1932

Abstract

Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102423-121021
2024-08-23
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-102423-121021.html?itemId=/content/journals/10.1146/annurev-biodatasci-102423-121021&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Natl. Inst. Aging. 2019.. Alzheimer's disease fact sheet. Fact Sheet , Natl. Inst. Aging. https://www.nia.nih.gov/health/alzheimers-and-dementia/alzheimers-disease-fact-sheet
    [Google Scholar]
  2. 2.
    Burns A, Iliffe S. 2009.. Alzheimer's disease. . BMJ 338::b158
    [Crossref] [Google Scholar]
  3. 3.
    Patterson C. 2018.. World Alzheimer Report 2018. Rep. , Alzheimer's Dis. Int.
    [Google Scholar]
  4. 4.
    Natl. Inst. Aging. 2021.. NIA and the national plan to address Alzheimer's disease. Plan , US Dep. Health Hum. Serv
    [Google Scholar]
  5. 5.
    Du X, Wang X, Geng M. 2018.. Alzheimer's disease hypothesis and related therapies. . Transl. Neurodegenerat. 7:(1):2
    [Crossref] [Google Scholar]
  6. 6.
    Tanzi RE, Bertram L. 2005.. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. . Cell 120:(4):54555
    [Crossref] [Google Scholar]
  7. 7.
    Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, et al. 2016.. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. . Sci. Transl. Med. 8:(338):338ra66
    [Crossref] [Google Scholar]
  8. 8.
    Miranda MI, Bermúdez-Rattoni F. 1999.. Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. . PNAS 96:(11):647882
    [Crossref] [Google Scholar]
  9. 9.
    Szablewski L. 2021.. Brain glucose transporters: role in pathogenesis and potential targets for the treatment of Alzheimer's disease. . Int. J. Mol. Sci. 22:(15):8142
    [Crossref] [Google Scholar]
  10. 10.
    Gupta R. 2014.. Tacrine. . In Encyclopedia of Toxicology, ed. P Wexler , pp. 46667. Oxford, UK:: Academic Press. , 3rd ed.
    [Google Scholar]
  11. 11.
    Summers WK, Majovski LV, Marsh GM, Tachiki K, Kling A. 1986.. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. . New Engl. J. Med. 315:(20):124145
    [Crossref] [Google Scholar]
  12. 12.
    Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, et al. 2016.. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. . Nature 537:(7618):5056
    [Crossref] [Google Scholar]
  13. 13.
    Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, et al. 2023.. Lecanemab in early Alzheimer's disease. . New Engl. J. Med. 388:(1):921
    [Crossref] [Google Scholar]
  14. 14.
    Beshir SA, Aadithsoorya A, Parveen A, Goh SSL, Hussain N, et al. 2022.. Aducanumab therapy to treat Alzheimer's disease: a narrative review. . Int. J. Alzheimer's Dis. 2022::9343514
    [Google Scholar]
  15. 15.
    Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, et al. 2006.. Role of genes and environments for explaining Alzheimer disease. . Arch. Gen. Psychiatry 63:(2):16874
    [Crossref] [Google Scholar]
  16. 16.
    Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, et al. 2019.. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. . Nat. Genet. 51::40413
    [Crossref] [Google Scholar]
  17. 17.
    Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, et al. 2013.. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. . Nat. Genet. 45::145258
    [Crossref] [Google Scholar]
  18. 18.
    Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, et al. 2022.. New insights into the genetic etiology of Alzheimer's disease and related dementias. . Nat. Genet. 54::41236
    [Crossref] [Google Scholar]
  19. 19.
    Badhwar A, McFall GP, Sapkota S, Black SE, Chertkow H, et al. 2019.. A multiomics approach to heterogeneity in Alzheimer's disease: focused review and roadmap. . Brain 143:(5):131531
    [Crossref] [Google Scholar]
  20. 20.
    Dumurgier J, Hanseeuw BJ, Hatling FB, Judge KA, Schultz AP, et al. 2017.. Alzheimer's disease biomarkers and future decline in cognitive normal older adults. . J. Alzheimer's Dis. 60::145159
    [Crossref] [Google Scholar]
  21. 21.
    Jack CR Jr., Albert MA, Knopman DS, McKhann GM, Sperling RA, et al. 2011.. Introduction to the recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. . Alzheimer's Dement. 7:(3):25762
    [Crossref] [Google Scholar]
  22. 22.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., et al. 2011.. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. . Alzheimer's Dement. 7:(3):26369
    [Crossref] [Google Scholar]
  23. 23.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, et al. 2011.. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. . Alzheimer's Dement. 7:(3):27079
    [Crossref] [Google Scholar]
  24. 24.
    Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, et al. 2007.. Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. . Hum. Mol. Genet. 16:(8):86573
    [Crossref] [Google Scholar]
  25. 25.
    Sims R, Hill M, Williams J. 2020.. The multiplex model of the genetics of Alzheimer's disease. . Nat. Neurosci. 23:(3):31122
    [Crossref] [Google Scholar]
  26. 26.
    Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, et al. 2018.. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. . Nucleic Acids Res. 47:(D1):D100512
    [Crossref] [Google Scholar]
  27. 27.
    Leonenko G, Baker E, Stevenson-Hoare J, Sierksma A, Fiers M, et al. 2021.. Identifying individuals with high risk of Alzheimer's disease using polygenic risk scores. . Nat. Commun. 12::4506
    [Crossref] [Google Scholar]
  28. 28.
    Schmidt P, Hartung J, Rath J, Piepho HP. 2019.. Estimating broad-sense heritability with unbalanced data from agricultural cultivar trials. . Crop Sci. 59:(2):52536
    [Crossref] [Google Scholar]
  29. 29.
    Pazokitoroudi A, Chiu AM, Burch KS, Pasaniuc B, Sankararaman S. 2021.. Quantifying the contribution of dominance deviation effects to complex trait variation in biobank-scale data. . Am. J. Hum. Genet. 108:(5):799808
    [Crossref] [Google Scholar]
  30. 30.
    Wray NR, Visscher PM. 2008.. Estimating trait heritability. . Nat. Educ. 1:(1):29
    [Google Scholar]
  31. 31.
    Maes HH. 2005.. ACE model. . In Encyclopedia of Statistics in Behavioral Science. Hoboken, NJ:: Wiley
    [Google Scholar]
  32. 32.
    Dolan CV, Huijskens RC, Minică CC, Neale MC, Boomsma DI. 2021.. Incorporating polygenic risk scores in the ACE twin model to estimate A–C covariance. . Behav. Genet. 51:(3):23749
    [Crossref] [Google Scholar]
  33. 33.
    Karlsson IK, Escott-Price V, Gatz M, Hardy J, Pedersen NL, et al. 2022.. Measuring heritable contributions to Alzheimer's disease: polygenic risk score analysis with twins. . Brain Commun. 4:(1):fcab308
    [Crossref] [Google Scholar]
  34. 34.
    Fernandez G, Miller J. 1985.. Estimation of heritability by parent-offspring regression. . Theor. Appl. Genet. 70::65054
    [Crossref] [Google Scholar]
  35. 35.
    Wingo TS, Lah JJ, Levey AI, Cutler DJ. 2012.. Autosomal recessive causes likely in early-onset Alzheimer disease. . Arch. Neurol. 69:(1):5964
    [Crossref] [Google Scholar]
  36. 36.
    Sahu M, Prasuna J. 2016.. Twin studies: a unique epidemiological tool. . Indian J. Commun. Med. 41:(3):17782
    [Crossref] [Google Scholar]
  37. 37.
    Yang J, Lee SH, Goddard ME, Visscher PM. 2011.. GCTA: a tool for genome-wide complex trait analysis. . Am. J. Hum. Genet. 88:(1):7682
    [Crossref] [Google Scholar]
  38. 38.
    Ge T, Nichols TE, Lee PH, Holmes AJ, Roffman JL, et al. 2015.. Massively expedited genome-wide heritability analysis (MEGHA). . PNAS 112:(8):247984
    [Crossref] [Google Scholar]
  39. 39.
    Zhou X, Stephens M. 2012.. Genome-wide efficient mixed-model analysis for association studies. . Nat. Genet. 44:(7):82124
    [Crossref] [Google Scholar]
  40. 40.
    Speed D, Holmes J, Balding DJ. 2020.. Evaluating and improving heritability models using summary statistics. . Nat. Genet. 52:(4):45862
    [Crossref] [Google Scholar]
  41. 41.
    Kalaria R. 2002.. Similarities between Alzheimer's disease and vascular dementia. . J. Neurol. Sci. 203::2934
    [Crossref] [Google Scholar]
  42. 42.
    Foguem C, Manckoundia P. 2018.. Lewy body disease: clinical and pathological “overlap syndrome” between synucleinopathies (Parkinson disease) and tauopathies (Alzheimer disease). . Curr. Neurol. Neurosci. Rep. 18::24
    [Crossref] [Google Scholar]
  43. 43.
    Koedam EL, Van der Flier WM, Barkhof F, Koene T, Scheltens P, Pijnenburg YA. 2010.. Clinical characteristics of patients with frontotemporal dementia with and without lobar atrophy on MRI. . Alzheimer Dis. Assoc. Disord. 24:(3):24247
    [Crossref] [Google Scholar]
  44. 44.
    Rubin EH, Zorumski CF, Burke WJ. 1988.. Overlapping symptoms of geriatric depression and Alzheimer-type dementia. . Psychiatr. Serv. 39:(10):107479
    [Crossref] [Google Scholar]
  45. 45.
    Baker E, Leonenko G, Schmidt KM, Hill M, Myers AJ, et al. 2023.. What does heritability of Alzheimer's disease represent?. PLOS ONE 18:(4):e0281440
    [Crossref] [Google Scholar]
  46. 46.
    Wen J, Yang Z, Nasrallah IM, Cui Y, Erus G, et al. 2022.. Genetic, clinical underpinnings of subtle early brain change along Alzheimer's dimensions. . bioRxiv 2022.09.16.508329. https://doi.org/10.1101/2022.09.16.508329
  47. 47.
    Ferreira D, Nordberg A, Westman E. 2020.. Biological subtypes of Alzheimer disease: a systematic review and meta-analysis. . Neurology 94:(10):43648
    [Crossref] [Google Scholar]
  48. 48.
    Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, et al. 2015.. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. . Nat. Genet. 47:(3):29195
    [Crossref] [Google Scholar]
  49. 49.
    Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, et al. 2015.. Partitioning heritability by functional annotation using genome-wide association summary statistics. . Nat. Genet. 47:(11):122835
    [Crossref] [Google Scholar]
  50. 50.
    Gazal S, Finucane HK, Furlotte NA, Loh P-R, Palamara PF, et al. 2017.. Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. . Nat. Genet. 49:(10):142127
    [Crossref] [Google Scholar]
  51. 51.
    Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, et al. 2021.. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease. . Nat. Genet. 53:(9):127682
    [Crossref] [Google Scholar]
  52. 52.
    Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, et al. 2010.. Genome-wide analysis of genetic loci associated with Alzheimer disease. . JAMA 303:(18):183240
    [Crossref] [Google Scholar]
  53. 53.
    Psaty BM, O'Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, et al. 2009.. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. . Circ. Cardiovasc. Genet. 2:(1):7380
    [Crossref] [Google Scholar]
  54. 54.
    Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, et al. 2007.. GAB2 alleles modify Alzheimer's risk in APOE ε4 carriers. . Neuron 54:(5):71320
    [Crossref] [Google Scholar]
  55. 55.
    Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, et al. 2009.. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. . Nat. Genet. 41:(2):19298
    [Crossref] [Google Scholar]
  56. 56.
    Raghavan NS, Brickman AM, Andrews H, Manly JJ, Schupf N, et al. 2018.. Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer's disease. . Ann. Clin. Transl. Neurol. 5:(7):83242
    [Crossref] [Google Scholar]
  57. 57.
    Ma Y, Jun GR, Zhang X, Chung J, Naj AC, et al. 2019.. Analysis of whole-exome sequencing data for Alzheimer disease stratified by APOE genotype. . JAMA Neurol. 76:(9):1099108
    [Crossref] [Google Scholar]
  58. 58.
    Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, et al. 2020.. Whole exome sequencing study identifies novel rare and common Alzheimer's-associated variants involved in immune response and transcriptional regulation. . Mol. Psychiatry 25:(8):185975
    [Crossref] [Google Scholar]
  59. 59.
    Vardarajan BN, Barral S, Jaworski J, Beecham GW, Blue E, et al. 2018.. Whole genome sequencing of Caribbean Hispanic families with late-onset Alzheimer's disease. . Ann. Clin. Transl. Neurol. 5:(4):40617
    [Crossref] [Google Scholar]
  60. 60.
    Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, et al. 2019.. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity & lipid processing. . Nat. Genet. 51:(3):41430
    [Crossref] [Google Scholar]
  61. 61.
    Prokopenko D, Hecker J, Kirchner R, Chapman BA, Hoffman O, et al. 2020.. Identification of novel Alzheimer's disease loci using sex-specific family-based association analysis of whole-genome sequence data. . Sci. Rep. 10:(1):5029
    [Crossref] [Google Scholar]
  62. 62.
    Prokopenko D, Morgan SL, Mullin K, Hofmann O, Chapman B, et al. 2021.. Whole-genome sequencing reveals new Alzheimer's disease–associated rare variants in loci related to synaptic function and neuronal development. . Alzheimer's Dement. 17:(9):150927
    [Crossref] [Google Scholar]
  63. 63.
    Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, et al. 2018.. A tutorial on conducting genome-wide association studies: quality control and statistical analysis. . Int. J. Methods Psychiatr. Res. 27:(2):e1608
    [Crossref] [Google Scholar]
  64. 64.
    Raben TG, Lello L, Widen E, Hsu SD. 2021.. From genotype to phenotype: polygenic prediction of complex human traits. . arXiv:2101.05870
  65. 65.
    Tosto G, Bird TD, Tsuang D, Bennett DA, Boeve BF, et al. 2017.. Polygenic risk scores in familial Alzheimer disease. . Neurology 88:(12):118086
    [Crossref] [Google Scholar]
  66. 66.
    Escott-Price V, Myers AJ, Huentelman M, Hardy J. 2017.. Polygenic risk score analysis of pathologically confirmed Alzheimer disease. . Ann. Neurol. 82:(2):31114
    [Crossref] [Google Scholar]
  67. 67.
    Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. 2009.. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. . PLOS ONE 4:(8):16
    [Crossref] [Google Scholar]
  68. 68.
    Bennett DA, Yu L, Yang J, Klein H-U, De Jager PL. 2017.. Epigenomics of Alzheimer's disease. . In Translating Epigenetics to the Clinic, ed. J Laurence, MV Beusekom , pp. 22778. Boston:: Academic Press
    [Google Scholar]
  69. 69.
    Esposito M, Sherr GL. 2019.. Epigenetic modifications in Alzheimer's neuropathology and therapeutics. . Front. Neurosci. 13:(May):476
    [Crossref] [Google Scholar]
  70. 70.
    Nabais MF, Laws SM, Lin T, Vallerga CL, Armstrong NA, et al. 2021.. Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. . Genome Biol. 22:(1):90
    [Crossref] [Google Scholar]
  71. 71.
    Zhang L, Silva TC, Young JI, Gomez L, Schmidt MA, et al. 2020.. Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer's disease. . Nat. Commun. 11::6114
    [Crossref] [Google Scholar]
  72. 72.
    Wu C, Bradley J, Li Y, Wu L, Deng HW. 2021.. A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes. . Bioinformatics 37:(14):193340
    [Crossref] [Google Scholar]
  73. 73.
    Magistri M, Velmeshev D, Makhmutova M, Faghihi MA. 2015.. Transcriptomics profiling of Alzheimer's disease reveal neurovascular defects, altered amyloid-β homeostasis, and deregulated expression of long noncoding RNAs. . J. Alzheimer's Dis. 48:(3):64765
    [Crossref] [Google Scholar]
  74. 74.
    Verheijen J, Sleegers K. 2018.. Understanding Alzheimer disease at the interface between genetics and transcriptomics. . Trends Genet. 34:(6):43447
    [Crossref] [Google Scholar]
  75. 75.
    Raj T, Li YI, Wong G, Humphrey J, Wang M, et al. 2018.. Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. . Nat. Genet. 50:(11):158492
    [Crossref] [Google Scholar]
  76. 76.
    Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, et al. 2019.. Single-cell transcriptomic analysis of Alzheimer's disease. . Nature 570:(7761):33237
    [Crossref] [Google Scholar]
  77. 77.
    Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, et al. 2021.. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer's disease pathogenesis. . Nat. Genet. 53:(2):14346
    [Crossref] [Google Scholar]
  78. 78.
    Johnson EC, Dammer EB, Duong DM, Ping L, Zhou M, et al. 2020.. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. . Nat. Med. 26:(5):76980
    [Crossref] [Google Scholar]
  79. 79.
    Wilkins JM, Trushina E. 2018.. Application of metabolomics in Alzheimer's disease. . Front. Neurol. 8::719
    [Crossref] [Google Scholar]
  80. 80.
    Arnold M, Nho K, Kueider-Paisley A, Massaro T, Huynh K, et al. 2020.. Sex and APOE ε4 genotype modify the Alzheimer's disease serum metabolome. . Nat. Commun. 11::1148
    [Crossref] [Google Scholar]
  81. 81.
    St. John-Williams L, Mahmoudiandehkordi S, Arnold M, Massaro T, Blach C, et al. 2019.. Bile acids targeted metabolomics and medication classification data in the ADNI1 and ADNIGO/2 cohorts. . Sci. Data 6:(1):212
    [Crossref] [Google Scholar]
  82. 82.
    Shen L, Thompson PM. 2020.. Brain imaging genomics: integrated analysis and machine learning. . Proc. IEEE Inst. Electr. Electron. Eng. 108:(1):12562
    [Crossref] [Google Scholar]
  83. 83.
    Li R, Zhang W, Suk HI, Wang L, Li J, et al. 2014.. Deep learning based imaging data completion for improved brain disease diagnosis. . In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 30512. New York:: Springer
    [Google Scholar]
  84. 84.
    Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, et al. 2013.. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. . Alzheimer's Dement. 9:(5):e11194
    [Crossref] [Google Scholar]
  85. 85.
    Feng C, Elazab A, Yang P, Wang T, Zhou F, et al. 2019.. Deep learning framework for Alzheimer's disease diagnosis via 3D-CNN and FSBI-LSTM. . IEEE Access 7::6360518
    [Crossref] [Google Scholar]
  86. 86.
    Garali I, Adel M, Bourennane S, Guedj E. 2018.. Histogram-based features selection and volume of interest ranking for brain PET image classification. . IEEE J. Transl. Eng. Health Med. 6::2100212
    [Crossref] [Google Scholar]
  87. 87.
    Jie B, Liu M, Liu J, Zhang D, Shen D. 2017.. Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer's disease. . IEEE Trans. Biomed. Eng. 64:(1):23849
    [Crossref] [Google Scholar]
  88. 88.
    Tong T, Gray K, Gao Q, Chen L, Rueckert D. 2017.. Multi-modal classification of Alzheimer's disease using nonlinear graph fusion. . Pattern Recogn. 63::17181
    [Crossref] [Google Scholar]
  89. 89.
    Wen J, Varol E, Sotiras A, Yang Z, Chand GB, et al. 2022.. Multi-scale semi-supervised clustering of brain images: deriving disease subtypes. . Med. Image Anal. 75::102304
    [Crossref] [Google Scholar]
  90. 90.
    Jones D, Lowe V, Graff-Radford J, Botha H, Barnard L, et al. 2022.. A computational model of neurodegeneration in Alzheimer's disease. . Nat. Commun. 13::1643
    [Crossref] [Google Scholar]
  91. 91.
    Rinck P. 2014.. Magnetic Resonance in Medicine. Berlin:: Blackwell
    [Google Scholar]
  92. 92.
    Esteban O, Ciric R, Finc K, Blair RW, Markiewicz CJ, et al. 2020.. Analysis of task-based functional MRI data preprocessed with fMRIPrep. . Nat. Protoc. 15:(7):2186202
    [Crossref] [Google Scholar]
  93. 93.
    Park B-y, Byeon K, Park H. 2019.. FuNP (fusion of neuroimaging preprocessing) pipelines: a fully automated preprocessing software for functional magnetic resonance imaging. . Front. Neuroinformat. 13::5
    [Crossref] [Google Scholar]
  94. 94.
    Cruces RR, Royer J, Herholz P, Larivière S, de Wael RV, et al. 2022.. Micapipe: a pipeline for multimodal neuroimaging and connectome analysis. . NeuroImage 263::119612
    [Crossref] [Google Scholar]
  95. 95.
    Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, et al. 1994.. Statistical parametric maps in functional imaging: a general linear approach. . Hum. Brain Mapp. 2:(4):189210
    [Crossref] [Google Scholar]
  96. 96.
    Du W, Levin-Schwartz Y, Fu GS, Ma S, Calhoun VD, Adalı T. 2016.. The role of diversity in complex ICA algorithms for fMRI analysis. . J. Neurosci. Methods 264::12935
    [Crossref] [Google Scholar]
  97. 97.
    Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, et al. 2018.. Genome-wide association studies of brain imaging phenotypes in UK Biobank. . Nature 562:(7726):21016
    [Crossref] [Google Scholar]
  98. 98.
    Almasy L, Blangero J. 1998.. Multipoint quantitative-trait linkage analysis in general pedigrees. . Am. J. Hum. Genet. 62:(5):1198211
    [Crossref] [Google Scholar]
  99. 99.
    Zhao B, Li T, Smith SM, Xiong D, Wang X, et al. 2022.. Common variants contribute to intrinsic human brain functional networks. . Nat. Genet. 54:(4):50817
    [Crossref] [Google Scholar]
  100. 100.
    Koch W, Teipel S, Mueller S, Benninghoff J, Wagner M, et al. 2012.. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer's disease. . Neurobiol. Aging 33:(3):46678
    [Crossref] [Google Scholar]
  101. 101.
    Wang J, Redmond SJ, Bertoux M, Hodges JR, Hornberger M. 2016.. A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer's disease and behavioral variant frontotemporal dementia. . Front. Aging Neurosci. 8::119
    [Google Scholar]
  102. 102.
    Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, et al. 2016.. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. . Nat. Genet. 48:(5):48187
    [Crossref] [Google Scholar]
  103. 103.
    Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, et al. 2018.. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. . Nat. Commun. 9::918
    [Crossref] [Google Scholar]
  104. 104.
    Zhao T, Hu Y, Zang T, Wang Y. 2019.. Integrate GWAS, eQTL, and mQTL data to identify Alzheimer's disease–related genes. . Front. Genet. 10::1021
    [Crossref] [Google Scholar]
  105. 105.
    Lee B, Yao X, Shen L (Alzheimer's Disease Neuroimaging Initiative). 2022.. Integrative analysis of summary data from GWAS and EQTL studies implicates genes differentially expressed in Alzheimer's disease. . BMC Genom. 23:(4):414
    [Crossref] [Google Scholar]
  106. 106.
    Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, et al. 2015.. A gene-based association method for mapping traits using reference transcriptome data. . Nat. Genet. 47:(9):109198
    [Crossref] [Google Scholar]
  107. 107.
    Yuan Z, Zhu H, Zeng P, Yang S, Sun S, et al. 2020.. Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. . Nat. Commun. 11::3861
    [Crossref] [Google Scholar]
  108. 108.
    Liu N, Xu J, Liu H, Zhang S, Li M, et al. (Alzheimer's Disease Neuroimaging Initiative). 2021.. Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease. . PLOS Genet. 17:(2):e1009363
    [Crossref] [Google Scholar]
  109. 109.
    Pala D, Lee B, Ning X, Kim D, Shen L. 2022.. Mediation analysis and mixed-effects models for the identification of stage-specific imaging genetics patterns in Alzheimer's disease. . In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), ed. D Adjeroh, Q Long, X Shi, F Guo, X Hu , et al., pp. 266773. Piscataway, NJ:: IEEE
    [Google Scholar]
  110. 110.
    Yingxuan E, Yao X, Liu K, Risacher SL, Saykin AJ, et al. 2020.. Polygenic mediation analysis of Alzheimer's disease implicated intermediate amyloid imaging phenotypes. . AMIA Annu. Symp. Proc. 2020::422
    [Google Scholar]
  111. 111.
    Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, et al. 2018.. GWAS on family history of Alzheimer's disease. . Transl. Psychiatry 8:(1):99
    [Crossref] [Google Scholar]
  112. 112.
    Sun Y, Zhu J, Zhou D, Canchi S, Wu C, et al. 2021.. A transcriptome-wide association study of Alzheimer's disease using prediction models of relevant tissues identifies novel candidate susceptibility genes. . Genome Med. 13:(1):141
    [Crossref] [Google Scholar]
  113. 113.
    Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, et al. 2014.. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. . PLOS Genet. 10:(5):e1004383
    [Crossref] [Google Scholar]
  114. 114.
    Ryan DK, Karhunen V, Su B, Traylor M, Richardson TG, et al. 2022.. Genetic evidence for protective effects of angiotensin-converting enzyme against Alzheimer disease but not other neurodegenerative diseases in European populations. . Neurol. Genet. 8:(5):e200014
    [Crossref] [Google Scholar]
  115. 115.
    Zuber V, Grinberg NF, Gill D, Manipur I, Slob EA, et al. 2022.. Combining evidence from Mendelian randomization and colocalization: review and comparison of approaches. . Am. J. Hum. Genet. 109:(5):76782
    [Crossref] [Google Scholar]
  116. 116.
    Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. 2019.. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. . Inform. Fusion 50::7191
    [Crossref] [Google Scholar]
  117. 117.
    Bao J, Chang C, Zhang Q, Saykin AJ, Shen L, et al. 2023.. Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis. . Brief. Bioinformat. 24:(2):bbad073
    [Crossref] [Google Scholar]
  118. 118.
    Bao J, Wen J, Wen Z, Yang S, Cui Y, et al. 2023.. Brain-wide genome-wide colocalization study for integrating genetics, transcriptomics and brain morphometry in Alzheimer's disease. . NeuroImage 280::120346
    [Crossref] [Google Scholar]
  119. 119.
    Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, et al. 2019.. Brain cell type–specific enhancer–promoter interactome maps and disease-risk association. . Science 366:(6469):113439
    [Crossref] [Google Scholar]
  120. 120.
    Kuzma A, Valladares O, Cweibel R, Greenfest-Allen E, Childress DM, et al. 2016.. NIAGADS: the NIA Genetics of Alzheimer's Disease Data Storage Site. . Alzheimer's Dement. 12:(11):12003
    [Crossref] [Google Scholar]
  121. 121.
    Thompson PM, Stein JL, Medland SE, Hibar DP, Arias Vasquez A, et al. 2014.. The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. . Brain Imaging Behav. 8:(2):15382
    [Crossref] [Google Scholar]
  122. 122.
    Zhou Y, Zhang D, Xiong N. 2017.. Post-cloud computing paradigms: a survey and comparison. . Tsinghua Sci. Technol. 22:(6):71432
    [Crossref] [Google Scholar]
  123. 123.
    Konečn'y J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. 2016.. Federated learning: strategies for improving communication efficiency. . arXiv:1610.05492 [cs.LG]
/content/journals/10.1146/annurev-biodatasci-102423-121021
Loading
/content/journals/10.1146/annurev-biodatasci-102423-121021
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error