1932

Abstract

The integration of multiomics data with detailed phenotypic insights from electronic health records marks a paradigm shift in biomedical research, offering unparalleled holistic views into health and disease pathways. This review delineates the current landscape of multimodal omics data integration, emphasizing its transformative potential in generating a comprehensive understanding of complex biological systems. We explore robust methodologies for data integration, ranging from concatenation-based to transformation-based and network-based strategies, designed to harness the intricate nuances of diverse data types. Our discussion extends from incorporating large-scale population biobanks to dissecting high-dimensional omics layers at the single-cell level. The review underscores the emerging role of large language models in artificial intelligence, anticipating their influence as a near-future pivot in data integration approaches. Highlighting both achievements and hurdles, we advocate for a concerted effort toward sophisticated integration models, fortifying the foundation for groundbreaking discoveries in precision medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102523-103801
2024-05-20
2024-06-18
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-biodatasci-102523-103801
Loading

Supplemental Appendices 1-3, Supplemental Figures 1-2, and Supplemental Table 1

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error