1932

Abstract

Building longitudinal population cohorts in Africa for coordinated research and surveillance can influence the setting of national health priorities, lead to the introduction of appropriate interventions, and provide evidence for targeted treatment, leading to better health across the continent. However, compared to cohorts from the global north, longitudinal continental African population cohorts remain scarce, are relatively small in size, and lack data complexity. As infections and noncommunicable diseases disproportionately affect Africa's approximately 1.4 billion inhabitants, African cohorts present a unique opportunity for research and surveillance. High genetic diversity in African populations and multiomic research studies, together with detailed phenotyping and clinical profiling, will be a treasure trove for discovery. The outcomes, including novel drug targets, biological pathways for disease, and gene-environment interactions, will boost precision medicine approaches, not only in Africa but across the globe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020722-015026
2024-08-23
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-020722-015026.html?itemId=/content/journals/10.1146/annurev-biodatasci-020722-015026&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Green E. 2013.. Explaining African ethnic diversity. . Int. Political Sci. Rev. 34::23553
    [Crossref] [Google Scholar]
  2. 2.
    Bhorat H, Odusola A, Cornia G, Conceição P, eds. 2017.. Income inequality trends in sub-Saharan Africa: divergence, determinants, and consequences. Rep. , U. N. Dev. Programme Reg. Bureau Africa, New York:
    [Google Scholar]
  3. 3.
    U. N. Dep. Econ. Soc. Aff. Popul. Div. 2022.. World population prospects 2022: summary of results. Rep. UN DESA/POP/2022/TR/NO. 3 , U. N. Dep. Econ. Soc. Aff. Popul. Div., New York:
    [Google Scholar]
  4. 4.
    U. N. 2023.. UN Population Division data portal. . United Nations Data Portal. https://population.un.org/dataportal/home?df=bb7a402a-2c5b-4b58-b235-eff7cf4c2a28
    [Google Scholar]
  5. 5.
    Kimemia D. 2021.. The impacts of political conflicts in Africa. . J. Afr. Conflicts Peace Stud. 4::4
    [Google Scholar]
  6. 6.
    Collier P, Hoeffler A. 1998.. On economic causes of civil war. . Oxf. Econ. Pap. 50::56373
    [Crossref] [Google Scholar]
  7. 7.
    Juju D, Baffoe G, Lam R, Karanja A, Naidoo M, et al. 2020.. Sustainability challenges in sub-Saharan Africa in the context of the Sustainable Development Goals (SDGs). . In Sustainability Challenges in Sub-Saharan Africa I: Continental Perspectives and Insights from Western and Central Africa, ed. A Gasparatos, A Ahmed, M Naidoo, A Karanja, K Fukushi , et al., pp. 350. Singapore:: Springer
    [Google Scholar]
  8. 8.
    Jaca A, Malinga T, Iwu-Jaja CJ, Nnaji CA, Okeibunor JC, et al. 2022.. Strengthening the health system as a strategy to achieving a universal health coverage in underprivileged communities in Africa: a scoping review. . Int. J. Environ. Res. Public Health 19::587
    [Crossref] [Google Scholar]
  9. 9.
    Yanful B, Kirubarajan A, Bhatia D, Mishra S, Allin S, Di Ruggiero E. 2023.. Quality of care in the context of universal health coverage: a scoping review. . Health Res. Policy Syst. 21::21
    [Crossref] [Google Scholar]
  10. 10.
    Kamp M, Achilonu O, Kisiangani I, Nderitu DM, Mpangase PT, et al. 2023.. Multimorbidity in African ancestry populations: a scoping review. . BMJ Glob. Health 8::e013509
    [Crossref] [Google Scholar]
  11. 11.
    Tan MMC, Barbosa MG, Pinho PJMR, Assefa E, Keinert AÁM, et al. 2024.. Determinants of multimorbidity in low-and middle-income countries: a systematic review of longitudinal studies and discovery of evidence gaps. . Obes. Rev. 25::e13661
    [Crossref] [Google Scholar]
  12. 12.
    Price AJ, Jobe M, Sekitoleko I, Crampin AC, Prentice AM, et al. 2023.. Epidemiology of multimorbidity in low-income countries of sub-Saharan Africa: findings from four population cohorts. . PLOS Glob. Public Health 3::e0002677
    [Crossref] [Google Scholar]
  13. 13.
    Liu Y, Mao X, Krause J, Fu Q. 2021.. Insights into human history from the first decade of ancient human genomics. . Science 373::147984
    [Crossref] [Google Scholar]
  14. 14.
    Campbell MC, Tishkoff SA. 2008.. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. . Annu. Rev. Genom. Hum. Genet. 9::40333
    [Crossref] [Google Scholar]
  15. 15.
    Schlebusch CM, Jakobsson M. 2018.. Tales of human migration, admixture, and selection in Africa. . Annu. Rev. Genom. Hum. Genet. 19::40528
    [Crossref] [Google Scholar]
  16. 16.
    Pereira L, Mutesa L, Tindana P, Ramsay M. 2021.. African genetic diversity and adaptation inform a precision medicine agenda. . Nat. Rev. Genet. 22::284306
    [Crossref] [Google Scholar]
  17. 17.
    Wonkam A, Munung NS, Dandara C, Esoh KK, Hanchard NA, Landoure G. 2022.. Five priorities of African genomics research: the next frontier. . Annu. Rev. Genom. Hum. Genet. 23::499521
    [Crossref] [Google Scholar]
  18. 18.
    Fatumo S, Yakubu A, Oyedele O, Popoola J, Attipoe DA, et al. 2022.. Promoting the genomic revolution in Africa through the Nigerian 100K Genome Project. . Nat. Genet. 54::53136
    [Crossref] [Google Scholar]
  19. 19.
    Fatumo S, Mugisha J, Soremekun OS, Kalungi A, Mayanja R, et al. 2022.. Uganda Genome Resource: a rich research database for genomic studies of communicable and non-communicable diseases in Africa. . Cell Genom. 2::100209
    [Crossref] [Google Scholar]
  20. 20.
    Szklo M. 1998.. Population-based cohort studies. . Epidemiol. Rev. 20::8190
    [Crossref] [Google Scholar]
  21. 21.
    Dekkers OM, Egger M, Altman DG, Vandenbroucke JP. 2012.. Distinguishing case series from cohort studies. . Ann. Intern. Med. 156::3740
    [Crossref] [Google Scholar]
  22. 22.
    Teo K, Chow CK, Vaz M, Rangarajan S, Yusuf S. 2009.. The Prospective Urban Rural Epidemiology (PURE) study: examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. . Am. Heart J. 158::17.e1
    [Crossref] [Google Scholar]
  23. 23.
    Reniers G, Wamukoya M, Urassa M, Nyaguara A, Nakiyingi-Miiro J, et al. 2016.. Data resource profile: network for analysing longitudinal population-based HIV/AIDS data on Africa (ALPHA Network). . Int. J. Epidemiol. 45::8393
    [Crossref] [Google Scholar]
  24. 24.
    Sankoh O, Byass P. 2012.. The INDEPTH Network: filling vital gaps in global epidemiology. . Int. J. Epidemiol. 41::57988
    [Crossref] [Google Scholar]
  25. 25.
    Mulder N, Abimiku A, Adebamowo SN, de Vries J, Matimba A, et al. 2018.. H3Africa: current perspectives. . Pharmacogenomics Pers. Med. 11::5966
    [Google Scholar]
  26. 26.
    Brown GW, Bridge G, Martini J, Um J, Williams OD, et al. 2022.. The role of health systems for health security: a scoping review revealing the need for improved conceptual and practical linkages. . Glob. Health 18::51
    [Crossref] [Google Scholar]
  27. 27.
    Hasan MZ, Neill R, Das P, Venugopal V, Arora D, et al. 2021.. Integrated health service delivery during COVID-19: a scoping review of published evidence from low-income and lower-middle-income countries. . BMJ Glob. Health 6::e005667
    [Crossref] [Google Scholar]
  28. 28.
    Reid M, Abdool-Karim Q, Geng E, Goosby E. 2021.. How will COVID-19 transform global health post-pandemic? Defining research and investment opportunities and priorities. . PLOS Med. 18::e1003564
    [Crossref] [Google Scholar]
  29. 29.
    Edwards N, Plotnikoff RC. 2018.. Mobilizing an underused resource: cohort studies for population health intervention research. . Int. J. Epidemiol. 47::173033
    [Google Scholar]
  30. 30.
    O'Connor M, Spry E, Patton G, Moreno-Betancur M, Arnup S, et al. 2022.. Better together: advancing life course research through multi-cohort analytic approaches. . Adv. Life Course Res. 53::100499
    [Crossref] [Google Scholar]
  31. 31.
    Herbst K, Juvekar S, Jasseh M, Berhane Y, Chuc NTK, et al. 2021.. Health and demographic surveillance systems in low-and middle-income countries: history, state of the art and future prospects. . Glob. Health Action 14::1974676
    [Crossref] [Google Scholar]
  32. 32.
    Barteit S, Sié A, Zabré P, Traoré I, Ouédraogo WA, et al. 2023.. Widening the lens of population-based health research to climate change impacts and adaptation: the climate change and health evaluation and response system (CHEERS). . Front. Public Health 11::1153559
    [Crossref] [Google Scholar]
  33. 33.
    Sears MR, Greene JM, Willan AR, Wiecek EM, Taylor DR, et al. 2003.. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. . N. Engl. J. Med. 349::141422
    [Crossref] [Google Scholar]
  34. 34.
    Jackson DJ, Gern JE, Lemanske RF Jr. 2017.. Lessons learned from birth cohort studies conducted in diverse environments. . J. Allergy Clin. Immunol. 139::37986
    [Crossref] [Google Scholar]
  35. 35.
    Belsky DW, Sears MR, Hancox RJ, Harrington H, Houts R, et al. 2013.. Polygenic risk and the development and course of asthma: an analysis of data from a four-decade longitudinal study. . Lancet Respir. Med. 1::45361
    [Crossref] [Google Scholar]
  36. 36.
    Remais JV, Jackson RJ. 2015.. Determinants of health: overview. . In Oxford Textbook of Global Public Health, ed. R Detels, M Gulliford, QA Karim, CC Tan , pp. 8188. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  37. 37.
    Oh ES, Petronis A. 2021.. Origins of human disease: the chrono-epigenetic perspective. . Nat. Rev. Genet. 22::53346
    [Crossref] [Google Scholar]
  38. 38.
    Gouda HN, Charlson F, Sorsdahl K, Ahmadzada S, Ferrari AJ, et al. 2019.. Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: results from the Global Burden of Disease Study 2017. . Lancet Glob. Health 7::e137587
    [Crossref] [Google Scholar]
  39. 39.
    Gaziano JM. 2010.. The evolution of population science: advent of the mega cohort. . JAMA 304::228889
    [Crossref] [Google Scholar]
  40. 40.
    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, et al. 2018.. The UK Biobank resource with deep phenotyping and genomic data. . Nature 562::2039
    [Crossref] [Google Scholar]
  41. 41.
    Chen Z, Chen J, Collins R, Guo Y, Peto R, et al. 2011.. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. . Int. J. Epidemiol. 40::165266
    [Crossref] [Google Scholar]
  42. 42.
    All Us Res. Program Investig. 2019.. The “All of Us” research program. . N. Eng. J. Med. 381::66876
    [Crossref] [Google Scholar]
  43. 43.
    Huhn S, Matzke I, Koch M, Gunga H-C, Maggioni MA, et al. 2022.. Using wearable devices to generate real-world, individual-level data in rural, low-resource contexts in Burkina Faso, Africa: a case study. . Front. Public Health 10::972177
    [Crossref] [Google Scholar]
  44. 44.
    Herbst K, Law M, Geldsetzer P, Tanser F, Harling G, Bärnighausen T. 2015.. Innovations in health and demographic surveillance systems to establish the causal impacts of HIV policies. . Curr. Opin. HIV AIDS 10::48394
    [Crossref] [Google Scholar]
  45. 45.
    Ochieng CA, Minion JT, Turner A, Blell M, Murtagh MJ. 2021.. What does engagement mean to participants in longitudinal cohort studies? A qualitative study. . BMC Med. Ethics 22::77
    [Crossref] [Google Scholar]
  46. 46.
    Murtagh MJ, Machirori M, Gaff CL, Blell MT, de Vries J, et al. 2021.. Engaged genomic science produces better and fairer outcomes: an engagement framework for engaging and involving participants, patients and publics in genomics research and healthcare implementation. . Wellcome Open Res. 6::311
    [Crossref] [Google Scholar]
  47. 47.
    Shiells K, Di Cara N, Skatova A, Davis OS, Haworth CM, et al. 2020.. Participant acceptability of digital footprint data collection strategies: an exemplar approach to participant engagement and involvement in the ALSPAC birth cohort study. . Int. J. Popul. Data Sci. 5::1728
    [Google Scholar]
  48. 48.
    Pocock MJ, Roy HE, August T, Kuria A, Barasa F, et al. 2019.. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. . J. Appl. Ecol. 56::27481
    [Crossref] [Google Scholar]
  49. 49.
    Okop KJ, Murphy K, Lambert EV, Kedir K, Getachew H, et al. 2021.. Community-driven citizen science approach to explore cardiovascular disease risk perception, and develop prevention advocacy strategies in sub-Saharan Africa: a programme protocol. . Res. Involv. Engagem. 7::11
    [Crossref] [Google Scholar]
  50. 50.
    Witter S, Van Der Merwe M, Twine R, Mabetha D, Hove J, et al. 2020.. Verbal Autopsy with Participatory Action Research (VAPAR) programme in Mpumalanga, South Africa: protocol for evaluation. . BMJ Open 10::e036597
    [Crossref] [Google Scholar]
  51. 51.
    Baisley K, Orne-Gliemann J, Larmarange J, Plazy M, Collier D, et al. 2022.. Early HIV treatment and survival over six years of observation in the ANRS 12249 Treatment as Prevention Trial. . HIV Med. 23::92228
    [Crossref] [Google Scholar]
  52. 52.
    Collinson MA, Mudzana T, Mutevedzi T, Kahn K, Maimela E, et al. 2022.. Cohort profile: South African Population Research Infrastructure Network (SAPRIN). . Int. J. Epidemiol. 51::e20616
    [Crossref] [Google Scholar]
  53. 53.
    Robinson E, Sutin AR, Daly M, Jones A. 2022.. A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in 2020. . J. Affect. Disord. 296::56776
    [Crossref] [Google Scholar]
  54. 54.
    Harling G, Gómez-Olivé FX, Tlouyamma J, Mutevedzi T, Kabudula CW, et al. 2020.. Protective behaviours and secondary harms from non-pharmaceutical interventions during the COVID-19 epidemic in South Africa: a multisite prospective longitudinal study. . medRxiv 2020.11.12.20230136. https://doi.org/10.1101/2020.11.12.20230136
  55. 55.
    Sun K, Tempia S, Kleynhans J, von Gottberg A, McMorrow ML, et al. 2022.. SARS-CoV-2 transmission, persistence of immunity, and estimates of Omicron's impact in South African population cohorts. . Sci. Transl. Med. 14::eabo7081
    [Crossref] [Google Scholar]
  56. 56.
    Kabudula CW, Clark BD, Gómez-Olivé FX, Tollman S, Menken J, Reniers G. 2014.. The promise of record linkage for assessing the uptake of health services in resource constrained settings: a pilot study from South Africa. . BMC Med. Res. Methodol. 14::71
    [Crossref] [Google Scholar]
  57. 57.
    Rentsch CT, Reniers G, Kabudula C, Machemba R, Mtenga B, et al. 2017.. Point-of-contact interactive record linkage (PIRL) between demographic surveillance and health facility data in rural Tanzania. . Int. J. Popul. Data Sci. 2::408
    [Google Scholar]
  58. 58.
    Odekunle FF, Odekunle RO, Shankar S. 2017.. Why sub-Saharan Africa lags in electronic health record adoption and possible strategies to increase its adoption in this region. . Int. J. Health Sci. 11::5964
    [Google Scholar]
  59. 59.
    Paulus JK, Santoyo-Vistrain R, Havelick D, Cohen A, Kalyesubula R, et al. 2012.. Global teaching and training initiatives for emerging cohort studies. . J. Epidemiol. Glob. Health 2::12533
    [Crossref] [Google Scholar]
  60. 60.
    O'Neill D, Benzeval M, Boyd A, Calderwood L, Cooper C, et al. 2019.. Data resource profile: Cohort and Longitudinal Studies Enhancement Resources (CLOSER). . Int. J. Epidemiol. 48::67576
    [Crossref] [Google Scholar]
  61. 61.
    Glob. Alliance Genom. Health. 2016.. A federated ecosystem for sharing genomic, clinical data. . Science 352::127880
    [Crossref] [Google Scholar]
  62. 62.
    Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, et al. 2020.. Causal inference and counterfactual prediction in machine learning for actionable healthcare. . Nat. Mach. Intel. 2::36975
    [Crossref] [Google Scholar]
  63. 63.
    Degtiar I, Rose S. 2023.. A review of generalizability and transportability. . Annu. Rev. Stat. 10::50124
    [Crossref] [Google Scholar]
  64. 64.
    Templ M, Kanjala C, Siems I. 2022.. Privacy of study participants in open-access health and demographic surveillance system data: requirements analysis for data anonymization. . JMIR Public Health Surveill. 8::e34472
    [Crossref] [Google Scholar]
  65. 65.
    Zass L, Johnston K, Benkahla A, Chaouch M, Kumuthini J, et al. 2023.. Developing clinical phenotype data collection standards for research in Africa. . Glob. Health Epidemiol. Genom. 2023::6693323
    [Google Scholar]
  66. 66.
    Deans AR, Lewis SE, Huala E, Anzaldo SS, Ashburner M, et al. 2015.. Finding our way through phenotypes. . PLOS Biol. 13::e1002033
    [Crossref] [Google Scholar]
  67. 67.
    Tatem AJ, Snow RW, Hay SI. 2006.. Mapping the environmental coverage of the INDEPTH demographic surveillance system network in rural Africa. . Trop. Med. Int. Health 11::131826
    [Crossref] [Google Scholar]
  68. 68.
    Opoku SK, Filho WL, Hubert F, Adejumo O. 2021.. Climate change and health preparedness in Africa: analysing trends in six African countries. . Int. J. Environ. Res. Public Health 18::4672
    [Crossref] [Google Scholar]
  69. 69.
    French MD, Evans D, Fleming FM, Secor WE, Biritwum N-K, et al. 2018.. Schistosomiasis in Africa: improving strategies for long-term and sustainable morbidity control. . PLOS Negl. Trop. Dis. 12::e0006484
    [Crossref] [Google Scholar]
  70. 70.
    Sankoh O. 2015.. CHESS: an innovative concept for a new generation of population surveillance. . Lancet Glob. Health 3::e742
    [Crossref] [Google Scholar]
  71. 71.
    Owolabi MO, Kumuthini J, Sankoh O, Uvere E, Abubakar I, Makani J. 2023.. Maximising human health and development through synergistic partnerships: the African Biobank and Longitudinal Epidemiological Ecosystem. . Lancet Glob. Health 11::e133334
    [Crossref] [Google Scholar]
  72. 72.
    Halfon N, Larson K, Lu M, Tullis E, Russ S. 2014.. Lifecourse health development: past, present and future. Matern. . Child Health J. 18::34465
    [Google Scholar]
  73. 73.
    APCC (Afr. Popul. Cohorts Consort.). 2021.. African Population Cohorts Consortium scoping report. Rep. , Wellcome Trust, London:. https://cms.wellcome.org/sites/default/files/2021-03/APCC%20Scoping%20paper_%20FINAL_EN_0.pdf
    [Google Scholar]
  74. 74.
    Rotimi C, Abayomi A, Abimiku A, Adabayeri VM, Adebamowo C, et al. 2014.. Research capacity. Enabling the genomic revolution in Africa. . Science 344::134648
    [Crossref] [Google Scholar]
  75. 75.
    Wonkam A, Makani J, Ofori-Aquah S, Nnodu OE, Treadwell M, et al. 2015.. Sickle cell disease and H3Africa: enhancing genomic research on cardiovascular diseases in African patients. . Cardiovasc. J. Afr. 26::S5055
    [Crossref] [Google Scholar]
  76. 76.
    Osafo C, Raji YR, Burke D, Tayo BO, Tiffin N, et al. 2015.. Human Heredity and Health (H3) in Africa kidney disease research network: a focus on methods in sub-Saharan Africa. . Clin. J. Am. Soc. Nephrol. 10::227987
    [Crossref] [Google Scholar]
  77. 77.
    Akpalu A, Sarfo FS, Ovbiagele B, Akinyemi R, Gebregziabher M, et al. 2015.. Phenotyping stroke in sub-Saharan Africa: Stroke Investigative Research and Education Network (SIREN) phenomics protocol. . Neuroepidemiology 45::7382
    [Crossref] [Google Scholar]
  78. 78.
    Olawoye O, Chuka-Okosa C, Akpa O, Realini T, Hauser M, Ashaye A. 2021.. Eyes of Africa: the genetics of blindness: study design and methodology. . BMC Ophthalmol. 21::272
    [Crossref] [Google Scholar]
  79. 79.
    Ramsay M, Crowther N, Tambo E, Agongo G, Baloyi V, et al. 2016.. H3Africa AWI-Gen Collaborative Centre: a resource to study the interplay between genomic and environmental risk factors for cardiometabolic diseases in four sub-Saharan African countries. . Glob. Health Epidemiol. Genom. 1::e20
    [Crossref] [Google Scholar]
  80. 80.
    Adebamowo SN, Dareng EO, Famooto AO, Offiong R, Olaniyan O, et al. 2017.. Cohort profile: African Collaborative Center for Microbiome and Genomics Research's (ACCME's) human papillomavirus (HPV) and cervical cancer study. . Int. J. Epidemiol. 46::174545j
    [Crossref] [Google Scholar]
  81. 81.
    Ali SA, Soo C, Agongo G, Alberts M, Amenga-Etego L, et al. 2018.. Genomic and environmental risk factors for cardiometabolic diseases in Africa: methods used for Phase 1 of the AWI-Gen population cross-sectional study. . Glob. Health Action 11::1507133
    [Crossref] [Google Scholar]
  82. 82.
    Sengupta D, Choudhury A, Fortes-Lima C, Aron S, Whitelaw G, et al. 2021.. Genetic substructure and complex demographic history of South African Bantu speakers. . Nat. Commun. 12::2080
    [Crossref] [Google Scholar]
  83. 83.
    Owolabi MO, Akpa OM, Made F, Adebamowo SN, Ojo A, et al. 2019.. Data resource profile: Cardiovascular H3Africa Innovation Resource (CHAIR). . Int. J. Epidemiol. 48::36667g
    [Crossref] [Google Scholar]
  84. 84.
    Akpa OM, Made F, Ojo A, Ovbiagele B, Adu D, et al. 2020.. Regional patterns and association between obesity and hypertension in Africa: evidence from the H3Africa CHAIR study. . Hypertension 75::116778
    [Crossref] [Google Scholar]
  85. 85.
    Lombard Z, Landouré G. 2023.. Could Africa be the future for genomics research?. Nature 614::3033
    [Crossref] [Google Scholar]
  86. 86.
    Asiki G, Murphy G, Nakiyingi-Miiro J, Seeley J, Nsubuga RN, et al. 2013.. The general population cohort in rural south-western Uganda: a platform for communicable and non-communicable disease studies. . Int. J. Epidemiol. 42::12941
    [Crossref] [Google Scholar]
  87. 87.
    Gurdasani D, Carstensen T, Fatumo S, Chen G, Franklin CS, et al. 2019.. Uganda genome resource enables insights into population history and genomic discovery in Africa. . Cell 179::9841002.e36
    [Crossref] [Google Scholar]
  88. 88.
    UN ECA (U. N. Econ. Comm. Afr.). 2017.. Report on the status of civil registration and vital statistics in Africa: outcome of the Africa programme on accelerated improvement of civil registration and vital statistics systems monitoring framework. Rep. , UN ECA, Addis Ababa, Ethiopia:
    [Google Scholar]
  89. 89.
    Maïga A, Jiwani SS, Mutua MK, Porth TA, Taylor CM, et al. 2019.. Generating statistics from health facility data: the state of routine health information systems in eastern and southern Africa. . BMJ Glob. Health 4::e001849
    [Crossref] [Google Scholar]
  90. 90.
    Mbondji PE, Kebede D, Soumbey-Alley EW, Zielinski C, Kouvividila W, Lusamba-Dikassa P-S. 2014.. Health information systems in Africa: descriptive analysis of data sources, information products and health statistics. . J. R. Soc. Med. 107::3445
    [Crossref] [Google Scholar]
  91. 91.
    Gitau E, Yarmoshuk A. 2023.. Report looking at the research culture across Africa. Rep. , Wellcome Trust, London:
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-020722-015026
Loading
/content/journals/10.1146/annurev-biodatasci-020722-015026
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error