1932

Abstract

The adaptive immune system recognizes pathogen- and cancer-specific features and is endowed with memory, enabling it to respond quickly and efficiently to repeated encounters with the same antigens. T cells play a central role in the adaptive immune system by directly targeting intracellular pathogens and helping to activate B cells to secrete antibodies. Several fundamental protein interactions—including those between major histocompatibility complex (MHC) proteins and antigen-derived peptides as well as between T cell receptors and peptide–MHC complexes—underlie the ability of T cells to recognize antigens with great precision. Computational approaches to predict these interactions are increasingly being used for medically relevant applications, including vaccine design and prediction of patient response to cancer immunotherapies. We provide computational researchers with an accessible introduction to the adaptive immune system, review computational approaches to predict the key protein interactions underlying T cell–mediated adaptive immunity, and highlight remaining challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102423-122741
2024-08-23
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-102423-122741.html?itemId=/content/journals/10.1146/annurev-biodatasci-102423-122741&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Goldstein LD, Chen YJJ, Wu J, Chaudhuri S, Hsiao YC, et al. 2019.. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. . Commun. Biol. 2::304
    [Crossref] [Google Scholar]
  2. 2.
    Pai JA, Satpathy AT. 2021.. High-throughput and single-cell T cell receptor sequencing technologies. . Nat. Methods 18:(8):88192
    [Crossref] [Google Scholar]
  3. 3.
    Papalexi E, Satija R. 2018.. Single-cell RNA sequencing to explore immune cell heterogeneity. . Nat. Rev. Immunol. 18:(1):3545
    [Crossref] [Google Scholar]
  4. 4.
    Wang F, Huang S, Gao R, Zhou Y, Lai C, et al. 2020.. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. . Cell Discov. 6::83
    [Crossref] [Google Scholar]
  5. 5.
    Davis MM, Tato CM, Furman D. 2017.. Systems immunology: just getting started. . Nat. Immunol. 18:(7):72532
    [Crossref] [Google Scholar]
  6. 6.
    Spiering MJ. 2015.. Primer on the immune system. . Alcohol Res. Curr. Rev. 37:(2):17175
    [Google Scholar]
  7. 7.
    Soto C, Bombardi RG, Kozhevnikov M, Sinkovits RS, Chen EC, et al. 2020.. High frequency of shared clonotypes in human T cell receptor repertoires. . Cell Rep. 32:(2):107882
    [Crossref] [Google Scholar]
  8. 8.
    Nikolich-Žugich J, Slifka MK, Messaoudi I. 2004.. The many important facets of T-cell repertoire diversity. . Nat. Rev. Immunol. 4:(2):12332
    [Crossref] [Google Scholar]
  9. 9.
    Soto C, Bombardi RG, Branchizio A, Kose N, Matta P, et al. 2019.. High frequency of shared clonotypes in human B cell receptor repertoires. . Nature 566:(7744):398402
    [Crossref] [Google Scholar]
  10. 10.
    Rees AR. 2020.. Understanding the human antibody repertoire. . mAbs 12:(1):1729683
    [Crossref] [Google Scholar]
  11. 11.
    Song L, Cohen D, Ouyang Z, Cao Y, Hu X, Liu XS. 2021.. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. . Nat. Methods 18:(6):62730
    [Crossref] [Google Scholar]
  12. 12.
    Ribot JC, Lopes N, Silva-Santos B. 2021.. γδ T cells in tissue physiology and surveillance. . Nat. Rev. Immunol. 21:(4):22132
    [Crossref] [Google Scholar]
  13. 13.
    Vyas JM, Van der Veen AG, Ploegh HL. 2008.. The known unknowns of antigen processing and presentation. . Nat. Rev. Immunol. 8:(8):60718
    [Crossref] [Google Scholar]
  14. 14.
    Montoya M, Del Val M. 1999.. Intracellular rate-limiting steps in MHC class I antigen processing. . J. Immunol. 163:(4):191422
    [Crossref] [Google Scholar]
  15. 15.
    Hewitt EW. 2003.. The MHC class I antigen presentation pathway: strategies for viral immune evasion. . Immunology 110:(2):16369
    [Crossref] [Google Scholar]
  16. 16.
    Roche PA, Furuta K. 2015.. The ins and outs of MHC class II–mediated antigen processing and presentation. . Nat. Rev. Immunol. 15:(4):20316
    [Crossref] [Google Scholar]
  17. 17.
    Amengual-Rigo P, Guallar V. 2021.. NetCleave: an open-source algorithm for predicting C-terminal antigen processing for MHC-I and MHC-II. . Sci. Rep. 11::13126
    [Crossref] [Google Scholar]
  18. 18.
    Jespersen MC, Mahajan S, Peters B, Nielsen M, Marcatili P. 2019.. Antibody specific B-cell epitope predictions: leveraging information from antibody–antigen protein complexes. . Front. Immunol. 10::298
    [Crossref] [Google Scholar]
  19. 19.
    Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, et al. 2021.. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. . Nat. Biomed. Eng. 5:(6):60012
    [Crossref] [Google Scholar]
  20. 20.
    Van Regenmortel MHV. 2019.. Specificity, polyspecificity and heterospecificity of antibody-antigen recognition. . In HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design: A Review of 20 Years of Research, pp. 3956. Berlin:: Springer
    [Google Scholar]
  21. 21.
    Trolle T, McMurtrey CP, Sidney J, Bardet W, Osborn SC, et al. 2016.. The length distribution of class I–restricted T cell epitopes is determined by both peptide supply and MHC allele–specific binding preference. . J. Immunol. 196:(4):148087
    [Crossref] [Google Scholar]
  22. 22.
    Kasson PM, Rabinowitz JD, Schmitt L, Davis MM, McConnell HM. 2000.. Kinetics of peptide binding to the class II MHC protein I-Ek. . Biochemistry 39:(5):104858
    [Crossref] [Google Scholar]
  23. 23.
    Janeway CA Jr., Travers P, Walport M, Shlomchik MJ. 2005.. Immunobiology: The Immune System in Health and Disease. New York:: Garland
    [Google Scholar]
  24. 24.
    Market E, Papavasiliou FN. 2003.. V(D)J recombination and the evolution of the adaptive immune system. . PLOS Biol. 1:(1):e16
    [Crossref] [Google Scholar]
  25. 25.
    Roth DB. 2014.. V(D)J recombination: mechanism, errors, and fidelity. . Microbiol. Spectr. 2:(6). https://doi.org/10.1128/microbiolspec.mdna3-0041-2014
    [Crossref] [Google Scholar]
  26. 26.
    Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, et al. 2017.. Quantifiable predictive features define epitope-specific T cell receptor repertoires. . Nature 547:(7661):8993
    [Crossref] [Google Scholar]
  27. 27.
    Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. 2017.. Emerging concepts in TCR specificity: rationalizing and (maybe) predicting outcomes. . J. Immunol. 199:(7):220313
    [Crossref] [Google Scholar]
  28. 28.
    Ehrlich R, Ghersi D. 2017.. Analyzing T cell receptor α/β usage in binding to the pMHC. . In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2017), pp. 8387. Piscataway, NJ:: IEEE
    [Google Scholar]
  29. 29.
    Stadinski BD, Trenh P, Duke B, Huseby PG, Li G, et al. 2014.. Effect of CDR3 sequences and distal V gene residues in regulating TCR–MHC contacts and ligand specificity. . J. Immunol. 192:(12):607182
    [Crossref] [Google Scholar]
  30. 30.
    Jokinen E, Huuhtanen J, Mustjoki S, Heinonen M, Lähdesmäki H. 2021.. Predicting recognition between T cell receptors and epitopes with TCRGP. . PLOS Comput. Biol. 17:(3):e1008814
    [Crossref] [Google Scholar]
  31. 31.
    Rudolph MG, Stanfield RL, Wilson IA. 2006.. How TCRs bind MHCs, peptides, and coreceptors. . Annu. Rev. Immunol. 24::41966
    [Crossref] [Google Scholar]
  32. 32.
    Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, et al. 2017.. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. . Front. Immunol. 8::292
    [Crossref] [Google Scholar]
  33. 33.
    Subudhi SK, Vence L, Zhao H, Blando J, Yadav SS, et al. 2020.. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. . Sci. Transl. Med. 12:(537):eaaz3577
    [Crossref] [Google Scholar]
  34. 34.
    Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, et al. 2019.. MHC-II neoantigens shape tumour immunity and response to immunotherapy. . Nature 574:(7780):696701
    [Crossref] [Google Scholar]
  35. 35.
    Blass E, Ott PA. 2021.. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. . Nat. Rev. Clin. Oncol. 18:(4):21529
    [Crossref] [Google Scholar]
  36. 36.
    Liu G, Carter B, Bricken T, Jain S, Viard M, et al. 2020.. Computationally optimized SARS-CoV-2 MHC class I and II vaccine formulations predicted to target human haplotype distributions. . Cell Syst. 11:(2):13144.e6
    [Crossref] [Google Scholar]
  37. 37.
    Shiina T, Hosomichi K, Inoko H, Kulski JK. 2009.. The HLA genomic loci map: expression, interaction, diversity and disease. . J. Hum. Genet. 54:(1):1539
    [Crossref] [Google Scholar]
  38. 38.
    Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. 2020.. IPD-IMGT/HLA Database. . Nucleic Acids Res. 48::D94855
    [Google Scholar]
  39. 39.
    Michel-Todó L, Reche PA, Bigey P, Pinazo MJ, Gascón J, Alonso-Padilla J. 2019.. In silico design of an epitope-based vaccine ensemble for Chagas disease. . Front. Immunol. 10::2698
    [Crossref] [Google Scholar]
  40. 40.
    Gonzalez-Galarza FF, McCabe A, dos Santos EJM, Jones J, Takeshita L, et al. 2020.. Allele Frequency Net Database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. . Nucleic Acids Res. 48::D78388
    [Google Scholar]
  41. 41.
    Martin SD, Brown SD, Wick DA, Nielsen JS, Kroeger DR, et al. 2016.. Low mutation burden in ovarian cancer may limit the utility of neoantigen-targeted vaccines. . PLOS ONE 11:(5):e0155189
    [Crossref] [Google Scholar]
  42. 42.
    Schreiber RD, Old LJ, Smyth MJ. 2011.. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. . Science 331:(6024):156570
    [Crossref] [Google Scholar]
  43. 43.
    Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J, et al. 2017.. MHC-I genotype restricts the oncogenic mutational landscape. . Cell 171:(6):127283.e15
    [Crossref] [Google Scholar]
  44. 44.
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, et al. 2017.. An immunogenic personal neoantigen vaccine for patients with melanoma. . Nature 547::21721
    [Crossref] [Google Scholar]
  45. 45.
    Zhao W, Sher X. 2018.. Systematically benchmarking peptide–MHC binding predictors: from synthetic to naturally processed epitopes. . PLOS Comput. Biol. 14:(11):e1006457
    [Crossref] [Google Scholar]
  46. 46.
    Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, et al. 2020.. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. . Cell 183:(3):81834.e13
    [Crossref] [Google Scholar]
  47. 47.
    Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. 2020.. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. . Nucleic Acids Res. 48::W44954
    [Crossref] [Google Scholar]
  48. 48.
    Andreatta M, Nielsen M. 2016.. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. . Bioinformatics 32:(4):51117
    [Crossref] [Google Scholar]
  49. 49.
    Shao XM, Bhattacharya R, Huang J, Sivakumar IKA, Tokheim C, et al. 2020.. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets. . Cancer Immunol. Res. 8:(3):396408
    [Crossref] [Google Scholar]
  50. 50.
    O'Donnell TJ, Rubinsteyn A, Laserson U. 2020.. MHCflurry 2.0: improved pan-allele prediction of MHC class I–presented peptides by incorporating antigen processing. . Cell Syst. 11:(1):4248.e7
    [Crossref] [Google Scholar]
  51. 51.
    Liu Z, Cui Y, Xiong Z, Nasiri A, Zhang A, Hu J. 2019.. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA–peptide binding affinity prediction. . Sci. Rep. 9::794
    [Crossref] [Google Scholar]
  52. 52.
    Zeng H, Gifford DK. 2019.. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding. . Bioinformatics 35:(14):i27883
    [Crossref] [Google Scholar]
  53. 53.
    Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, et al. 2007.. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. . PLOS ONE 2:(8):e796
    [Crossref] [Google Scholar]
  54. 54.
    Pei B, Hsu YH. 2020.. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity. . Immunogenetics 72:(5):295304
    [Crossref] [Google Scholar]
  55. 55.
    Chu Y, Zhang Y, Wang Q, Zhang L, Wang X, et al. 2022.. A transformer-based model to predict peptide–HLA class I binding and optimize mutated peptides for vaccine design. . Nat. Mach. Intell. 4:(3):30011
    [Crossref] [Google Scholar]
  56. 56.
    O'Donnell T, Rubinsteyn A, Bonsack M, Riemer A, Laserson U, Hammerbacher J. 2018.. MHCflurry: open-source class I MHC binding affinity prediction. . Cell Syst. 7:(1):12932.e4
    [Crossref] [Google Scholar]
  57. 57.
    Sidney J, Peters B, Frahm N, Brander C, Sette A. 2008.. HLA class I supertypes: a revised and updated classification. . BMC Immunol. 9::1
    [Crossref] [Google Scholar]
  58. 58.
    Trolle T, Metushi IG, Greenbaum JA, Kim Y, Sidney J, et al. 2015.. Automated benchmarking of peptide–MHC class I binding predictions. . Bioinformatics 31:(13):217481
    [Crossref] [Google Scholar]
  59. 59.
    Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, et al. 2019.. The Immune Epitope Database (IEDB): 2018 update. . Nucleic Acids Res. 47::D33943
    [Crossref] [Google Scholar]
  60. 60.
    Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. 2017.. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. . J. Immunol. 199:(9):336068
    [Crossref] [Google Scholar]
  61. 61.
    Prachar M, Justesen S, Steen-Jensen DB, Thorgrimsen S, Jurgons E, et al. 2020.. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. . Sci. Rep. 10::20465
    [Crossref] [Google Scholar]
  62. 62.
    Liu Z, Jin J, Cui Y, Xiong Z, Nasiri A, et al. 2021.. DeepSeqPanII: an interpretable recurrent neural network model with attention mechanism for peptide–HLA class II binding prediction. . IEEE/ACM Trans. Comput. Biol. Bioinform. 19:(4):218896
    [Crossref] [Google Scholar]
  63. 63.
    You R, Qu W, Mamitsuka H, Zhu S. 2022.. DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction. . Bioinformatics 38:(Suppl. 1):i22028
    [Crossref] [Google Scholar]
  64. 64.
    Finotello F, Rieder D, Hackl H, Trajanoski Z. 2019.. Next-generation computational tools for interrogating cancer immunity. . Nat. Rev. Genet. 20:(12):72446
    [Crossref] [Google Scholar]
  65. 65.
    Zhang H, Liu L, Zhang J, Chen J, Ye J, et al. 2020.. Investigation of antigen-specific T-cell receptor clusters in human cancers. . Clin. Cancer Res. 26:(6):135971
    [Crossref] [Google Scholar]
  66. 66.
    Welsh RM, Selin LK. 2002.. No one is naive: the significance of heterologous T-cell immunity. . Nat. Rev. Immunol. 2:(6):41726
    [Crossref] [Google Scholar]
  67. 67.
    Sewell AK. 2012.. Why must T cells be cross-reactive?. Nat. Rev. Immunol. 12:(9):66977
    [Crossref] [Google Scholar]
  68. 68.
    Mason D. 1998.. A very high level of crossreactivity is an essential feature of the T-cell receptor. . Immunol. Today 19:(9):395404
    [Crossref] [Google Scholar]
  69. 69.
    Springer I, Tickotsky N, Louzoun Y. 2021.. Contribution of T cell receptor α and β CDR3, MHC typing, V and J genes to peptide binding prediction. . Front. Immunol. 12::664514
    [Crossref] [Google Scholar]
  70. 70.
    Springer I, Besser H, Tickotsky-Moskovitz N, Dvorkin S, Louzoun Y. 2020.. Prediction of specific TCR-peptide binding from large dictionaries of TCR-peptide pairs. . Front. Immunol. 11::1803
    [Crossref] [Google Scholar]
  71. 71.
    Weber A, Born J, Rodriguez Martínez M. 2021.. TITAN: T-cell receptor specificity prediction with bimodal attention networks. . Bioinformatics 37:(Suppl. 1):i23744
    [Crossref] [Google Scholar]
  72. 72.
    Moris P, De Pauw J, Postovskaya A, Gielis S, De Neuter N, et al. 2021.. Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification. . Brief. Bioinform. 22:(4):bbaa318
    [Crossref] [Google Scholar]
  73. 73.
    Zhang H, Zhan X, Li B. 2021.. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. . Nat. Commun. 12::4699
    [Crossref] [Google Scholar]
  74. 74.
    Bradley P, Thomas PG. 2019.. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. . Annu. Rev. Immunol. 37::54770
    [Crossref] [Google Scholar]
  75. 75.
    Benn CS, Netea MG, Selin LK, Aaby P. 2013.. A small jab—a big effect: nonspecific immunomodulation by vaccines. . Trends Immunol. 34:(9):43139
    [Crossref] [Google Scholar]
  76. 76.
    Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. 2017.. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. . Nature 551:(7681):51216
    [Crossref] [Google Scholar]
  77. 77.
    Wang RF, Wang HY. 2017.. Immune targets and neoantigens for cancer immunotherapy and precision medicine. . Cell Res. 27:(1):1137
    [Crossref] [Google Scholar]
  78. 78.
    Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, et al. 2013.. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. . Blood 122:(6):86371
    [Crossref] [Google Scholar]
  79. 79.
    Antunes DA, Rigo MM, Freitas MV, Mendes MF, Sinigaglia M, et al. 2017.. Interpreting T-cell cross-reactivity through structure: implications for TCR-based cancer immunotherapy. . Front. Immunol. 8::1210
    [Crossref] [Google Scholar]
  80. 80.
    Zhang W, Hawkins PG, He J, Gupta NT, Liu J, et al. 2021.. A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity. . Sci. Adv. 7:(20):eabf5835
    [Crossref] [Google Scholar]
  81. 81.
    Montemurro A, Schuster V, Povlsen HR, Bentzen AK, Jurtz V, et al. 2021.. NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data. . Commun. Biol. 4::1060
    [Crossref] [Google Scholar]
  82. 82.
    Sidhom JW, Larman HB, Pardoll DM, Baras AS. 2021.. DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. . Nat. Commun. 12::1605
    [Crossref] [Google Scholar]
  83. 83.
    Glanville J, Huang H, Nau A, Hatton O, Wagar LE, et al. 2017.. Identifying specificity groups in the T cell receptor repertoire. . Nature 547:(7661):9498
    [Crossref] [Google Scholar]
  84. 84.
    Valkiers S, Van Houcke M, Laukens K, Meysman P. 2021.. ClusTCR: a Python interface for rapid clustering of large sets of CDR3 sequences with unknown antigen specificity. . Bioinformatics 37:(24):486567
    [Crossref] [Google Scholar]
  85. 85.
    Ehrlich R, Kamga L, Gil A, Luzuriaga K, Selin LK, Ghersi D. 2021.. SwarmTCR: a computational approach to predict the specificity of T cell receptors. . BMC Bioinform. 22::422
    [Crossref] [Google Scholar]
  86. 86.
    Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. 2020.. Predicting cross-reactivity and antigen specificity of T cell receptors. . Front. Immunol. 11::565096
    [Crossref] [Google Scholar]
  87. 87.
    Tong Y, Wang J, Zheng T, Zhang X, Xiao X, et al. 2020.. SETE: Sequence-based Ensemble learning approach for TCR Epitope binding prediction. . Comput. Biol. Chem. 87::107281
    [Crossref] [Google Scholar]
  88. 88.
    De Neuter N, Bittremieux W, Beirnaert C, Cuypers B, Mrzic A, et al. 2018.. On the feasibility of mining CD8+ T cell receptor patterns underlying immunogenic peptide recognition. . Immunogenetics 70:(3):15968
    [Crossref] [Google Scholar]
  89. 89.
    Lanzarotti E, Marcatili P, Nielsen M. 2019.. T-cell receptor cognate target prediction based on paired α and β chain sequence and structural CDR loop similarities. . Front. Immunol. 10::2080
    [Crossref] [Google Scholar]
  90. 90.
    Lin X, George JT, Schafer NP, Ng Chau K, Birnbaum ME, et al. 2021.. Rapid assessment of T-cell receptor specificity of the immune repertoire. . Nat. Comput. Sci. 1:(5):36273
    [Crossref] [Google Scholar]
  91. 91.
    Kamga L, Gil A, Song I, Brody R, Ghersi D, et al. 2019.. CDR3α drives selection of the immunodominant Epstein Barr virus (EBV) BRLF1-specific CD8 T cell receptor repertoire in primary infection. . PLOS Pathog. 15:(11):e1008122
    [Crossref] [Google Scholar]
  92. 92.
    Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B, et al. 2019.. Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires. . Front. Immunol. 10::2820
    [Crossref] [Google Scholar]
  93. 93.
    Chronister WD, Crinklaw A, Mahajan S, Vita R, Koşaloǧlu-Yalçin Z, et al. 2021.. TCRMatch: predicting T-cell receptor specificity based on sequence similarity to previously characterized receptors. . Front. Immunol. 12::640725
    [Crossref] [Google Scholar]
  94. 94.
    Jurtz VI, Jessen LE, Bentzen AK, Jespersen MC, Mahajan S, et al. 2018.. NetTCR: sequence-based prediction of TCR binding to peptide–MHC complexes using convolutional neural networks. . bioRxiv 433706. https://doi.org/10.1101/433706
  95. 95.
    Weininger D. 1988.. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. . J. Chem. Inf. Comput. Sci. 28:(1):3136
    [Crossref] [Google Scholar]
  96. 96.
    Brochet X, Lefranc MP, Giudicelli V. 2008.. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. . Nucleic Acids Res. 36::5038
    [Crossref] [Google Scholar]
  97. 97.
    Papadopoulou I, Nguyen AP, Weber A, Martínez MR. 2022.. DECODE: a computational pipeline to discover T cell receptor binding rules. . Bioinformatics 38:(Suppl. 1):i24654
    [Crossref] [Google Scholar]
  98. 98.
    Ribeiro MT, Singh S, Guestrin C. 2018.. Anchors: high-precision model-agnostic explanations. . In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 152735. Washington, DC:: AAAI
    [Google Scholar]
  99. 99.
    Lefranc MP, Pommié C, Ruiz M, Giudicelli V, Foulquier E, et al. 2003.. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. . Dev. Comp. Immunol. 27:(1):5577
    [Crossref] [Google Scholar]
  100. 100.
    Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. 2017.. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. . Bioinformatics 33:(18):292429
    [Crossref] [Google Scholar]
  101. 101.
    Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, et al. 2018.. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. . Nucleic Acids Res. 46::D41927
    [Crossref] [Google Scholar]
  102. 102.
    10× Genomics. 2019.. A new way of exploring immunity—linking highly multiplexed antigen recognition to immune repertoire and phenotype. Appl. Note , 10× Genomics, San Francisco, CA:. https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_A_New_Way_of_Exploring_Immunity_Digital.pdf
    [Google Scholar]
  103. 103.
    Immudex. n.d.. Getting started guide: designing experiments with dCODE Dextramer® reagents. User Guide , Immudex, Copenhagen, Den:. https://pages.10xgenomics.com/rs/446-PBO-704/images/Immudex_TF1271.01_Getting_Started_Guide-dCODE_Dextramer_10x_Compatible.pdf
    [Google Scholar]
  104. 104.
    Fischer DS, Wu Y, Schubert B, Theis FJ. 2020.. Predicting antigen specificity of single T cells based on TCR CDR 3 regions. . Mol. Syst. Biol. 16:(8):e9416
    [Crossref] [Google Scholar]
  105. 105.
    Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F, et al. 2018.. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. . Cell 174:(3):672.e2787.e27
    [Crossref] [Google Scholar]
  106. 106.
    Song I, Gil A, Mishra R, Ghersi D, Selin LK, Stern LJ. 2017.. Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. . Nat. Struct. Mol. Biol. 24:(4):395406
    [Crossref] [Google Scholar]
  107. 107.
    Szeto C, Lobos CA, Nguyen AT, Gras S. 2021.. TCR recognition of peptide—MHC-I: rule makers and breakers. . Int. J. Mol. Sci. 22:(1):68
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-102423-122741
Loading
/content/journals/10.1146/annurev-biodatasci-102423-122741
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error