Full text loading...
Abstract
Photosystem II (PSII) uses light energy to split water into chemical products that power the planet. The stripped protons contribute to a membrane electrochemical potential before combining with the stripped electrons to make chemical bonds and releasing O2 for powering respiratory metabolisms. In this review, we provide an overview of the kinetics and thermodynamics of water oxidation that highlights the conserved performance of PSIIs across species. We discuss recent advances in our understanding of the site of water oxidation based upon the improved (1.9-Å resolution) atomic structure of the Mn4CaO5 water-oxidizing complex (WOC) within cyanobacterial PSII. We combine these insights with recent knowledge gained from studies of the biogenesis and assembly of the WOC (called photoassembly) to arrive at a proposed chemical mechanism for water oxidation.