1932

Abstract

Proteins on the surfaces of cells serve as physical connection points to bridge one cell with another, enabling direct communication between cells and cohesive structure. As biomedical research makes the leap from characterizing individual cells toward understanding the multicellular organization of the human body, the binding interactions between molecules on the surfaces of cells are foundational both for computational models and for clinical efforts to exploit these influential receptor pathways. To achieve this grander vision, we must assemble the full interactome of ways surface proteins can link together. This review investigates how close we are to knowing the human cell surface protein interactome. We summarize the current state of databases and systematic technologies to assemble surface protein interactomes, while highlighting substantial gaps that remain. We aim for this to serve as a road map for eventually building a more robust picture of the human cell surface protein interactome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102523-103821
2024-08-23
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-102523-103821.html?itemId=/content/journals/10.1146/annurev-biodatasci-102523-103821&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Luck K, Kim D-K, Lambourne L, Spirohn K, Begg BE, et al. 2020.. A reference map of the human binary protein interactome. . Nature 580:(7803):4028
    [Crossref] [Google Scholar]
  2. 2.
    Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, et al. 2015.. The BioPlex network: a systematic exploration of the human interactome. . Cell 162:(2):42540
    [Crossref] [Google Scholar]
  3. 3.
    Garcia MA, Nelson WJ, Chavez N. 2018.. Cell–cell junctions organize structural and signaling networks. . Cold Spring Harb. Perspect. Biol. 10:(4):a029181
    [Crossref] [Google Scholar]
  4. 4.
    Hynes RO. 1999.. Cell adhesion: old and new questions. . Trends Cell Biol. 9:(12):M3337
    [Crossref] [Google Scholar]
  5. 5.
    Zhu Y, Yao S, Chen L. 2011.. Cell surface signaling molecules in the control of immune responses: a tide model. . Immunity 34:(4):46678
    [Crossref] [Google Scholar]
  6. 6.
    Overington JP, Al-Lazikani B, Hopkins AL. 2006.. How many drug targets are there?. Nat. Rev. Drug Discov. 5:(12):99396
    [Crossref] [Google Scholar]
  7. 7.
    Rask-Andersen M, Almén MS, Schiöth HB. 2011.. Trends in the exploitation of novel drug targets. . Nat. Rev. Drug Discov. 10:(8):57990
    [Crossref] [Google Scholar]
  8. 8.
    Browaeys R, Saelens W, Saeys Y. 2020.. NicheNet: modeling intercellular communication by linking ligands to target genes. . Nat. Methods 17:(2):15962
    [Crossref] [Google Scholar]
  9. 9.
    Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020.. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. . Nat. Protoc. 15:(4):1484506
    [Crossref] [Google Scholar]
  10. 10.
    Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, et al. 2021.. Inference and analysis of cell-cell communication using CellChat. . Nat. Commun. 12:(1):1088
    [Crossref] [Google Scholar]
  11. 11.
    Almet AA, Cang Z, Jin S, Nie Q. 2021.. The landscape of cell-cell communication through single-cell transcriptomics. . Curr. Opin. Syst. Biol. 26::1223
    [Crossref] [Google Scholar]
  12. 12.
    Armingol E, Officer A, Harismendy O, Lewis NE. 2021.. Deciphering cell–cell interactions and communication from gene expression. . Nat. Rev. Genet. 22:(2):7188
    [Crossref] [Google Scholar]
  13. 13.
    Wright GJ. 2009.. Signal initiation in biological systems: the properties and detection of transient extracellular protein interactions. . Mol. Biosyst. 5:(12):140512
    [Crossref] [Google Scholar]
  14. 14.
    Brito GC, Andrews DW. 2011.. Removing bias against membrane proteins in interaction networks. . BMC Syst. Biol. 5::169
    [Crossref] [Google Scholar]
  15. 15.
    Kotlyar M, Pastrello C, Pivetta F, Lo Sardo A, Cumbaa C, et al. 2015.. In silico prediction of physical protein interactions and characterization of interactome orphans. . Nat. Methods 12:(1):7984
    [Crossref] [Google Scholar]
  16. 16.
    Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, et al. 2009.. An experimentally derived confidence score for binary protein-protein interactions. . Nat. Methods 6:(1):9197
    [Crossref] [Google Scholar]
  17. 17.
    Singer SJ, Nicolson GL. 1972.. The fluid mosaic model of the structure of cell membranes. . Science 175:(4023):72031
    [Crossref] [Google Scholar]
  18. 18.
    Duncan AL, Reddy T, Koldsø H, Hélie J, Fowler PW, et al. 2017.. Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. . Sci. Rep. 7:(1):16647
    [Crossref] [Google Scholar]
  19. 19.
    Dupuy AD, Engelman DM. 2008.. Protein area occupancy at the center of the red blood cell membrane. . PNAS 105:(8):284852
    [Crossref] [Google Scholar]
  20. 20.
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, et al. 2015.. Tissue-based map of the human proteome. . Science 347:(6220):1260419
    [Crossref] [Google Scholar]
  21. 21.
    Bausch-Fluck D, Goldmann U, Müller S, van Oostrum M, Müller M, et al. 2018.. The in silico human surfaceome. . PNAS 115:(46):E1098897
    [Crossref] [Google Scholar]
  22. 22.
    Bugge K, Lindorff-Larsen K, Kragelund BB. 2016.. Understanding single-pass transmembrane receptor signaling from a structural viewpoint—what are we missing?. FEBS J. 283:(24):442451
    [Crossref] [Google Scholar]
  23. 23.
    Williams AF, Barclay AN. 1988.. The immunoglobulin superfamily—domains for cell surface recognition. . Annu. Rev. Immunol. 6::381405
    [Crossref] [Google Scholar]
  24. 24.
    Evans EJ, Hene L, Sparks LM, Dong T, Retiere C, et al. 2003.. The T cell surface—how well do we know it?. Immunity 19:(2):21323
    [Crossref] [Google Scholar]
  25. 25.
    Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. 2006.. In-depth analysis of the membrane and cytosolic proteome of red blood cells. . Blood 108:(3):791801
    [Crossref] [Google Scholar]
  26. 26.
    Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, et al. 2017.. Social network architecture of human immune cells unveiled by quantitative proteomics. . Nat. Immunol. 18:(5):58393
    [Crossref] [Google Scholar]
  27. 27.
    Germain RN, Robey EA, Cahalan MD. 2012.. A decade of imaging cellular motility and interaction dynamics in the immune system. . Science 336:(6089):167681
    [Crossref] [Google Scholar]
  28. 28.
    Celli S, Day M, Müller AJ, Molina-Paris C, Lythe G, Bousso P. 2012.. How many dendritic cells are required to initiate a T-cell response?. Blood 120:(19):394548
    [Crossref] [Google Scholar]
  29. 29.
    Jenkins E, Körbel M, O'Brien-Ball C, McColl J, Chen KY, et al. 2023.. Antigen discrimination by T cells relies on size-constrained microvillar contact. . Nat. Commun. 14:(1):1611
    [Crossref] [Google Scholar]
  30. 30.
    Shilts J, Severin Y, Galaway F, Müller-Sienerth N, Chong Z-S, et al. 2022.. A physical wiring diagram for the human immune system. . Nature 608:(7922):397404
    [Crossref] [Google Scholar]
  31. 31.
    Dias R, Kolaczkowski B. 2017.. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data. . BMC Bioinform. 18:(Suppl. 5):102
    [Crossref] [Google Scholar]
  32. 32.
    Belardi B, Son S, Felce JH, Dustin ML, Fletcher DA. 2020.. Cell–cell interfaces as specialized compartments directing cell function. . Nat. Rev. Mol. Cell Biol. 21:(12):75064
    [Crossref] [Google Scholar]
  33. 33.
    Stoeger T, Gerlach M, Morimoto RI, Nunes Amaral LA. 2018.. Large-scale investigation of the reasons why potentially important genes are ignored. . PLOS Biol. 16:(9):e2006643
    [Crossref] [Google Scholar]
  34. 34.
    Sharma KR, Colvis CM, Rodgers GP, Sheeley DM. 2023.. Illuminating the druggable genome: pathways to progress. . Drug Discov. Today 29:(3):103805
    [Crossref] [Google Scholar]
  35. 35.
    Tsai Y-X, Chang N-E, Reuter K, Chang H-T, Yang T-J, . 2024.. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. . Cell 187(5):1296311.e26
    [Google Scholar]
  36. 36.
    Martinez-Martin N. 2017.. Technologies for proteome-wide discovery of extracellular host-pathogen interactions. . J. Immunol. Res. 2017::2197615
    [Crossref] [Google Scholar]
  37. 37.
    Wood L, Wright GJ. 2019.. Approaches to identify extracellular receptor–ligand interactions. . Curr. Opin. Struct. Biol. 56::2836
    [Crossref] [Google Scholar]
  38. 38.
    Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. 2015.. Fundamentals of protein interaction network mapping. . Mol. Syst. Biol. 11:(12):848
    [Crossref] [Google Scholar]
  39. 39.
    Vidal M. 2009.. A unifying view of 21st century systems biology. . FEBS Lett. 583:(24):389194
    [Crossref] [Google Scholar]
  40. 40.
    Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, et al. 2017.. Architecture of the human interactome defines protein communities and disease networks. . Nature 545:(7655):5059
    [Crossref] [Google Scholar]
  41. 41.
    Richards AL, Eckhardt M, Krogan NJ. 2021.. Mass spectrometry-based protein–protein interaction networks for the study of human diseases. . Mol. Syst. Biol. 17:(1):e8792
    [Crossref] [Google Scholar]
  42. 42.
    Sokolina K, Kittanakom S, Snider J, Kotlyar M, Maurice P, et al. 2017.. Systematic protein–protein interaction mapping for clinically relevant human GPCRs. . Mol. Syst. Biol. 13:(3):918
    [Crossref] [Google Scholar]
  43. 43.
    Frei AP, Moest H, Novy K, Wollscheid B. 2013.. Ligand-based receptor identification on living cells and tissues using TRICEPS. . Nat. Protoc. 8:(7):132136
    [Crossref] [Google Scholar]
  44. 44.
    Li H, Watson A, Olechwier A, Anaya M, Sorooshyari SK, et al. 2017.. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. . eLife 6::e28111
    [Crossref] [Google Scholar]
  45. 45.
    Söllner C, Wright GJ. 2009.. A cell surface interaction network of neural leucine-rich repeat receptors. . Genome Biol. 10:(9):R99
    [Crossref] [Google Scholar]
  46. 46.
    Martinez-Martin N, Ramani SR, Hackney JA, Tom I, Wranik BJ, et al. 2016.. The extracellular interactome of the human adenovirus family reveals diverse strategies for immunomodulation. . Nat. Commun. 7::11473
    [Crossref] [Google Scholar]
  47. 47.
    Yang W, Padkjær SB, Wang J, Sun Z, Shan B, et al. 2017.. Construction of a versatile expression library for all human single-pass transmembrane proteins for receptor pairings by high throughput screening. . J. Biotechnol. 260::1830
    [Crossref] [Google Scholar]
  48. 48.
    von Hundelshausen P, Agten SM, Eckardt V, Blanchet X, Schmitt MM, et al. 2017.. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. . Sci. Transl. Med. 9:(384):eaah6650
    [Crossref] [Google Scholar]
  49. 49.
    Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, et al. 2018.. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. . Nature 553:(7688):34246
    [Crossref] [Google Scholar]
  50. 50.
    Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. 2007.. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. . Cell 130:(6):113445
    [Crossref] [Google Scholar]
  51. 51.
    Gonzalez LC. 2012.. Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein–protein interaction mapping. . Methods 57:(4):44858
    [Crossref] [Google Scholar]
  52. 52.
    Lasky LA, Dowbenko D, Simonsen CC, Berman PW. 1984.. Protection of mice from lethal herpes simplex virus infection by vaccination with a secreted form of cloned glycoprotein D. . Nat. Biotechnol. 2:(6):52732
    [Crossref] [Google Scholar]
  53. 53.
    Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, et al. 1987.. Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. . Cell 50:(6):97585
    [Crossref] [Google Scholar]
  54. 54.
    Dong H, Zhu G, Tamada K, Chen L. 1999.. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. . Nat. Med. 5:(12):136569
    [Crossref] [Google Scholar]
  55. 55.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, et al. 2000.. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. . J. Exp. Med. 192:(7):102734
    [Crossref] [Google Scholar]
  56. 56.
    Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, et al. 1999.. Mouse Jagged1 physically interacts with Notch2 and other Notch receptors. Assessment by quantitative methods. . J. Biol. Chem. 274:(46):3296169
    [Crossref] [Google Scholar]
  57. 57.
    Gao GF, Rao Z, Bell JI. 2002.. Molecular coordination of αβT-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. . Trends Immunol. 23:(8):40813
    [Crossref] [Google Scholar]
  58. 58.
    Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, et al. 2003.. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. . Nature 426:(6965):45054
    [Crossref] [Google Scholar]
  59. 59.
    Pollard TD. 2010.. A guide to simple and informative binding assays. . Mol. Biol. Cell 21:(23):406167
    [Crossref] [Google Scholar]
  60. 60.
    Hunter SA, Cochran JR. 2016.. Cell-binding assays for determining the affinity of protein–protein interactions: technologies and considerations. . Methods Enzymol. 580::2144
    [Crossref] [Google Scholar]
  61. 61.
    Sharma S, Bartholdson SJ, Couch ACM, Yusa K, Wright GJ. 2018.. Genome-scale identification of cellular pathways required for cell surface recognition. . Genome Res. 28:(9):137282
    [Crossref] [Google Scholar]
  62. 62.
    Uhlén M, Karlsson MJ, Hober A, Svensson A-S, Scheffel J, et al. 2019.. The human secretome. . Sci. Signal. 12:(609):eaaz0274
    [Crossref] [Google Scholar]
  63. 63.
    Del Toro N, Shrivastava A, Ragueneau E, Meldal B, Combe C, et al. 2022.. The IntAct database: efficient access to fine-grained molecular interaction data. . Nucleic Acids Res. 50:(D1):D64853
    [Crossref] [Google Scholar]
  64. 64.
    Türei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, et al. 2021.. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. . Mol. Syst. Biol. 17:(3):e9923
    [Crossref] [Google Scholar]
  65. 65.
    Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Kloppman E, et al. 2015.. A draft network of ligand–receptor-mediated multicellular signalling in human. . Nat. Commun. 6::7866
    [Crossref] [Google Scholar]
  66. 66.
    Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, et al. 2021.. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. . Cell 184:(11):302240.e28
    [Crossref] [Google Scholar]
  67. 67.
    Verschueren E, Husain B, Yuen K, Sun Y, Paduchuri S, et al. 2020.. The immunoglobulin superfamily receptome defines cancer-relevant networks associated with clinical outcome. . Cell 182:(2):32944.e19
    [Crossref] [Google Scholar]
  68. 68.
    Wojtowicz WM, Vielmetter J, Fernandes RA, Siepe DH, Eastman CL, et al. 2020.. A human IgSF cell-surface interactome reveals a complex network of protein-protein interactions. . Cell 182:(4):102743.e17
    [Crossref] [Google Scholar]
  69. 69.
    Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q, et al. 2014.. A proteome-scale map of the human interactome network. . Cell 159:(5):121226
    [Crossref] [Google Scholar]
  70. 70.
    Braun P. 2012.. Interactome mapping for analysis of complex phenotypes: insights from benchmarking binary interaction assays. . Proteomics 12:(10):1499518
    [Crossref] [Google Scholar]
  71. 71.
    Lin H, Lee E, Hestir K, Leo C, Huang M, et al. 2008.. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. . Science 320:(5877):80711
    [Crossref] [Google Scholar]
  72. 72.
    Dimitrov D, Türei D, Garrido-Rodriguez M, Burmedi PL, Nagai JS, et al. 2022.. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. . Nat. Commun. 13:(1):3224
    [Crossref] [Google Scholar]
  73. 73.
    Cusick ME, Yu H, Smolyar A, Venkatesan K, Carvunis A-R, et al. 2009.. Literature-curated protein interaction datasets. . Nat. Methods 6:(1):3946
    [Crossref] [Google Scholar]
  74. 74.
    Özkan E, Carrillo RA, Eastman CL, Weiszmann R, Waghray D, et al. 2013.. An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. . Cell 154:(1):22839
    [Crossref] [Google Scholar]
  75. 75.
    Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, et al. 2009.. An empirical framework for binary interactome mapping. . Nat. Methods 6:(1):8390
    [Crossref] [Google Scholar]
  76. 76.
    Vidal M. 2016.. How much of the human protein interactome remains to be mapped?. Sci. Signal. 9:(427):eg7
    [Crossref] [Google Scholar]
  77. 77.
    Huang H, Jedynak BM, Bader JS. 2007.. Where have all the interactions gone? estimating the coverage of two-hybrid protein interaction maps. . PLOS Comput. Biol. 3:(11):e214
    [Crossref] [Google Scholar]
  78. 78.
    Martin S, Söllner C, Charoensawan V, Adryan B, Thisse B, et al. 2010.. Construction of a large extracellular protein interaction network and its resolution by spatiotemporal expression profiling. . Mol. Cell Proteom. 9:(12):265465
    [Crossref] [Google Scholar]
  79. 79.
    Kustatscher G, Collins T, Gingras A-C, Guo T, Hermjakob H, et al. 2022.. Understudied proteins: opportunities and challenges for functional proteomics. . Nat. Methods 19:(7):77479
    [Crossref] [Google Scholar]
  80. 80.
    Bianchi E, Doe B, Goulding D, Wright GJ. 2014.. Juno is the egg Izumo receptor and is essential for mammalian fertilization. . Nature 508:(7497):48387
    [Crossref] [Google Scholar]
  81. 81.
    Dustin ML, Springer TA. 1991.. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. . Annu. Rev. Immunol. 9::2766
    [Crossref] [Google Scholar]
  82. 82.
    Van der Merwe PA, Brown MH, Davis SJ, Barclay AN. 1993.. Measuring very low affinity interactions between immunoglobulin superfamily cell-adhesion molecules. . Biochem. Soc. Trans. 21:(4):340S
    [Crossref] [Google Scholar]
  83. 83.
    Lang I, Füllsack S, Wyzgol A, Fick A, Trebing J, et al. 2016.. Binding studies of TNF receptor superfamily (TNFRSF) receptors on intact cells. . J. Biol. Chem. 291:(10):502237
    [Crossref] [Google Scholar]
  84. 84.
    Sabri S, Soler M, Foa C, Pierres A, Benoliel A, Bongrand P. 2000.. Glycocalyx modulation is a physiological means of regulating cell adhesion. . J. Cell Sci. 113:(Part 9):1589600
    [Crossref] [Google Scholar]
  85. 85.
    Weinbaum S, Tarbell JM, Damiano ER. 2007.. The structure and function of the endothelial glycocalyx layer. . Annu. Rev. Biomed. Eng. 9::12167
    [Crossref] [Google Scholar]
  86. 86.
    Collins BE, Paulson JC. 2004.. Cell surface biology mediated by low affinity multivalent protein–glycan interactions. . Curr. Opin. Chem. Biol. 8:(6):61725
    [Crossref] [Google Scholar]
  87. 87.
    Raposo CD, Canelas AB, Barros MT. 2021.. Human lectins, their carbohydrate affinities and where to find them. . Biomolecules 11:(2):188
    [Crossref] [Google Scholar]
  88. 88.
    Fang P, Ji Y, Oellerich T, Urlaub H, Pan K-T. 2022.. Strategies for proteome-wide quantification of glycosylation macro- and micro-heterogeneity. . Int. J. Mol. Sci. 23:(3):1609
    [Crossref] [Google Scholar]
  89. 89.
    Suttapitugsakul S, Ulmer LD, Jiang C, Sun F, Wu R. 2019.. Surface glycoproteomic analysis reveals that both unique and differential expression of surface glycoproteins determine the cell type. . Anal. Chem. 91:(10):693442
    [Crossref] [Google Scholar]
  90. 90.
    McEver RP, Moore KL, Cummings RD. 1995.. Leukocyte trafficking mediated by selectin-carbohydrate interactions. . J. Biol. Chem. 270:(19):1102528
    [Crossref] [Google Scholar]
  91. 91.
    Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. 2009.. Yeast two-hybrid, a powerful tool for systems biology. . Int. J. Mol. Sci. 10:(6):276388
    [Crossref] [Google Scholar]
  92. 92.
    Mellacheruvu D, Wright Z, Couzens AL, Lambert J-P, St-Denis NA, et al. 2013.. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. . Nat. Methods 10:(8):73036
    [Crossref] [Google Scholar]
  93. 93.
    Chong Z-S, Ohnishi S, Yusa K, Wright GJ. 2018.. Pooled extracellular receptor-ligand interaction screening using CRISPR activation. . Genome Biol. 19:(1):205. Erratum . 2022.. Genome Biol. 23:(1):224
    [Google Scholar]
  94. 94.
    Jiang L, Barclay AN. 2009.. New assay to detect low-affinity interactions and characterization of leukocyte receptors for collagen including leukocyte-associated Ig-like receptor-1 (LAIR-1). . Eur. J. Immunol. 39:(4):116775
    [Crossref] [Google Scholar]
  95. 95.
    Wood L, Wright GJ. 2019.. High-content imaging for large-scale detection of low-affinity extracellular protein interactions. . SLAS Discov. 24:(10):98799
    [Crossref] [Google Scholar]
  96. 96.
    Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, et al. 2000.. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. . Immunity 13:(2):23342
    [Crossref] [Google Scholar]
  97. 97.
    Clark IC, Gutiérrez-Vázquez C, Wheeler MA, Li Z, Rothhammer V, et al. 2021.. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. . Science 372:(6540):eabf1230
    [Crossref] [Google Scholar]
  98. 98.
    Giladi A, Cohen M, Medaglia C, Baran Y, Li B, et al. 2020.. Dissecting cellular crosstalk by sequencing physically interacting cells. . Nat. Biotechnol. 38:(5):62937
    [Crossref] [Google Scholar]
  99. 99.
    Vladimer GI, Snijder B, Krall N, Bigenzahn JW, Huber KVM, et al. 2017.. Global survey of the immunomodulatory potential of common drugs. . Nat. Chem. Biol. 13:(6):68190
    [Crossref] [Google Scholar]
  100. 100.
    Reyes M, Leff SM, Gentili M, Hacohen N, Blainey PC. 2023.. Microscale combinatorial stimulation of human myeloid cells reveals inflammatory priming by viral ligands. . Sci. Adv. 9:(8):eade5090
    [Crossref] [Google Scholar]
  101. 101.
    Cannon JP, O'Driscoll M, Litman GW. 2012.. Specific lipid recognition is a general feature of CD300 and TREM molecules. . Immunogenetics 64:(1):3947
    [Crossref] [Google Scholar]
  102. 102.
    Zhao H, Lappalainen P. 2012.. A simple guide to biochemical approaches for analyzing protein–lipid interactions. . Mol. Biol. Cell 23:(15):282330
    [Crossref] [Google Scholar]
  103. 103.
    Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, et al. 2019.. Emerging diversity in lipid–protein interactions. . Chem. Rev. 119:(9):5775848
    [Crossref] [Google Scholar]
  104. 104.
    Charoensawan V, Adryan B, Martin S, Söllner C, Thisse B, et al. 2010.. The impact of gene expression regulation on evolution of extracellular signaling pathways. . Mol. Cell Proteom. 9:(12):266677
    [Crossref] [Google Scholar]
  105. 105.
    Ghadie MA, Xia Y. 2022.. Are transient protein-protein interactions more dispensable?. PLOS Comput. Biol. 18:(4):e1010013
    [Crossref] [Google Scholar]
  106. 106.
    Buntru A, Trepte P, Klockmeier K, Schnoegl S, Wanker EE. 2016.. Current approaches toward quantitative mapping of the interactome. . Front. Genet. 7::74
    [Crossref] [Google Scholar]
  107. 107.
    van der Merwe PA, Barclay AN. 1994.. Transient intercellular adhesion: the importance of weak protein-protein interactions. . Trends Biochem. Sci. 19:(9):35458
    [Crossref] [Google Scholar]
  108. 108.
    van der Merwe PA, Barclay AN. 1996.. Analysis of cell-adhesion molecule interactions using surface plasmon resonance. . Curr. Opin. Immunol. 8:(2):25761
    [Crossref] [Google Scholar]
  109. 109.
    Dustin ML, Springer TA. 1989.. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. . Nature 341:(6243):61924
    [Crossref] [Google Scholar]
  110. 110.
    Mavaddat N, Mason DW, Atkinson PD, Evans EJ, Gilbert RJ, et al. 2000.. Signaling lymphocytic activation molecule (CDw150) is homophilic but self-associates with very low affinity. . J. Biol. Chem. 275:(36):281009
    [Crossref] [Google Scholar]
  111. 111.
    van der Merwe PA, Barclay AN, Mason DW, Davies EA, Morgan BP, et al. 1994.. Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. . Biochemistry 33:(33):1014960
    [Crossref] [Google Scholar]
  112. 112.
    Jönsson P, Southcombe JH, Santos AM, Huo J, Fernandes RA, et al. 2016.. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions. . PNAS 113:(20):568287
    [Crossref] [Google Scholar]
  113. 113.
    Cao S, Peterson SM, Müller S, Reichelt M, McRoberts Amador C, Martinez-Martin N. 2021.. A membrane protein display platform for receptor interactome discovery. . PNAS 118:(39):e2025451118
    [Crossref] [Google Scholar]
  114. 114.
    Wise A, Jupe SC, Rees S. 2004.. The identification of ligands at orphan G-protein coupled receptors. . Annu. Rev. Pharmacol. Toxicol. 44::4366
    [Crossref] [Google Scholar]
  115. 115.
    Aricescu AR, Jones EY. 2007.. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. . Curr. Opin. Cell Biol. 19:(5):54350
    [Crossref] [Google Scholar]
  116. 116.
    Cameron S, McAllister AK. 2018.. Immunoglobulin-like receptors and their impact on wiring of brain synapses. . Annu. Rev. Genet. 52::56790
    [Crossref] [Google Scholar]
  117. 117.
    Harrison OJ, Brasch J, Katsamba PS, Ahlsen G, Noble AJ, et al. 2020.. Family-wide structural and biophysical analysis of binding interactions among non-clustered δ-protocadherins. . Cell Rep. 30:(8):265571.e7
    [Crossref] [Google Scholar]
  118. 118.
    Pethica BA. 1961.. The physical chemistry of cell adhesion. . Exp. Cell Res. 1961:(Suppl. 8):12340
    [Crossref] [Google Scholar]
  119. 119.
    Bell GI. 1978.. Models for the specific adhesion of cells to cells. . Science 200:(4342):61827
    [Crossref] [Google Scholar]
  120. 120.
    Bell GI. 1979.. A theoretical model for adhesion between cells mediated by multivalent ligands. . Cell Biophys. 1:(2):13347
    [Crossref] [Google Scholar]
  121. 121.
    Roth S. 1973.. A molecular model for cell interactions. . Q. Rev. Biol. 48:(4):54163
    [Crossref] [Google Scholar]
  122. 122.
    Siepe DH, Henneberg LT, Wilson SC, Hess GT, Bassik MC, et al. 2022.. Identification of orphan ligand-receptor relationships using a cell-based CRISPRa enrichment screening platform. . eLife 11::e81398
    [Crossref] [Google Scholar]
  123. 123.
    Freeth J, Soden J. 2020.. New advances in cell microarray technology to expand applications in target deconvolution and off-target screening. . SLAS Discov. 25:(2):22330
    [Crossref] [Google Scholar]
  124. 124.
    Pasqual G, Chudnovskiy A, Tas JMJ, Agudelo M, Schweitzer LD, et al. 2018.. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. . Nature 553:(7689):496500
    [Crossref] [Google Scholar]
  125. 125.
    Lynch DH, Watson ML, Alderson MR, Baum PR, Miller RE, et al. 1994.. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. . Immunity 1:(2):13136
    [Crossref] [Google Scholar]
  126. 126.
    Douglas AD, Williams AR, Illingworth JJ, Kamuyu G, Biswas S, et al. 2011.. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. . Nat. Commun. 2::601
    [Crossref] [Google Scholar]
  127. 127.
    Barclay AN, Hatherley D. 2008.. The counterbalance theory for evolution and function of paired receptors. . Immunity 29:(5):67578
    [Crossref] [Google Scholar]
  128. 128.
    Cusick ME, Klitgord N, Vidal M, Hill DE. 2005.. Interactome: gateway into systems biology. . Hum. Mol. Genet. 14:(Suppl. 2):R17181
    [Crossref] [Google Scholar]
  129. 129.
    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, et al. 2005.. A human protein-protein interaction network: a resource for annotating the proteome. . Cell 122:(6):95768
    [Crossref] [Google Scholar]
  130. 130.
    Grandclaudon M, Perrot-Dockès M, Trichot C, Karpf L, Abouzid O, et al. 2019.. A quantitative multivariate model of human dendritic cell-T helper cell communication. . Cell 179:(2):43247.e21
    [Crossref] [Google Scholar]
  131. 131.
    Yao S, Zhu Y, Chen L. 2013.. Advances in targeting cell surface signalling molecules for immune modulation. . Nat. Rev. Drug Discov. 12:(2):13046
    [Crossref] [Google Scholar]
  132. 132.
    Singh AK, McGuirk JP. 2020.. CAR T cells: continuation in a revolution of immunotherapy. . Lancet Oncol. 21:(3):e16878
    [Crossref] [Google Scholar]
  133. 133.
    Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. 2019.. Translation of cancer immunotherapy from the bench to the bedside. . Adv. Cancer Res. 143::162
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-102523-103821
Loading
/content/journals/10.1146/annurev-biodatasci-102523-103821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error