1932

Abstract

The spatial organization of the genome in the cell nucleus is pivotal to cell function. However, how the 3D genome organization and its dynamics influence cellular phenotypes remains poorly understood. The very recent development of single-cell technologies for probing the 3D genome, especially single-cell Hi-C (scHi-C), has ushered in a new era of unveiling cell-to-cell variability of 3D genome features at an unprecedented resolution. Here, we review recent developments in computational approaches to the analysis of scHi-C, including data processing, dimensionality reduction, imputation for enhancing data quality, and the revealing of 3D genome features at single-cell resolution. While much progress has been made in computational method development to analyze single-cell 3D genomes, substantial future work is needed to improve data interpretation and multimodal data integration, which are critical to reveal fundamental connections between genome structure and function among heterogeneous cell populations in various biological contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020121-084709
2021-07-20
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/4/1/annurev-biodatasci-020121-084709.html?itemId=/content/journals/10.1146/annurev-biodatasci-020121-084709&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kumaran RI, Thakar R, Spector DL. 2008. Chromatin dynamics and gene positioning. Cell 132:929–34
    [Google Scholar]
  2. 2. 
    Dekker J, Marti-Renom MA, Mirny LA. 2013. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14:390–403
    [Google Scholar]
  3. 3. 
    Bonev B, Cavalli G. 2016. Organization and function of the 3D genome. Nat. Rev. Genet. 17:661–78
    [Google Scholar]
  4. 4. 
    Spector DL. 2006. SnapShot: cellular bodies. Cell 127:1070
    [Google Scholar]
  5. 5. 
    Dundr M, Misteli T. 2010. Biogenesis of nuclear bodies. Cold Spring Harb. Perspect. Biol. 2:a000711
    [Google Scholar]
  6. 6. 
    Van Steensel B, Belmont AS. 2017. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–91
    [Google Scholar]
  7. 7. 
    Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  8. 8. 
    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  9. 9. 
    Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H et al. 2009. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:58–64
    [Google Scholar]
  10. 10. 
    Tang WW, Dietmann S, Irie N, Leitch HG, Floros VI et al. 2015. A unique gene regulatory network resets the human germline epigenome for development. Cell 161:1453–67
    [Google Scholar]
  11. 11. 
    Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J et al. 2020. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78:554–65
    [Google Scholar]
  12. 12. 
    Hsieh THS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ et al. 2020. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78:539–53
    [Google Scholar]
  13. 13. 
    Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M et al. 2017. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–24
    [Google Scholar]
  14. 14. 
    Beagrie RA, Thieme CJ, Annunziatella C, Baugher C, Zhang Y et al. 2020. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights not captured by Hi-C. bioRxiv 2020.07.31.230284. https://doi.org/10.1101/2020.07.31.230284
    [Crossref]
  15. 15. 
    Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT et al. 2017. The 4D nucleome project. Nature 549:219–26
    [Google Scholar]
  16. 16. 
    Kempfer R, Pombo A. 2020. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21:207–26
    [Google Scholar]
  17. 17. 
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80
    [Google Scholar]
  18. 18. 
    Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–85
    [Google Scholar]
  19. 19. 
    Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR et al. 2013. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–95
    [Google Scholar]
  20. 20. 
    Beagan JA, Phillips-Cremins JE. 2020. On the existence and functionality of topologically associating domains. Nat. Genet. 52:8–16
    [Google Scholar]
  21. 21. 
    Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK et al. 2018. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217:4025–48
    [Google Scholar]
  22. 22. 
    Zhang L, Zhang Y, Chen Y, Gholamalamdari O, Wang Y et al. 2021. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res 31:251–64
    [Google Scholar]
  23. 23. 
    Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB et al. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–51
    [Google Scholar]
  24. 24. 
    Wang Y, Zhang Y, Zhang R, van Schaik T, Zhang L et al. 2021. SPIN reveals genome-wide landscape of nuclear compartmentalization. Genome Biol. 22:36
    [Google Scholar]
  25. 25. 
    Mirny LA, Imakaev M, Abdennur N. 2019. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58:142–52
    [Google Scholar]
  26. 26. 
    Marchal C, Sima J, Gilbert DM 2019. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20:721–37
    [Google Scholar]
  27. 27. 
    Zheng H, Xie W. 2019. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20:535–50
    [Google Scholar]
  28. 28. 
    Ma J, Duan Z. 2019. Replication timing becomes intertwined with 3D genome organization. Cell 176:681–84
    [Google Scholar]
  29. 29. 
    Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS et al. 2015. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163:134–47
    [Google Scholar]
  30. 30. 
    Misteli T. 2020. The self-organizing genome: principles of genome architecture and function. Cell 183:28–45
    [Google Scholar]
  31. 31. 
    Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E et al. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64
    [Google Scholar]
  32. 32. 
    Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ et al. 2017. Massively multiplex single-cell Hi-C. Nat. Methods 14:263–66
    [Google Scholar]
  33. 33. 
    Nagano T, Lubling Y, Várnai C, Dudley C, Leung W et al. 2017. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67
    [Google Scholar]
  34. 34. 
    Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV et al. 2017. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–14
    [Google Scholar]
  35. 35. 
    Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y et al. 2017. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:59–64
    [Google Scholar]
  36. 36. 
    Tan L, Xing D, Chang CH, Li H, Xie XS. 2018. Three-dimensional genome structures of single diploid human cells. Science 361:924–28
    [Google Scholar]
  37. 37. 
    Tan L, Ma W, Wu H, Zheng Y, Xing D et al. 2021. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell 184:741–58
    [Google Scholar]
  38. 38. 
    Nguyen HQ, Chattoraj S, Castillo D, Nguyen SC, Nir G et al. 2020. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17:822–32
    [Google Scholar]
  39. 39. 
    Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M et al. 2018. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:eaau1783
    [Google Scholar]
  40. 40. 
    Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X. 2020. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182:1641–59
    [Google Scholar]
  41. 41. 
    Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N et al. 2021. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590:344–50
    [Google Scholar]
  42. 42. 
    Ramani V, Deng X, Qiu R, Lee C, Disteche CM et al. 2020. Sci-Hi-C: a single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Methods 170:61–68
    [Google Scholar]
  43. 43. 
    Arrastia MV, Jachowicz JW, Ollikainen N, Curtis MS, Lai C et al. 2020. A single-cell method to map higher-order 3D genome organization in thousands of individual cells reveals structural heterogeneity in mouse ES cells. bioRxiv 2020.08.11.242081. https://doi.org/10.1101/2020.08.11.242081
    [Crossref]
  44. 44. 
    Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR et al. 2016. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598–602
    [Google Scholar]
  45. 45. 
    Collombet S, Ranisavljevic N, Nagano T, Varnai C, Shisode T et al. 2020. Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580:142–46
    [Google Scholar]
  46. 46. 
    Payne AC, Chiang ZD, Reginato PL, Mangiameli SM, Murray EM et al. 2020. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 2020:eaay3446
    [Google Scholar]
  47. 47. 
    Finn EH, Pegoraro G, Brandão HB, Valton AL, Oomen ME et al. 2019. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176:1502–15
    [Google Scholar]
  48. 48. 
    Li G, Liu Y, Zhang Y, Kubo N, Yu M et al. 2019. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat. Methods 16:991–93
    [Google Scholar]
  49. 49. 
    Lee DS, Luo C, Zhou J, Chandran S, Rivkin A et al. 2019. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16:999–1006
    [Google Scholar]
  50. 50. 
    Nagano T, Lubling Y, Yaffe E, Wingett SW, Dean W et al. 2015. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat. Protoc. 10:1986–2003
    [Google Scholar]
  51. 51. 
    Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM et al. 2018. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174:744–57
    [Google Scholar]
  52. 52. 
    Zheng M, Tian SZ, Capurso D, Kim M, Maurya R et al. 2019. Multiplex chromatin interactions with single-molecule precision. Nature 566:558–62
    [Google Scholar]
  53. 53. 
    Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY et al. 2012. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. PNAS 109:21301–6
    [Google Scholar]
  54. 54. 
    Beliveau BJ, Boettiger AN, Avendaño MS, Jungmann R, McCole RB et al. 2015. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6:7147
    [Google Scholar]
  55. 55. 
    Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22
    [Google Scholar]
  56. 56. 
    Nir G, Farabella I, Estrada CP, Ebeling CG, Beliveau BJ et al. 2018. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLOS Genet. 14:e1007872
    [Google Scholar]
  57. 57. 
    Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. 2019. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568:49–54
    [Google Scholar]
  58. 58. 
    Gizzi AMC, Cattoni DI, Fiche JB, Espinola SM, Gurgo J et al. 2019. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74:212–22
    [Google Scholar]
  59. 59. 
    Shachar S, Pegoraro G, Misteli T. 2015. HIPMap: a high-throughput imaging method for mapping spatial gene positions. Cold Spring Harb. Symp. Quant. Biol. 80:73–81
    [Google Scholar]
  60. 60. 
    Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. 2015. Identification of gene positioning factors using high-throughput imaging mapping. Cell 162:911–23
    [Google Scholar]
  61. 61. 
    Luo C, Hajkova P, Ecker JR. 2018. Dynamic DNA methylation: in the right place at the right time. Science 361:1336–40
    [Google Scholar]
  62. 62. 
    Wolff J, Rabbani L, Gilsbach R, Richard G, Manke T et al. 2020. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48:W177–84
    [Google Scholar]
  63. 63. 
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–60
    [Google Scholar]
  64. 64. 
    Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357–59
    [Google Scholar]
  65. 65. 
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
    [Google Scholar]
  66. 66. 
    Ay F, Noble WS. 2015. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 16:183
    [Google Scholar]
  67. 67. 
    Zhou J, Ma J, Chen Y, Cheng C, Bao B et al. 2019. Robust single-cell Hi-C clustering by convolution-and random-walk–based imputation. PNAS 116:14011–18
    [Google Scholar]
  68. 68. 
    Zhang R, Zou Y, Ma J. 2020. Hyper-SAGNN: a self-attention based graph neural network for hypergraphs Paper presented at the Eighth International Conference on Learning Representations (ICLR 2020), online, Apr. 26–May 1
    [Google Scholar]
  69. 69. 
    Zhang R, Zhou T, Ma J. 2020. Multiscale and integrative single-cell Hi-C analysis with Higashi. bioRxiv 2020.12.13.422537. https://doi.org/10.1101/2020.12.13.422537
    [Crossref]
  70. 70. 
    Liu J, Lin D, Yardımcı GG, Noble WS. 2018. Unsupervised embedding of single-cell Hi-C data. Bioinformatics 34:i96–104
    [Google Scholar]
  71. 71. 
    Yang T, Zhang F, Yardımcı GG, Song F, Hardison RC et al. 2017. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient. Genome Res. 27:1939–49
    [Google Scholar]
  72. 72. 
    Kim HJ, Yardımcı GG, Bonora G, Ramani V, Liu J et al. 2020. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data. PLOS Comput. Biol. 16:e1008173
    [Google Scholar]
  73. 73. 
    Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3:95–98
    [Google Scholar]
  74. 74. 
    Abdennur N, Mirny LA. 2020. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36:311–16
    [Google Scholar]
  75. 75. 
    Wolff J, Abdennur N, Backofen R, Grüning B. 2020. Scool: a new data storage format for single-cell Hi-C data. Bioinformatics
    [Google Scholar]
  76. 76. 
    Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K et al. 2018. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19:125
    [Google Scholar]
  77. 77. 
    Blei DM, Ng AY, Jordan MI. 2003. Latent Dirichlet allocation. J. Mach. Learn. Res. 3:993–1022
    [Google Scholar]
  78. 78. 
    González-Blas CB, Minnoye L, Papasokrati D, Aibar S, Hulselmans G et al. 2019. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16:397–400
    [Google Scholar]
  79. 79. 
    van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9:2579–605
    [Google Scholar]
  80. 80. 
    Becht E, McInnes L, Healy J, Dutertre CA, Kwok IW et al. 2019. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37:38–44
    [Google Scholar]
  81. 81. 
    McInnes L, Healy J, Melville J. 2018. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 [stat.ML]
  82. 82. 
    Moon KR, van Dijk D, Wang Z, Gigante S, Burkhardt DB et al. 2019. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37:1482–92
    [Google Scholar]
  83. 83. 
    Chen Z, An S, Bai X, Gong F, Ma L, Wan L 2019. DensityPath: an algorithm to visualize and reconstruct cell state-transition path on density landscape for single-cell RNA sequencing data. Bioinformatics 35:2593–601
    [Google Scholar]
  84. 84. 
    Zheng Y, Keleş S. 2020. FreeHi-C simulates high-fidelity Hi-C data for benchmarking and data augmentation. Nat. Methods 17:37–40
    [Google Scholar]
  85. 85. 
    Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L 2012. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30:90–98
    [Google Scholar]
  86. 86. 
    Baù D, Marti-Renom MA. 2012. Genome structure determination via 3C-based data integration by the integrative modeling platform. Methods 58:300–6
    [Google Scholar]
  87. 87. 
    Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F et al. 2014. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–63
    [Google Scholar]
  88. 88. 
    Meluzzi D, Arya G. 2013. Recovering ensembles of chromatin conformations from contact probabilities. Nucleic Acids Res. 41:63–75
    [Google Scholar]
  89. 89. 
    Bianco S, Lupiáñez DG, Chiariello AM, Annunziatella C, Kraft K et al. 2018. Polymer physics predicts the effects of structural variants on chromatin architecture. Nat. Genet. 50:662–67
    [Google Scholar]
  90. 90. 
    Tjong H, Li W, Kalhor R, Dai C, Hao S et al. 2016. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. PNAS 113:E1663–72
    [Google Scholar]
  91. 91. 
    Qi Y, Zhang B. 2019. Predicting three-dimensional genome organization with chromatin states. PLOS Comput. Biol. 15:e1007024
    [Google Scholar]
  92. 92. 
    Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J. 2014. 3D genome reconstruction from chromosomal contacts. Nat. Methods 11:1141
    [Google Scholar]
  93. 93. 
    Paulsen J, Gramstad O, Collas P. 2015. Manifold based optimization for single-cell 3D genome reconstruction. PLOS Comput. Biol. 11:e1004396
    [Google Scholar]
  94. 94. 
    Zhu H, Wang Z. 2019. SCL: a lattice-based approach to infer 3D chromosome structures from single-cell Hi-C data. Bioinformatics 35:3981–88
    [Google Scholar]
  95. 95. 
    Cauer AG, Yardimci G, Vert JP, Varoquaux N, Noble WS. 2019. Inferring diploid 3D chromatin structures from Hi-C data. 19th International Workshop on Algorithms in Bioinformatics (WABI 2019) KT Huber, D Gusfield 11.1–11.13 Saarbrücken, Ger: Schloss Dagstuhl
    [Google Scholar]
  96. 96. 
    Ye T, Ma W. 2020. ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures. Nucleic Acids Res. 48:e123
    [Google Scholar]
  97. 97. 
    Li X, An Z, Zhang Z 2020. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level. Methods 181:52–61
    [Google Scholar]
  98. 98. 
    Xiong K, Ma J. 2019. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun. 10:5069
    [Google Scholar]
  99. 99. 
    Shin H, Shi Y, Dai C, Tjong H, Gong K et al. 2016. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res. 44:e70
    [Google Scholar]
  100. 100. 
    Lévy-Leduc C, Delattre M, Mary-Huard T, Robin S 2014. Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics 30:i386–92
    [Google Scholar]
  101. 101. 
    Filippova D, Patro R, Duggal G, Kingsford C. 2014. Identification of alternative topological domains in chromatin. Algorithms Mol. Biol. 9:14
    [Google Scholar]
  102. 102. 
    Zaborowski R, Wilczynski B. 2016. DiffTAD: detecting differential contact frequency in topologically associating domains Hi-C experiments between conditions. bioRxiv 093625. https://doi.org/10.1101/093625
    [Crossref]
  103. 103. 
    Cresswell KG, Dozmorov MG. 2020. TADCompare: an R package for differential and temporal analysis of topologically associated domains. Front. Genet. 11:158
    [Google Scholar]
  104. 104. 
    Sauerwald N, Kingsford C. 2018. Quantifying the similarity of topological domains across normal and cancer human cell types. Bioinformatics 34:i475–83
    [Google Scholar]
  105. 105. 
    Kaul A, Bhattacharyya S, Ay F. 2020. Identifying statistically significant chromatin contacts from Hi-C data with fithic2. Nat. Protoc. 15:991–1012
    [Google Scholar]
  106. 106. 
    Ay F, Bailey TL, Noble WS. 2014. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 24:999–1011
    [Google Scholar]
  107. 107. 
    Yu M, Abnousi A, Zhang Y, Li G, Lee L et al. 2020. SnapHiC: a computational pipeline to map chromatin contacts from single cell Hi-C data. bioRxiv 2020.12.13.422543. https://doi.org/10.1101/2020.12.13.422543
    [Crossref]
  108. 108. 
    Kim M, Zheng M, Tian SZ, Lee B, Chuang JH, Ruan Y. 2019. MIA-Sig: multiplex chromatin interaction analysis by signal processing and statistical algorithms. Genome Biol. 20:251
    [Google Scholar]
  109. 109. 
    Zhang R, Ma J. 2020. MATCHA: probing multi-way chromatin interaction with hypergraph representation learning. Cell Syst. 10:397–407
    [Google Scholar]
  110. 110. 
    Liu J, Huang Y, Singh R, Vert JP, Noble WS. 2019. Jointly embedding multiple single-cell omics measurements. bioRxiv 644310. https://doi.org/10.1101/644310
    [Crossref]
  111. 111. 
    Dai Yang K, Belyaeva A, Venkatachalapathy S, Damodaran K, Katcoff A et al. 2021. Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12:31
    [Google Scholar]
  112. 112. 
    Demetci P, Santorella R, Sandstede B, Noble WS, Singh R. 2020. Gromov-Wasserstein optimal transport to align single-cell multi-omics data. bioRxiv 2020.04.28.066787. https://doi.org/10.1101/2020.04.28.066787
    [Crossref]
/content/journals/10.1146/annurev-biodatasci-020121-084709
Loading
/content/journals/10.1146/annurev-biodatasci-020121-084709
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error