Scholar]
  82. 82.  Smythe E, Ayscough KR 2003. The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep 4:246–51
    [Google Scholar]
  83. 83.  Ricotta D, Conner SD, Schmid SL, von Figura K, Honing S 2002. Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156:791–95
    [Google Scholar]
  84. 84.  Olusanya O, Andrews PD, Swedlow JR, Smythe E 2001. Phosphorylation of threonine 156 of the μ2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol. 11:896–900
    [Google Scholar]
  85. 85.  Conner SD, Schroter T, Schmid SL 2003. AAK1-mediated μ2 phosphorylation is stimulated by assembled clathrin. Traffic 4:885–90
    [Google Scholar]
  86. 86.  Watanabe S, Rost BR, Camacho-Perez M, Davis MW, Sohl-Kielczynski B et al. 2013. Ultrafast endocytosis at mouse hippocampal synapses. Nature 504:242–47
    [Google Scholar]
  87. 87.  Loerke D, Mettlen M, Schmid SL, Danuser G 2011. Measuring the hierarchy of molecular events during clathrin-mediated endocytosis. Traffic 12:815–25
    [Google Scholar]
  88. 88.  Kirchhausen T. 1993. Coated pits and coated vesicles—sorting it all out. Curr. Opin. Struct. Biol. 3:182–88
    [Google Scholar]
  89. 89.  Dannhauser PN, Ungewickell EJ 2012. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol. 14:634–39
    [Google Scholar]
  90. 90.  Takei K, Haucke V, Slepnev V, Farsad K, Salazar M et al. 1998. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94:131–41
    [Google Scholar]
  91. 91.  Heuser J. 1980. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84:560–83
    [Google Scholar]
  92. 92.  Avinoam O, Schorb M, Beese CJ, Briggs JA, Kaksonen M 2015. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348:1369–72
    [Google Scholar]
  93. 93.  Di Paolo G, De Camilli P 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–57
    [Google Scholar]
  94. 94.  Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL 1998. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8:1399–402
    [Google Scholar]
  95. 95.  Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H et al. 2007. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. PNAS 104:3793–98
    [Google Scholar]
  96. 96.  Antonescu CN, Aguet F, Danuser G, Schmid SL 2011. Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol. Biol. Cell 22:2588–600
    [Google Scholar]
  97. 97.  Perera RM, Zoncu R, Lucast L, De Camilli P Toomre D 2006. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. PNAS 103:19332–37
    [Google Scholar]
  98. 98.  Nakatsu F, Perera RM, Lucast L, Zoncu R, Domin J et al. 2010. The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. J. Cell Biol. 190:307–15
    [Google Scholar]
  99. 99.  Posor Y, Eichhorn-Gruenig M, Puchkov D, Schoneberg J, Ullrich A et al. 2013. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499:233–37
    [Google Scholar]
  100. 100.  Gaidarov I, Smith ME, Domin J, Keen JH 2001. The class II phosphoinositide 3-kinase C2α is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol. Cell 7:443–49
    [Google Scholar]
  101. 101.  He K, Marsland R, Upadhyayula S, Song E, Dang S et al. 2017. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature 552:410–14
    [Google Scholar]
  102. 102.  Daste F, Walrant A, Holst MR, Gadsby JR, Mason J et al. 2017. Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature. J. Cell Biol. 216:3745–65
    [Google Scholar]
  103. 103.  Moore CAC, Milano SK, Benovic JL 2007. Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol. 69:451–82
    [Google Scholar]
  104. 104.  Cao TT, Mays RW, von Zastrow M 1998. Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits. J. Biol. Chem. 273:24592–602
    [Google Scholar]
  105. 105.  Reis CR, Chen PH, Bendris N, Schmid SL 2017. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation. PNAS 114:504–9
    [Google Scholar]
  106. 106.  Smillie KJ, Cousin MA 2005. Dynamin I phosphorylation and the control of synaptic vesicle endocytosis. Biochem. Soc. Symp. 72:87–97
    [Google Scholar]
  107. 107.  Schmid SL. 2017. Reciprocal regulation of signaling and endocytosis: implications for the evolving cancer cell. J. Cell Biol. 216:2623–32
    [Google Scholar]
  108. 108.  Medina M, Wandosell F 2011. Deconstructing GSK-3: the fine regulation of its activity. Int. J. Alzheimer's Dis. 2011:479249
    [Google Scholar]
  109. 109.  Reis CR, Chen PH, Srinivasan S, Aguet F, Mettlen M, Schmid SL 2015. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J 34:2132–46
    [Google Scholar]
  110. 110.  Liberali P, Snijder B, Pelkmans L 2014. A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157:1473–87
    [Google Scholar]
  111. 111.  Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B et al. 2005. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86
    [Google Scholar]
  112. 112.  Schenck A, Goto-Silva L, Collinet C, Rhinn A, Giner A et al. 2008. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133:486–97
    [Google Scholar]
  113. 113.  Pucadyil TJ, Schmid SL 2009. Conserved functions of membrane active GTPases in coated vesicle formation. Science 325:1217–20
    [Google Scholar]
  114. 114.  Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA et al. 1991. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351:583–86
    [Google Scholar]
  115. 115.  van der Bliek AM, Meyerowitz EM 1991. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351:411–14
    [Google Scholar]
  116. 116.  Koenig JH, Ikeda K 1989. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9:3844–60
    [Google Scholar]
  117. 117.  Poodry CA, Hall L, Suzuki DT 1973. Developmental properties of shibirets1: a pleiotropic mutation affecting larval and adult locomotion and development. Dev. Biol. 32:373–86
    [Google Scholar]
  118. 118.  Damke H, Binns DD, Ueda H, Schmid SL, Baba T 2001. Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol. Biol. Cell 12:2578–89
    [Google Scholar]
  119. 119.  van der Bliek AM, Redelmeier TE, Damke H, Tisdale EJ, Meyerowitz EM, Schmid SL 1993. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122:553–63
    [Google Scholar]
  120. 120.  Damke H, Baba T, Warnock DE, Schmid SL 1994. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127:915–34
    [Google Scholar]
  121. 121.  Warnock DE, Baba T, Schmid SL 1997. Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronal dynamin-I. Mol. Biol. Cell 8:2553–62
    [Google Scholar]
  122. 122.  Sochacki KA, Dickey AM, Strub MP, Taraska JW 2017. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19:352–61
    [Google Scholar]
  123. 123.  Sever S, Damke H, Schmid SL 2000. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J. Cell Biol. 150:1137–48
    [Google Scholar]
  124. 124.  Sever S, Muhlberg AB, Schmid SL 1999. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398:481–86
    [Google Scholar]
  125. 125.  Faelber K, Posor Y, Gao S, Held M, Roske Y et al. 2011. Crystal structure of nucleotide-free dynamin. Nature 477:556–60
    [Google Scholar]
  126. 126.  Liu YW, Neumann S, Ramachandran R, Ferguson SM, Pucadyil TJ, Schmid SL 2011. Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. PNAS 108:E234–42
    [Google Scholar]
  127. 127.  Neumann S, Schmid SL 2013. Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2. J. Biol. Chem. 288:25119–28
    [Google Scholar]
  128. 128.  Srinivasan S, Dharmarajan V, Reed DK, Griffin PR, Schmid SL 2016. Identification and function of conformational dynamics in the multidomain GTPase dynamin. EMBO J 35:443–57
    [Google Scholar]
  129. 129.  Zhang X, Shan S-O 2014. Fidelity of cotranslational protein targeting by the signal recognition particle. Annu. Rev. Biophys. 43:381–408
    [Google Scholar]
  130. 130.  Kenniston JA, Lemmon MA 2010. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO J 29:3054–67
    [Google Scholar]
  131. 131.  Krishnan S, Collett M, Robinson PJ 2015. SH3 domains differentially stimulate distinct dynamin I assembly modes and G domain activity. PLOS ONE 10:e0144609
    [Google Scholar]
  132. 132.  Clayton EL, Sue N, Smillie KJ, O'Leary T, Bache N et al. 2010. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat. Neurosci. 13:845–51
    [Google Scholar]
  133. 133.  Solomaha E, Palfrey HC 2005. Conformational changes in dynamin on GTP binding and oligomerization reported by intrinsic and extrinsic fluorescence. Biochem. J. 391:601–11
    [Google Scholar]
  134. 134.  Shpetner HS, Herskovits JS, Vallee RB 1996. A binding site for SH3 domains targets dynamin to coated pits. J. Biol. Chem. 271:13–16
    [Google Scholar]
  135. 135.  Cao H, Garcia F, McNiven MA 1998. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9:2595–609
    [Google Scholar]
  136. 136.  Huang Y, Chen-Hwang MC, Dolios G, Murakami N, Padovan JC et al. 2004. Mnb/Dyrk1A phosphorylation regulates the interaction of dynamin 1 with SH3 domain-containing proteins. Biochemistry 43:10173–85
    [Google Scholar]
  137. 137.  Xue J, Graham ME, Novelle AE, Sue N, Gray N et al. 2011. Calcineurin selectively docks with the dynamin Ixb splice variant to regulate activity-dependent bulk endocytosis. J. Biol. Chem. 286:30295–303
    [Google Scholar]
  138. 138.  Bodmer D, Ascano M, Kuruvilla R 2011. Isoform-specific dephosphorylation of dynamin1 by calcineurin couples neurotrophin receptor endocytosis to axonal growth. Neuron 70:1085–99
    [Google Scholar]
  139. 139.  Chan LS, Hansra G, Robinson PJ, Graham ME 2010. Differential phosphorylation of dynamin I isoforms in subcellular compartments demonstrates the hidden complexity of phosphoproteomes. J. Proteom. Res. 9:4028–37
    [Google Scholar]
  140. 140.  Di Fiore PP, von Zastrow M 2014. Endocytosis, signaling, and beyond. Cold Spring Harb. Perspect. Biol. 6:a016865
    [Google Scholar]
  141. 141.  Sorkin A, von Zastrow M 2009. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10:609–22
    [Google Scholar]
  142. 142.  Chen PH, Bendris N, Hsiao YJ, Reis CR, Mettlen M et al. 2017. Crosstalk between CLCb/Dyn1-mediated adaptive clathrin-mediated endocytosis and epidermal growth factor receptor signaling increases metastasis. Dev. Cell 40:278–88.e5
    [Google Scholar]
  143. 143.  Jekely G. 2007. Origin of eukaryotic endomembranes: a critical evaluation of different model scenarios. Adv. Exp. Med. Biol. 607:38–51
    [Google Scholar]
  144. 144.  Wideman JG, Leung KF, Field MC, Dacks JB 2014. The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb. Perspect. Biol. 6:a016998
    [Google Scholar]
  145. 145.  Rout MP, Field MC 2017. The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu. Rev. Biochem. 86:637–57
    [Google Scholar]
  146. 146.  Royle SJ. 2006. The cellular functions of clathrin. Cell. Mol. Life Sci. 63:1823–32
    [Google Scholar]
  147. 147.  Dergai M, Iershov A, Novokhatska O, Pankivskyi S, Rynditch A 2016. Evolutionary changes on the way to clathrin-mediated endocytosis in animals. Genome Biol. Evol. 8:588–606
    [Google Scholar]
  148. 148.  Ben-Shlomo I, Yu Hsu S, Rauch R, Kowalski HW, Hsueh AJW 2003. Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci. Signal Transduct. Knowl. Environ. 187:RE9
    [Google Scholar]
  149. 149.  Liu Y-W, Su AI, Schmid SL 2012. The evolution of dynamin to regulate clathrin-mediated endocytosis: speculations on the evolutionarily late appearance of dynamin relative to clathrin-mediated endocytosis. Bioessays 34:643–47
    [Google Scholar]
  150. 150.  Elde NC, Morgan G, Winey M, Sperling L, Turkewitz AP 2005. Elucidation of clathrin-mediated endocytosis in tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PLOS Genet 1:e52
    [Google Scholar]
  151. 151.  Huang KM, D'Hondt K, Riezman H, Lemmon SK 1999. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J 18:3897–908
    [Google Scholar]
  152. 152.  Reubold TF, Faelber K, Plattner N, Posor Y, Ketel K et al. 2015. Crystal structure of the dynamin tetramer. Nature 525:404–8
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012644
Loading
/content/journals/10.1146/annurev-biochem-062917-012644
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error