1932

Abstract

While the primary sequences of human proteins have been cataloged for over a decade, determining how these are organized into a dynamic collection of multiprotein assemblies, with structures and functions spanning biological scales, is an ongoing venture. Systematic and data-driven analyses of these higher-order structures are emerging, facilitating the discovery and understanding of cellular phenotypes. At present, knowledge of protein localization and function has been primarily derived from manual annotation and curation in resources such as the Gene Ontology, which are biased toward richly annotated genes in the literature. Here, we envision a future powered by data-driven mapping of protein assemblies. These maps can capture and decode cellular functions through the integration of protein expression, localization, and interaction data across length scales and timescales. In this review, we focus on progress toward constructing integrated cell maps that accelerate the life sciences and translational research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102423-113534
2024-08-23
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-102423-113534.html?itemId=/content/journals/10.1146/annurev-biodatasci-102423-113534&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shapiro L. 2022.. A half century defining the logic of cellular life. . Annu. Rev. Genet. 56::115
    [Crossref] [Google Scholar]
  2. 2.
    Curtis PD, Brun YV. 2010.. Getting in the loop: regulation of development in Caulobacter crescentus. . Microbiol. Mol. Biol. Rev. 74:(1):1341
    [Crossref] [Google Scholar]
  3. 3.
    Subramanian A, Miller DM. 2000.. Structural analysis of α-enolase. . J. Biol. Chem. 275:(8):595865
    [Crossref] [Google Scholar]
  4. 4.
    Pancholi V, Fischetti VA. 1998.. α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. . J. Biol. Chem. 273:(23):1450315
    [Crossref] [Google Scholar]
  5. 5.
    Nott TJ, Craggs TD, Baldwin AJ. 2016.. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. . Nat. Chem. 8:(6):56975
    [Crossref] [Google Scholar]
  6. 6.
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, et al. 2015.. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. . Mol. Cell 57:(5):93647
    [Crossref] [Google Scholar]
  7. 7.
    Lazebnik Y. 2002.. Can a biologist fix a radio?—Or, what I learned while studying apoptosis. . Cancer Cell 2:(3):17982
    [Crossref] [Google Scholar]
  8. 8.
    He J, Mo D, Chen J, Luo L. 2020.. Combined whole-mount fluorescence in situ hybridization and antibody staining in zebrafish embryos and larvae. . Nat. Protoc. 15:(10):336179
    [Crossref] [Google Scholar]
  9. 9.
    Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, et al. 2021.. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. . Cell 184:(11):302240.e28
    [Crossref] [Google Scholar]
  10. 10.
    Qin Y, Huttlin EL, Winsnes CF, Gosztyla ML, Wacheul L, et al. 2021.. A multi-scale map of cell structure fusing protein images and interactions. . Nature 600::53642
    [Crossref] [Google Scholar]
  11. 11.
    Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, et al. 2015.. The BioPlex network: a systematic exploration of the human interactome. . Cell 162:(2):42540
    [Crossref] [Google Scholar]
  12. 12.
    Lundberg E, Borner GHH. 2019.. Spatial proteomics: a powerful discovery tool for cell biology. . Nat. Rev. Mol. Cell Biol. 20:(5):285302
    [Crossref] [Google Scholar]
  13. 13.
    Stadler C, Rexhepaj E, Singan VR, Murphy RF, Pepperkok R, et al. 2013.. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. . Nat. Methods 10:(4):31523
    [Crossref] [Google Scholar]
  14. 14.
    Cheng Y. 2018.. Single-particle cryo-EM—How did it get here and where will it go. . Science 361:(6405):87680
    [Crossref] [Google Scholar]
  15. 15.
    Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. 2013.. Conformational states of macromolecular assemblies explored by integrative structure calculation. . Structure 21:(9):15008
    [Crossref] [Google Scholar]
  16. 16.
    Doll S, Burlingame AL. 2015.. Mass spectrometry-based detection and assignment of protein posttranslational modifications. . ACS Chem. Biol. 10:(1):6371
    [Crossref] [Google Scholar]
  17. 17.
    Hickey JW, Neumann EK, Radtke AJ, Camarillo JM, Beuschel RT, et al. 2022.. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. . Nat. Methods 19:(3):28495
    [Crossref] [Google Scholar]
  18. 18.
    Hum. Microbiome Proj. Consort. 2012.. Structure, function and diversity of the healthy human microbiome. . Nature 486:(7402):20714
    [Crossref] [Google Scholar]
  19. 19.
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, et al. 2010.. Towards a knowledge-based Human Protein Atlas. . Nat. Biotechnol. 28:(12):124850
    [Crossref] [Google Scholar]
  20. 20.
    Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, et al. 2017.. A subcellular map of the human proteome. . Science 356:(6340):eaal3321
    [Crossref] [Google Scholar]
  21. 21.
    Mahdessian D, Cesnik AJ, Gnann C, Danielsson F, Stenström L, et al. 2021.. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. . Nature 590:(7847):64954
    [Crossref] [Google Scholar]
  22. 22.
    Cho NH, Cheveralls KC, Brunner A-D, Kim K, Michaelis AC, et al. 2022.. OpenCell: endogenous tagging for the cartography of human cellular organization. . Science 375:(6585):eabi6983
    [Crossref] [Google Scholar]
  23. 23.
    Geladaki A, Kočevar Britovšek N, Breckels LM, Smith TS, Vennard OL, et al. 2019.. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. . Nat. Commun. 10:(1):331
    [Crossref] [Google Scholar]
  24. 24.
    Orre LM, Vesterlund M, Pan Y, Arslan T, Zhu Y, et al. 2019.. SubCellBarCode: proteome-wide mapping of protein localization and relocalization. . Mol. Cell 73:(1):16682.e7
    [Crossref] [Google Scholar]
  25. 25.
    Bray M-A, Singh S, Han H, Davis CT, Borgeson B, et al. 2016.. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. . Nat. Protoc. 11:(9):175774
    [Crossref] [Google Scholar]
  26. 26.
    Chandrasekaran SN, Cimini BA, Goodale A, Miller L, Kost-Alimova M, et al. 2022.. Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. . bioRxiv 2022.01.05.475090. https://doi.org/10.1101/2022.01.05.475090
  27. 27.
    Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, et al. 2021.. A proximity-dependent biotinylation map of a human cell. . Nature 595:(7865):12024
    [Crossref] [Google Scholar]
  28. 28.
    Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, et al. 2012.. A census of human soluble protein complexes. . Cell 150:(5):106881
    [Crossref] [Google Scholar]
  29. 29.
    Heusel M, Bludau I, Rosenberger G, Hafen R, Frank M, et al. 2019.. Complex-centric proteome profiling by SEC-SWATH-MS. . Mol. Syst. Biol. 15:(1):e8438
    [Crossref] [Google Scholar]
  30. 30.
    Wheat A, Yu C, Wang X, Burke AM, Chemmama IE, et al. 2021.. Protein interaction landscapes revealed by advanced in vivo cross-linking-mass spectrometry. . PNAS 118:(32):e2023360118
    [Crossref] [Google Scholar]
  31. 31.
    Shilts J, Severin Y, Galaway F, Müller-Sienerth N, Chong Z-S, et al. 2022.. A physical wiring diagram for the human immune system. . Nature 608:(7922):397404
    [Crossref] [Google Scholar]
  32. 32.
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, et al. 2015.. Tissue-based map of the human proteome. . Science 347:(6220):1260419
    [Crossref] [Google Scholar]
  33. 33.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, et al. 2017.. The Human Cell Atlas. . eLife 6::e27041
    [Crossref] [Google Scholar]
  34. 34.
    Karlsson M, Zhang C, Méar L, Zhong W, Digre A, et al. 2021.. A single-cell type transcriptomics map of human tissues. . Sci. Adv. 7:(31):eabh2169
    [Crossref] [Google Scholar]
  35. 35.
    Haniffa M, Taylor D, Linnarsson S, Aronow BJ, Bader GD, et al. 2021.. A roadmap for the Human Developmental Cell Atlas. . Nature 597:(7875):196205
    [Crossref] [Google Scholar]
  36. 36.
    Qin Y, Huttlin EL, Winsnes CF, Gosztyla ML, Wacheul L, et al. 2021.. A multi-scale map of cell structure fusing protein images and interactions. . Nature 600:(7889):53642
    [Crossref] [Google Scholar]
  37. 37.
    Zheng F, Kelly MR, Ramms DJ, Heintschel ML, Tao K, et al. 2021.. Interpretation of cancer mutations using a multiscale map of protein systems. . Science 374:(6563):eabf3067
    [Crossref] [Google Scholar]
  38. 38.
    Kratz A, Kim M, Kelly MR, Zheng F, Koczor CA, et al. 2023.. A multi-scale map of protein assemblies in the DNA damage response. . Cell Syst. 14:(6):44763.e8
    [Crossref] [Google Scholar]
  39. 39.
    Weber TP. 2000.. Biological objects, units of selection and character decomposition. . Trends Ecol. Evol. 15:(8):3045
    [Crossref] [Google Scholar]
  40. 40.
    ENCODE Proj. Consort. 2012.. An integrated encyclopedia of DNA elements in the human genome. . Nature 489:(7414):5774
    [Crossref] [Google Scholar]
  41. 41.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022.. The complete sequence of a human genome. . Science 376:(6588):4453
    [Crossref] [Google Scholar]
  42. 42.
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, et al. 2014.. Mass-spectrometry-based draft of the human proteome. . Nature 509:(7502):58287
    [Crossref] [Google Scholar]
  43. 43.
    Kelleher NL. 2012.. A cell-based approach to the Human Proteome Project. . J. Am. Soc. Mass Spectrom. 23:(10):161724
    [Crossref] [Google Scholar]
  44. 44.
    Tabula Muris Consort. 2020.. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. . Nature 583::59095
    [Crossref] [Google Scholar]
  45. 45.
    Tabula Sapiens Consort., Jones RC, Karkanias J, Krasnow MA, Pisco AO, et al. 2022.. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. . Science 376:(6594):eabl4896
    [Crossref] [Google Scholar]
  46. 46.
    Smith LM, Agar JN, Chamot-Rooke J, Danis PO, Ge Y, et al. 2021.. The Human Proteoform Project: defining the human proteome. . Sci. Adv. 7:(46):eabk0734
    [Crossref] [Google Scholar]
  47. 47.
    Melani RD, Gerbasi VR, Anderson LC, Sikora JW, Toby TK, et al. 2022.. The Blood Proteoform Atlas: a reference map of proteoforms in human hematopoietic cells. . Science 375:(6579):41118
    [Crossref] [Google Scholar]
  48. 48.
    Sharifi Tabar M, Parsania C, Chen H, Su X-D, Bailey CG, Rasko JEJ. 2022.. Illuminating the dark protein-protein interactome. . Cell Rep. Methods 2:(8):100275
    [Crossref] [Google Scholar]
  49. 49.
    Richards AL, Eckhardt M, Krogan NJ. 2021.. Mass spectrometry-based protein–protein interaction networks for the study of human diseases. . Mol. Syst. Biol. 17:(1):e8792
    [Crossref] [Google Scholar]
  50. 50.
    Greco TM, Kennedy MA, Cristea IM. 2020.. Proteomic technologies for deciphering local and global protein interactions. . Trends Biochem. Sci. 45:(5):45455
    [Crossref] [Google Scholar]
  51. 51.
    Gnann C, Cesnik AJ, Lundberg E. 2021.. Illuminating non-genetic cellular heterogeneity with imaging-based spatial proteomics. . Trends Cancer 7:(4):27882
    [Crossref] [Google Scholar]
  52. 52.
    Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, et al. 2015.. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. . Cell 163:(3):71223
    [Crossref] [Google Scholar]
  53. 53.
    Fossati A, Li C, Uliana F, Wendt F, Frommelt F, et al. 2021.. PCprophet: a framework for protein complex prediction and differential analysis using proteomic data. . Nat. Methods 18:(5):52027
    [Crossref] [Google Scholar]
  54. 54.
    Jiao F, Yu C, Wheat A, Wang X, Rychnovsky SD, Huang L. 2022.. Two-dimensional fractionation method for proteome-wide cross-linking mass spectrometry analysis. . Anal. Chem. 94:(10):423642
    [Crossref] [Google Scholar]
  55. 55.
    Bogdanow B, Gruska I, Mühlberg L, Protze J, Hohensee S, et al. 2023.. Spatially resolved protein map of intact human cytomegalovirus virions. . Nat. Microbiol. 8:(9):173247
    [Crossref] [Google Scholar]
  56. 56.
    Piersimoni L, Kastritis PL, Arlt C, Sinz A. 2022.. Cross-linking mass spectrometry for investigating protein conformations and protein–protein interactions—a method for all seasons. . Chem. Rev. 122:(8):750031
    [Crossref] [Google Scholar]
  57. 57.
    Simpson JC, Neubrand VE, Wiemann S, Pepperkok R. 2001.. Illuminating the human genome. . Histochem. Cell Biol. 115:(1):2329
    [Crossref] [Google Scholar]
  58. 58.
    Simpson JC, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S. 2000.. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. . EMBO Rep. 1:(3):28792
    [Crossref] [Google Scholar]
  59. 59.
    Liebel U, Starkuviene V, Erfle H, Simpson JC, Poustka A, et al. 2003.. A microscope-based screening platform for large-scale functional protein analysis in intact cells. . FEBS Lett. 554:(3):39498
    [Crossref] [Google Scholar]
  60. 60.
    Chen B, Zou W, Xu H, Liang Y, Huang B. 2018.. Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. . Nat. Commun. 9:(1):5065
    [Crossref] [Google Scholar]
  61. 61.
    Dunkley TPJ, Watson R, Griffin JL, Dupree P, Lilley KS. 2004.. Localization of organelle proteins by isotope tagging (LOPIT). . Mol. Cell Proteom. 3:(11):112834
    [Crossref] [Google Scholar]
  62. 62.
    Sali A. 2021.. From integrative structural biology to cell biology. . J. Biol. Chem. 296::100743
    [Crossref] [Google Scholar]
  63. 63.
    Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, et al. 2007.. The molecular architecture of the nuclear pore complex. . Nature 450:(7170):695701
    [Crossref] [Google Scholar]
  64. 64.
    Zheng F, Zhang S, Churas C, Pratt D, Bahar I, Ideker T. 2021.. HiDeF: identifying persistent structures in multiscale ’omics data. . Genome Biol. 22:(1):21
    [Crossref] [Google Scholar]
  65. 65.
    Kramer M, Dutkowski J, Yu M, Bafna V, Ideker T. 2014.. Inferring gene ontologies from pairwise similarity data. . Bioinformatics 30:(12):i3442
    [Crossref] [Google Scholar]
  66. 66.
    Kim Y-A, Cho D-Y, Przytycka TM. 2016.. Understanding genotype-phenotype effects in cancer via network approaches. . PLOS Comput. Biol. 12:(3):e1004747
    [Crossref] [Google Scholar]
  67. 67.
    Creixell P, Reimand J, Haider S, Wu G, Shibata T, et al. 2015.. Pathway and network analysis of cancer genomes. . Nat. Methods 12:(7):61521
    [Crossref] [Google Scholar]
  68. 68.
    Horn H, Lawrence MS, Chouinard CR, Shrestha Y, Hu JX, et al. 2018.. NetSig: network-based discovery from cancer genomes. . Nat. Methods 15:(1):6166
    [Crossref] [Google Scholar]
  69. 69.
    Dimitrakopoulos C, Hindupur SK, Häfliger L, Behr J, Montazeri H, et al. 2018.. Network-based integration of multi-omics data for prioritizing cancer genes. . Bioinformatics 34:(14):244148
    [Crossref] [Google Scholar]
  70. 70.
    Reyna MA, Leiserson MDM, Raphael BJ. 2018.. Hierarchical HotNet: identifying hierarchies of altered subnetworks. . Bioinformatics 34:(17):i97280
    [Crossref] [Google Scholar]
  71. 71.
    Reyna MA, Haan D, Paczkowska M, Verbeke LPC, Vazquez M, et al. 2020.. Pathway and network analysis of more than 2500 whole cancer genomes. . Nat. Commun. 11:(1):729
    [Crossref] [Google Scholar]
  72. 72.
    Cowen L, Ideker T, Raphael BJ, Sharan R. 2017.. Network propagation: a universal amplifier of genetic associations. . Nat. Rev. Genet. 18:(9):55162
    [Crossref] [Google Scholar]
  73. 73.
    Haynes WA, Tomczak A, Khatri P. 2018.. Gene annotation bias impedes biomedical research. . Sci. Rep. 8:(1):1362
    [Crossref] [Google Scholar]
  74. 74.
    Smith LM, Kelleher NL, Consort. Top Down Proteom. 2013.. Proteoform: a single term describing protein complexity. . Nat. Methods 10:(3):18687
    [Crossref] [Google Scholar]
  75. 75.
    Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, et al. 2018.. How many human proteoforms are there?. Nat. Chem. Biol. 14:(3):20614
    [Crossref] [Google Scholar]
  76. 76.
    Morris M, Maeda S, Vossel K, Mucke L. 2011.. The many faces of tau. . Neuron 70:(3):41026
    [Crossref] [Google Scholar]
  77. 77.
    Dawson JE, Bah A, Zhang Z, Vernon RM, Lin H, et al. 2020.. Non-cooperative 4E-BP2 folding with exchange between eIF4E-binding and binding-incompatible states tunes cap-dependent translation inhibition. . Nat. Commun. 11:(1):3146
    [Crossref] [Google Scholar]
  78. 78.
    Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, et al. 2022.. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. . Nat. Commun. 13:(1):275
    [Crossref] [Google Scholar]
  79. 79.
    Li Y, Sahni N, Pancsa R, McGrail DJ, Xu J, et al. 2017.. Revealing the determinants of widespread alternative splicing perturbation in cancer. . Cell Rep. 21:(3):798812
    [Crossref] [Google Scholar]
  80. 80.
    Buljan M, Chalancon G, Dunker AK, Bateman A, Balaji S, et al. 2013.. Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. . Curr. Opin. Struct. Biol. 23:(3):44350
    [Crossref] [Google Scholar]
  81. 81.
    Buljan M, Chalancon G, Eustermann S, Wagner GP, Fuxreiter M, et al. 2012.. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. . Mol. Cell 46:(6):87183
    [Crossref] [Google Scholar]
  82. 82.
    Ellis JD, Barrios-Rodiles M, Colak R, Irimia M, Kim T, et al. 2012.. Tissue-specific alternative splicing remodels protein-protein interaction networks. . Mol. Cell 46:(6):88492
    [Crossref] [Google Scholar]
  83. 83.
    Deleted in proof
  84. 84.
    Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, et al. 2012.. Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. . Science 337:(6100):134852
    [Crossref] [Google Scholar]
  85. 85.
    May JC, McLean JA. 2015.. Ion mobility-mass spectrometry: time-dispersive instrumentation. . Anal. Chem. 87:(3):142236
    [Crossref] [Google Scholar]
  86. 86.
    Liu FC, Ridgeway ME, Wootton CA, Theisen A, Panczyk EM, et al. 2023.. Top-down protein analysis by tandem-trapped ion mobility spectrometry/mass spectrometry (tandem-TIMS/MS) coupled with ultraviolet photodissociation (UVPD) and parallel accumulation/serial fragmentation (PASEF) MS/MS analysis. . J. Am. Soc. Mass Spectrom. 34:(10):223246
    [Crossref] [Google Scholar]
  87. 87.
    Englander SW. 2006.. Hydrogen exchange and mass spectrometry: a historical perspective. . J. Am. Soc. Mass Spectrom. 17:(11):148189
    [Crossref] [Google Scholar]
  88. 88.
    Bamberger C, Pankow S, Martínez-Bartolomé S, Ma M, Diedrich J, et al. 2021.. Protein footprinting via covalent protein painting reveals structural changes of the proteome in Alzheimer's disease. . J. Proteome Res. 20:(5):276271
    [Crossref] [Google Scholar]
  89. 89.
    Bamberger C, Diedrich J, Martìnez-Bartholomé S, Yates JR. 2022.. Cancer conformational landscape shapes tumorigenesis. . J. Proteome Res. 21:(4):101728
    [Crossref] [Google Scholar]
  90. 90.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  91. 91.
    Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. . Nature https://doi.org/10.1038/s41586-024-07487-w
    [Google Scholar]
  92. 92.
    Evans R, O'Neill M, Pritzel A, Antropova N, Senior A, et al. 2021.. Protein complex prediction with AlphaFold-Multimer. . bioRxiv 2021.10.04.463034. https://doi.org/10.1101/2021.10.04.463034
  93. 93.
    Uzquiano A, Kedaigle AJ, Pigoni M, Paulsen B, Adiconis X, et al. 2022.. Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex. . Cell 185:(20):377088.e27
    [Crossref] [Google Scholar]
  94. 94.
    Fischer DS, Schaar AC, Theis FJ. 2023.. Modeling intercellular communication in tissues using spatial graphs of cells. . Nat. Biotechnol. 41:(3):33236
    [Crossref] [Google Scholar]
  95. 95.
    Chidester B, Zhou T, Alam S, Ma J. 2023.. SpiceMix enables integrative single-cell spatial modeling of cell identity. . Nat. Genet. 55:(1):7888
    [Crossref] [Google Scholar]
  96. 96.
    Kramer BA, Sarabia Del Castillo J, Pelkmans L. 2022.. Multimodal perception links cellular state to decision-making in single cells. . Science 377:(6606):64248
    [Crossref] [Google Scholar]
  97. 97.
    Van Ineveld RL, Kleinnijenhuis M, Alieva M, De Blank S, Barrera Roman M, et al. 2021.. Revealing the spatio-phenotypic patterning of cells in healthy and tumor tissues with mLSR-3D and STAPL-3D. . Nat. Biotechnol. 39:(10):123945
    [Crossref] [Google Scholar]
  98. 98.
    Hickey JW, Becker WR, Nevins SA, Horning A, Perez AE, et al. 2023.. Organization of the human intestine at single-cell resolution. . Nature 619:(7970):57284
    [Crossref] [Google Scholar]
  99. 99.
    Rosenberger FA, Thielert M, Strauss MT, Schweizer L, Ammar C, et al. 2023.. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. . Nat. Methods 20:(10):153036
    [Crossref] [Google Scholar]
  100. 100.
    Zhang H, Delafield DG, Li L. 2023.. Mass spectrometry imaging: the rise of spatially resolved single-cell omics. . Nat. Methods 20:(3):32730
    [Crossref] [Google Scholar]
  101. 101.
    Mund A, Coscia F, Kriston A, Hollandi R, Kovács F, et al. 2022.. Deep Visual Proteomics defines single-cell identity and heterogeneity. . Nat. Biotechnol. 40:(8):123140
    [Crossref] [Google Scholar]
  102. 102.
    Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, et al. 2018.. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. . Cell 174:(4):96881.e15
    [Crossref] [Google Scholar]
  103. 103.
    Keren L, Bosse M, Thompson S, Risom T, Vijayaragavan K, et al. 2019.. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. . Sci. Adv. 5:(10):eaax5851
    [Crossref] [Google Scholar]
  104. 104.
    Mund A, Brunner A-D, Mann M. 2022.. Unbiased spatial proteomics with single-cell resolution in tissues. . Mol. Cell 82:(12):233549
    [Crossref] [Google Scholar]
  105. 105.
    Greenbaum S, Averbukh I, Soon E, Rizzuto G, Baranski A, et al. 2023.. A spatially resolved timeline of the human maternal–fetal interface. . Nature 619:(7970):595605
    [Crossref] [Google Scholar]
  106. 106.
    Perens J, Salinas CG, Skytte JL, Roostalu U, Dahl AB, et al. 2021.. An optimized mouse brain atlas for automated mapping and quantification of neuronal activity using iDISCO+ and light sheet fluorescence microscopy. . Neuroinformatics 19:(3):43346
    [Crossref] [Google Scholar]
  107. 107.
    Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. 2014.. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. . Cell 159:(4):896910
    [Crossref] [Google Scholar]
  108. 108.
    Lange M, Granados A, VijayKumar S, Bragantini J, Ancheta S, et al. 2023.. Zebrahub—multimodal zebrafish developmental atlas reveals the state-transition dynamics of late-vertebrate pluripotent axial progenitors. . bioRxiv 2023.03.06.531398. https://doi.org/10.1101/2023.03.06.531398
  109. 109.
    Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, et al. 2022.. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. . Nature 611:(7937):81017
    [Crossref] [Google Scholar]
  110. 110.
    Sorin M, Rezanejad M, Karimi E, Fiset B, Desharnais L, et al. 2023.. Single-cell spatial landscapes of the lung tumour immune microenvironment. . Nature 614:(7948):54854
    [Crossref] [Google Scholar]
  111. 111.
    Fan Y, Andrusivová Ž, Wu Y, Chai C, Larsson L, et al. 2022.. Expansion spatial transcriptomics. . bioRxiv 2022.10.25.513696. https://doi.org/10.1101/2022.10.25.513696
  112. 112.
    Kishi JY, Liu N, West ER, Sheng K, Jordanides JJ, et al. 2022.. Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. . Nat. Methods 19:(11):1393402
    [Crossref] [Google Scholar]
  113. 113.
    Shi H, He Y, Zhou Y, Huang J, Maher K, et al. 2023.. Spatial atlas of the mouse central nervous system at molecular resolution. . Nature 622:55261
    [Google Scholar]
  114. 114.
    Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, et al. 2019.. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. . Nature 568:(7751):23539
    [Crossref] [Google Scholar]
  115. 115.
    Xia C, Fan J, Emanuel G, Hao J, Zhuang X. 2019.. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. . PNAS 116:(39):1949099
    [Crossref] [Google Scholar]
  116. 116.
    Fazal FM, Han S, Parker KR, Kaewsapsak P, Xu J, et al. 2019.. Atlas of subcellular RNA localization revealed by APEX-seq. . Cell 178:(2):47390.e26
    [Crossref] [Google Scholar]
  117. 117.
    Hicks KG, Cluntun AA, Schubert HL, Hackett SR, Berg JA, et al. 2023.. Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. . Science 379:(6636):9961003
    [Crossref] [Google Scholar]
  118. 118.
    Saliba A-E, Vonkova I, Gavin A-C. 2015.. The systematic analysis of protein-lipid interactions comes of age. . Nat. Rev. Mol. Cell Biol. 16:(12):75361
    [Crossref] [Google Scholar]
  119. 119.
    Saunders KDG, Lewis H-M, Beste DJ, Cexus O, Bailey MJ. 2023.. Spatial single cell metabolomics: current challenges and future developments. . Curr. Opin. Chem. Biol. 75::102327
    [Crossref] [Google Scholar]
  120. 120.
    Vicari M, Mirzazadeh R, Nilsson A, Shariatgorji R, Bjärterot P, et al. 2023.. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. . bioRxiv 2023.01.26.525195. https://doi.org/10.1101/2023.01.26.525195
  121. 121.
    Mofatteh M, Echegaray-Iturra F, Alamban A, Dalla Ricca F, Bakshi A, Aydogan MG. 2021.. Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics. . eLife 10::e72104
    [Crossref] [Google Scholar]
  122. 122.
    Hein MY, Peng D, Todorova V, McCarthy F, Kim K, et al. 2023.. Global organelle profiling reveals subcellular localization and remodeling at proteome scale. . bioRxiv 2023.12.18.572249. https://doi.org/10.1101/2023.12.18.572249
  123. 123.
    Lee S-Y, Cheah JS, Zhao B, Xu C, Roh H, et al. 2023.. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. . Nat. Methods 20:(6):90817
    [Crossref] [Google Scholar]
  124. 124.
    Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, et al. 2018.. Integrative structure and functional anatomy of a nuclear pore complex. . Nature 555:(7697):47582
    [Crossref] [Google Scholar]
  125. 125.
    Shimada A, Kubo M, Baba S, Yamashita K, Hirata K, et al. 2017.. A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. . Sci. Adv. 3:(7):e1603042
    [Crossref] [Google Scholar]
  126. 126.
    Oh HS-H, Rutledge J, Nachun D, Pálovics R, Abiose O, et al. 2023.. Organ aging signatures in the plasma proteome track health and disease. . Nature 624:(7990):16472
    [Crossref] [Google Scholar]
  127. 127.
    Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, et al. 2021.. Learning transferable visual models from natural language supervision. . arXiv:2103.00020 [cs.CV]
  128. 128.
    Singh R, Sledzieski S, Bryson B, Cowen L, Berger B. 2023.. Contrastive learning in protein language space predicts interactions between drugs and protein targets. . PNAS 120:(24):e2220778120
    [Crossref] [Google Scholar]
  129. 129.
    Jang G, Park S, Lee S, Kim S, Park S, Kang J. 2021.. Predicting mechanism of action of novel compounds using compound structure and transcriptomic signature coembedding. . Bioinformatics 37:(Suppl. 1):i37682
    [Crossref] [Google Scholar]
  130. 130.
    Girdhar R, El-Nouby A, Liu Z, Singh M, Alwala KV, et al. 2023.. ImageBind: one embedding space to bind them all. . arXiv:2305.05665 [cs.CV]
  131. 131.
    Yang KD, Belyaeva A, Venkatachalapathy S, Damodaran K, Katcoff A, et al. 2021.. Multi-domain translation between single-cell imaging and sequencing data using autoencoders. . Nat. Commun. 12:(1):31
    [Crossref] [Google Scholar]
  132. 132.
    Tu X, Cao Z-J, Chenrui X, Mostafavi S, Gao G. 2022.. Cross-linked unified embedding for cross-modality representation learning. . Adv. Neural Inf. Process. Syst. 35::1594255
    [Google Scholar]
  133. 133.
    Bao F, Deng Y, Wan S, Shen SQ, Wang B, et al. 2022.. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. . Nat. Biotechnol. 40:(8):12009
    [Crossref] [Google Scholar]
  134. 134.
    Ash JT, Darnell G, Munro D, Engelhardt BE. 2021.. Joint analysis of expression levels and histological images identifies genes associated with tissue morphology. . Nat. Commun. 12:(1):1609
    [Crossref] [Google Scholar]
  135. 135.
    Zhang X, Wang X, Shivashankar GV, Uhler C. 2022.. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease. . Nat. Commun. 13:(1):7480
    [Crossref] [Google Scholar]
  136. 136.
    Cao K, Gong Q, Hong Y, Wan L. 2022.. A unified computational framework for single-cell data integration with optimal transport. . Nat. Commun. 13:(1):7419
    [Crossref] [Google Scholar]
  137. 137.
    Forster DT, Li SC, Yashiroda Y, Yoshimura M, Li Z, et al. 2022.. BIONIC: biological network integration using convolutions. . Nat. Methods 19:(10):125061
    [Crossref] [Google Scholar]
  138. 138.
    Benkirane H, Pradat Y, Michiels S, Cournède P-H. 2023.. CustOmics: a versatile deep-learning based strategy for multi-omics integration. . PLOS Comput. Biol. 19:(3):e1010921
    [Crossref] [Google Scholar]
  139. 139.
    Qi L, Wang W, Wu T, Zhu L, He L, Wang X. 2021.. Multi-omics data fusion for cancer molecular subtyping using sparse canonical correlation analysis. . Front. Genet. 12::607817
    [Crossref] [Google Scholar]
  140. 140.
    Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, et al. 2014.. Similarity network fusion for aggregating data types on a genomic scale. . Nat. Methods 11:(3):33337
    [Crossref] [Google Scholar]
  141. 141.
    Yu T. 2022.. AIME: autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments. . PLOS Comput. Biol. 18:(1):e1009826
    [Crossref] [Google Scholar]
  142. 142.
    Ma T, Zhang A. 2019.. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). . BMC Genom. 20:(Suppl. 11):944
    [Crossref] [Google Scholar]
  143. 143.
    Cao Z-J, Gao G. 2022.. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. . Nat. Biotechnol. 40:(10):145866
    [Crossref] [Google Scholar]
  144. 144.
    Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S. 2011.. Finding statistically significant communities in networks. . PLOS ONE 6:(4):e18961
    [Crossref] [Google Scholar]
  145. 145.
    Edler D, Bohlin L, Rosvall M. 2017.. Mapping higher-order network flows in memory and multilayer networks with Infomap. . Algorithms 10:(4):112
    [Crossref] [Google Scholar]
  146. 146.
    Snaebjornsson MT, Schulze A. 2018.. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. . Exp. Mol. Med. 50:(4):116
    [Crossref] [Google Scholar]
  147. 147.
    Galea G, Kuodyte K, Khan MM, Thul P, Neumann B, et al. 2022.. The Golgi complex is a regulatory hub for homologous recombination-mediated DNA repair. . bioRxiv 2022.10.17.512236. https://doi.org/10.1101/2022.10.17.512236
  148. 148.
    Zhao Y, Cortes-Huerto R, Kremer K, Rudzinski JF. 2020.. Investigating the conformational ensembles of intrinsically disordered proteins with a simple physics-based model. . J. Phys. Chem. B 124:(20):4097113
    [Crossref] [Google Scholar]
  149. 149.
    Velten B, Braunger JM, Argelaguet R, Arnol D, Wirbel J, et al. 2022.. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. . Nat. Methods 19:(2):17986
    [Crossref] [Google Scholar]
  150. 150.
    Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, et al. 2023.. Transfer learning enables predictions in network biology. . Nature 618:(7965):61624
    [Crossref] [Google Scholar]
  151. 151.
    Chen RTQ, Rubanova Y, Bettencourt J, Duvenaud D. 2018.. Neural ordinary differential equations. . arXiv:1806.07366 [cs.LG]
  152. 152.
    Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. 2017.. Geometric deep learning: going beyond Euclidean data. . IEEE Signal Process. Mag. 34:(4):1842
    [Crossref] [Google Scholar]
  153. 153.
    Bronstein MM, Bruna J, Cohen T, Veličković P. 2021.. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. . arXiv:2104.13478 [cs.LG]
  154. 154.
    Bludau I, Aebersold R. 2020.. Proteomic and interactomic insights into the molecular basis of cell functional diversity. . Nat. Rev. Mol. Cell Biol. 21:(6):32740
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-102423-113534
Loading
/content/journals/10.1146/annurev-biodatasci-102423-113534
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error