1932

Abstract

With increasing demands for continuous health monitoring remotely, wearable and implantable devices have attracted considerable interest. To fulfill such demands, novel materials and device structures have been investigated, since commercial biomedical devices are not compatible with flexible and conformable form factors needed for soft tissue monitoring and intervention. Among various materials, piezoelectric materials have been widely adopted for multiple applications including sensing, energy harvesting, neurostimulation, drug delivery, and ultrasound imaging owing to their unique electromechanical conversion properties. In this review, we provide a comprehensive overview of piezoelectric-based wearable and implantable biomedical devices. We first provide the basic principles of piezoelectric devices and device design strategies for wearable and implantable form factors. Then, we discuss various state-of-the-art applications of wearable and implantable piezoelectric devices and their design strategies. Finally, we demonstrate several challenges and outlooks for designing piezoelectric-based conformable biomedical devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-020524-121438
2025-05-01
2025-05-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-020524-121438.html?itemId=/content/journals/10.1146/annurev-bioeng-020524-121438&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Thimbleby H. 2013.. Technology and the future of healthcare. . J. Public Health Res. 2::e28
    [Crossref] [Google Scholar]
  2. 2.
    Wamble DE, Ciarametaro M, Dubois R. 2019.. The effect of medical technology innovations on patient outcomes, 1990–2015: results of a physician survey. . J. Manag. Care Spec. Pharm. 25::6671
    [Google Scholar]
  3. 3.
    Kasoju N, Remya NS, Sasi R, Sujesh S, Soman B, et al. 2023.. Digital health: trends, opportunities and challenges in medical devices, pharma and bio-technology. . CSI Trans. ICT 11::1130
    [Crossref] [Google Scholar]
  4. 4.
    Fernandez SV, Sadat D, Tasnim F, Acosta D, Schwendeman L, et al. 2022.. Ubiquitous conformable systems for imperceptible computing. . Foresight 24::7598
    [Crossref] [Google Scholar]
  5. 5.
    Blanc L, Delchambre A, Lambert P. 2017.. Flexible medical devices: review of controllable stiffness solutions. . Actuators 6::23
    [Crossref] [Google Scholar]
  6. 6.
    Wang L, Jiang K, Shen G. 2021.. Wearable, implantable, and interventional medical devices based on smart electronic skins. . Adv. Mater. Technol. 6::2100107
    [Crossref] [Google Scholar]
  7. 7.
    Agaronnik N, Campbell EG, Ressalam J, Iezzoni LI. 2019.. Accessibility of medical diagnostic equipment for patients with disability: observations from physicians. . Arch. Phys. Med. Rehabil. 100::203238
    [Crossref] [Google Scholar]
  8. 8.
    Yetisen AK, Martinez-Hurtado JL, Ünal B, Khademhosseini A, Butt H. 2018.. Wearables in medicine. . Adv. Mater. 30::1706910
    [Crossref] [Google Scholar]
  9. 9.
    Melodie C-G, Panpan L, Jeongjae R, Seungbum H. 2018.. Piezoelectric materials for medical applications. . In Piezoelectricity, ed. GV Savvas, M Dimitroula, Chapter 7 . Rijeka, Croatia:: IntechOpen
    [Google Scholar]
  10. 10.
    Zhang L, Du W, Kim J-H, Yu C-C, Dagdeviren C. 2024.. An emerging era: conformable ultrasound electronics. . Adv. Mater. 36::2307664
    [Crossref] [Google Scholar]
  11. 11.
    Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, et al. 2014.. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. . PNAS 111::192732
    [Crossref] [Google Scholar]
  12. 12.
    Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, et al. 2020.. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. . Biosens. Bioelectron. 168::112569
    [Crossref] [Google Scholar]
  13. 13.
    Panda S, Hajra S, Mistewicz K, In-na P, Sahu M, et al. 2022.. Piezoelectric energy harvesting systems for biomedical applications. . Nano Energy 100::107514
    [Crossref] [Google Scholar]
  14. 14.
    Wells PNT. 2006.. Ultrasound imaging. . Phys. Med. Biol. 51::R83
    [Crossref] [Google Scholar]
  15. 15.
    Du W, Zhang L, Suh E, Lin D, Marcus C, et al. 2023.. Conformable ultrasound breast patch for deep tissue scanning and imaging. . Sci. Adv. 9::eadh5325
    [Crossref] [Google Scholar]
  16. 16.
    Dalecki D. 2004.. Mechanical bioeffects of ultrasound. . Annu. Rev. Biomed. Eng. 6::22948
    [Crossref] [Google Scholar]
  17. 17.
    Yu C-C, Shah A, Amiri N, Marcus C, Nayeem MOG, et al. 2023.. A conformable ultrasound patch for cavitation-enhanced transdermal cosmeceutical delivery. . Adv. Mater. 35::2300066
    [Crossref] [Google Scholar]
  18. 18.
    Beisteiner R, Hallett M, Lozano AM. 2023.. Ultrasound neuromodulation as a new brain therapy. . Adv. Sci. 10::2205634
    [Crossref] [Google Scholar]
  19. 19.
    Chorsi MT, Curry EJ, Chorsi HT, Das R, Baroody J, et al. 2019.. Piezoelectric biomaterials for sensors and actuators. . Adv. Mater. 31::1802084
    [Crossref] [Google Scholar]
  20. 20.
    Nwalike ED, Ibrahim KA, Crawley F, Qin Q, Luk P, Luo Z. 2023.. Harnessing energy for wearables: a review of radio frequency energy harvesting technologies. . Energies 16::5711
    [Crossref] [Google Scholar]
  21. 21.
    Ali A, Shaukat H, Bibi S, Altabey WA, Noori M, Kouritem SA. 2023.. Recent progress in energy harvesting systems for wearable technology. . Energy Strat. Rev. 49::101124
    [Crossref] [Google Scholar]
  22. 22.
    Choi Y-M, Lee MG, Jeon Y. 2017.. Wearable biomechanical energy harvesting technologies. . Energies 10::1483
    [Crossref] [Google Scholar]
  23. 23.
    Niu P, Chapman P, Riemer R, Zhang X. 2004.. Evaluation of motions and actuation methods for biomechanical energy harvesting. . In Proc. 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, June 20–25, 2004, Volume 3, pp. 21006. New York:: IEEE
    [Google Scholar]
  24. 24.
    Xu C, Song Y, Han M, Zhang H. 2021.. Portable and wearable self-powered systems based on emerging energy harvesting technology. . Microsyst. Nanoeng. 7::25
    [Crossref] [Google Scholar]
  25. 25.
    Hwang G-T, Annapureddy V, Han JH, Joe DJ, Baek C, et al. 2016.. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. . Adv. Electron. Mater. 6::1600237
    [Google Scholar]
  26. 26.
    Park K-I, Son JH, Hwang G-T, Jeong CK, Ryu J, et al. 2014.. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. . Adv. Mater. 26::251420
    [Crossref] [Google Scholar]
  27. 27.
    Lu X, Qu H, Skorobogatiy M. 2017.. Piezoelectric microstructured fibers via drawing of multimaterial preforms. . Sci. Rep. 7::2907
    [Crossref] [Google Scholar]
  28. 28.
    Su Y, Dagdeviren C, Li R. 2015.. Measured output voltages of piezoelectric devices depend on the resistance of voltmeter. . Adv. Funct. Mater. 25::532025
    [Crossref] [Google Scholar]
  29. 29.
    He Q, Briscoe J. 2024.. Piezoelectric energy harvester technologies: synthesis, mechanisms, and multifunctional applications. . ACS Appl. Mater. Interfaces 16::29491520
    [Crossref] [Google Scholar]
  30. 30.
    Kanno I, Ichida T, Adachi K, Kotera H, Shibata K, Mishima T. 2012.. Power-generation performance of lead-free (K,Na)NbO3 piezoelectric thin-film energy harvesters. . Sens. Actuators A Phys. 179::13236
    [Crossref] [Google Scholar]
  31. 31.
    Hyeon DY, Park K-I. 2019.. Piezoelectric flexible energy harvester based on BaTiO3 thin film enabled by exfoliating the mica substrate. . Energy Technol. 7::1900638
    [Crossref] [Google Scholar]
  32. 32.
    Peng R, Zhang B, Dong G, Wang Y, Yang G, et al. 2024.. Enhanced piezoelectric energy harvester by employing freestanding single-crystal BaTiO3 films in PVDF-TrFE based composites. . Adv. Funct. Mater. 34::2316519
    [Crossref] [Google Scholar]
  33. 33.
    An J, Park H, Jung YH, Min S, Kim DH, et al. 2024.. In vivo flexible energy harvesting on porcine heart via highly-piezoelectric PIN–PMN–PT single crystal. . Nano Energy 121::109227
    [Crossref] [Google Scholar]
  34. 34.
    Kim DH, Shin HJ, Lee H, Jeong CK, Park H, et al. 2017.. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. . Adv. Funct. Mater. 27::1700341
    [Crossref] [Google Scholar]
  35. 35.
    Wyser Y, Pelletier C, Lange J. 2001.. Predicting and determining the bending stiffness of thin films and laminates. . Packag. Technol. Sci. 14::97108
    [Crossref] [Google Scholar]
  36. 36.
    Li H, Lee HB, Kang J-W, Lim S. 2023.. Three-dimensional polymer-nanoparticle-liquid ternary composite for ultrahigh augmentation of piezoelectric nanogenerators. . Nano Energy 113::108576
    [Crossref] [Google Scholar]
  37. 37.
    Kim S-R, Yoo J-H, Kim JH, Cho YS, Park J-W. 2021.. Mechanical and piezoelectric properties of surface modified (Na,K)NbO3-based nanoparticle-embedded piezoelectric polymer composite nanofibers for flexible piezoelectric nanogenerators. . Nano Energy 79::105445
    [Crossref] [Google Scholar]
  38. 38.
    Wankhade SH, Tiwari S, Gaur A, Maiti P. 2020.. PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications. . Energy Rep. 6::35864
    [Crossref] [Google Scholar]
  39. 39.
    Baek C, Park H, Yun JH, Kim DK, Park K-I. 2017.. Lead-free BaTiO3 nanowire arrays-based piezoelectric energy harvester. . MRS Adv. 2::341520
    [Crossref] [Google Scholar]
  40. 40.
    Koka A, Zhou Z, Sodano HA. 2014.. Vertically aligned BaTiO3 nanowire arrays for energy harvesting. . Energy Environ. Sci. 7::28896
    [Crossref] [Google Scholar]
  41. 41.
    Waseem A, Johar MA, Abdullah A, Bagal IV, Ha J-S, et al. 2021.. Enhanced performance of a flexible and wearable piezoelectric nanogenerator using semi-insulating GaN:Mg/ZnO coaxial nanowires. . Nano Energy 90::106552
    [Crossref] [Google Scholar]
  42. 42.
    Todaro MT, Guido F, Algieri L, Mastronardi VM, Desmaële D, et al. 2018.. Biocompatible, flexible, and compliant energy harvesters based on piezoelectric thin films. . IEEE Trans. Nanotechnol. 17::22030
    [Crossref] [Google Scholar]
  43. 43.
    Petritz A, Karner-Petritz E, Uemura T, Schäffner P, Araki T, et al. 2021.. Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. . Nat. Commun. 12::2399
    [Crossref] [Google Scholar]
  44. 44.
    Kim S-R, Yoo J-H, Cho YS, Park J-W. 2019.. Flexible piezoelectric energy generators based on P(VDF-TrFE) nanofibers. . Mater. Res. Express 6::086311
    [Crossref] [Google Scholar]
  45. 45.
    Qin W, Zhou P, Xu X, Irshad MS, Qi Y, Zhang T. 2022.. Enhanced output performance of piezoelectric energy harvester based on hierarchical Bi3.15Nd0.85Ti3O12 microspheres/PVDF-HFP composite. . Sens. Actuators A Phys. 333::113307
    [Crossref] [Google Scholar]
  46. 46.
    Zhao J, You Z. 2014.. A shoe-embedded piezoelectric energy harvester for wearable sensors. . Sensors 14::12497510
    [Crossref] [Google Scholar]
  47. 47.
    Liu H, Zhong J, Lee C, Lee S-W, Lin L. 2018.. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. . Appl. Phys. Rev. 5::041306
    [Crossref] [Google Scholar]
  48. 48.
    Yang Y, Chen Z, Kuai Q, Liang J, Liu J, Zeng X. 2022.. Circuit techniques for high efficiency piezoelectric energy harvesting. . Micromachines 13::1044
    [Crossref] [Google Scholar]
  49. 49.
    Min S, Kim DH, Joe DJ, Kim BW, Jung YH, et al. 2023.. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. . Adv. Mater. 35::2301627
    [Crossref] [Google Scholar]
  50. 50.
    Yuan X, Yan A, Lai Z, Liu Z, Yu Z, et al. 2022.. A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. . Nano Energy 98::107340
    [Crossref] [Google Scholar]
  51. 51.
    Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, et al. 2014.. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. . Nat. Commun. 5::4496
    [Crossref] [Google Scholar]
  52. 52.
    Yang Y, Pan H, Xie G, Jiang Y, Chen C, et al. 2020.. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. . Sens. Actuators A Phys. 301::111789
    [Crossref] [Google Scholar]
  53. 53.
    Wang C, Hu Y, Liu Y, Shan Y, Qu X, et al. 2023.. Tissue-adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical operation. . Adv. Funct. Mater. 33::2303696
    [Crossref] [Google Scholar]
  54. 54.
    Sun T, Tasnim F, McIntosh RT, Amiri N, Solav D, et al. 2020.. Decoding of facial strains via conformable piezoelectric interfaces. . Nat. Biomed. Eng. 4::95472
    [Crossref] [Google Scholar]
  55. 55.
    Kim Y-G, Song J-H, Hong S, Ahn S-H. 2022.. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. . NPJ Flex. Electron. 6::52
    [Crossref] [Google Scholar]
  56. 56.
    Song J-H, Kim Y-G, Cho Y, Hong S, Choi JY, et al. 2023.. Stretchable strain and strain rate sensor using kirigami-cut PVDF film. . Adv. Mater. Technol. 8::2201112
    [Crossref] [Google Scholar]
  57. 57.
    Dagdeviren C, Shi Y, Joe P, Ghaffari R, Balooch G, et al. 2015.. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. . Nat. Mater. 14::72836
    [Crossref] [Google Scholar]
  58. 58.
    Zhao H, Dagdeviren C, Liu G, Cao P, Wang J, et al. 2022.. A new model based on the in-plane deformation for the conformal piezoelectric systems for characterization of soft tissue modulus. . Extreme Mech. Lett. 55::101801
    [Crossref] [Google Scholar]
  59. 59.
    Jung YH, Hong SK, Wang HS, Han JH, Pham TX, et al. 2020.. Flexible piezoelectric acoustic sensors and machine learning for speech processing. . Adv. Mater. 32::1904020
    [Crossref] [Google Scholar]
  60. 60.
    Zhang Q, Wang Y, Li D, Xie J, Tao K, et al. 2023.. Multifunctional and wearable patches based on flexible piezoelectric acoustics for integrated sensing, localization, and underwater communication. . Adv. Funct. Mater. 33::2209667
    [Crossref] [Google Scholar]
  61. 61.
    İlik B, Koyuncuoğlu A, Şardan-Sukas Ö, Külah H. 2018.. Thin film piezoelectric acoustic transducer for fully implantable cochlear implants. . Sens. Actuators A Phys. 280::3846
    [Crossref] [Google Scholar]
  62. 62.
    Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, et al. 2013.. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). . Nat. Commun. 4::1633
    [Crossref] [Google Scholar]
  63. 63.
    Dagdeviren C, Joe P, Tuzman OL, Park K-I, Lee KJ, et al. 2016.. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. . Extreme Mech. Lett. 9::26981
    [Crossref] [Google Scholar]
  64. 64.
    Dong K, Peng X, Wang ZL. 2020.. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. . Adv. Mater. 32::1902549
    [Crossref] [Google Scholar]
  65. 65.
    Mahapatra SD, Mohapatra PC, Aria AI, Christie G, Mishra YK, et al. 2021.. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. . Adv. Sci. 8::2100864
    [Crossref] [Google Scholar]
  66. 66.
    Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. 2022.. Piezoelectric nanogenerators for personalized healthcare. . Chem. Soc. Rev. 51::3380435
    [Crossref] [Google Scholar]
  67. 67.
    Lv P, Qian J, Yang C, Liu T, Wang Y, et al. 2022.. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. . Nano Energy 97::107182
    [Crossref] [Google Scholar]
  68. 68.
    Chiu Y-Y, Lin W-Y, Wang H-Y, Huang S-B, Wu M-H. 2013.. Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. . Sens. Actuators A Phys. 189::32834
    [Crossref] [Google Scholar]
  69. 69.
    Su Y, Chen C, Pan H, Yang Y, Chen G, et al. 2021.. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. . Adv. Funct. Mater. 31::2010962
    [Crossref] [Google Scholar]
  70. 70.
    Kim D, Yang Z, Cho J, Park D, Kim DH, et al. 2023.. High-performance piezoelectric yarns for artificial intelligence-enabled wearable sensing and classification. . EcoMat 5::e12384
    [Crossref] [Google Scholar]
  71. 71.
    Park JJ, Won P, Ko SH. 2019.. A review on hierarchical origami and kirigami structure for engineering applications. . Int. J. Precis. Eng. Manuf. Green Technol. 6::14761
    [Crossref] [Google Scholar]
  72. 72.
    Hong Y, Wang B, Lin W, Jin L, Liu S, et al. 2021.. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. . Sci. Adv. 7::eabf0795
    [Crossref] [Google Scholar]
  73. 73.
    Fu R, Zhong X, Xiao C, Lin J, Guan Y, et al. 2023.. A stretchable, biocompatible, and self-powered hydrogel multichannel wireless sensor system based on piezoelectric barium titanate nanoparticles for health monitoring. . Nano Energy 114::108617
    [Crossref] [Google Scholar]
  74. 74.
    Shi Y, Guan Y, Liu M, Kang X, Tian Y, et al. 2024.. Tough, antifreezing, and piezoelectric organohydrogel as a flexible wearable sensor for human–machine interaction. . ACS Nano 18::372032
    [Crossref] [Google Scholar]
  75. 75.
    Panth M, Cook B, Zhang Y, Ewing D, Tramble A, et al. 2020.. High-performance strain sensors based on vertically aligned piezoelectric zinc oxide nanowire array/graphene nanohybrids. . ACS Appl. Nano Mater. 3::671118
    [Crossref] [Google Scholar]
  76. 76.
    Dagdeviren C, Javid F, Joe P, von Erlach T, Bensel T, et al. 2017.. Flexible piezoelectric devices for gastrointestinal motility sensing. . Nat. Biomed. Eng. 1::80717
    [Crossref] [Google Scholar]
  77. 77.
    Tang C, Liu Z, Hu Q, Jiang Z, Zheng M, et al. 2024.. Unconstrained piezoelectric vascular electronics for wireless monitoring of hemodynamics and cardiovascular health. . Small 20::2304752
    [Crossref] [Google Scholar]
  78. 78.
    Curry EJ, Ke K, Chorsi MT, Wrobel KS, Miller AN, et al. 2018.. Biodegradable piezoelectric force sensor. . PNAS 115::90914
    [Crossref] [Google Scholar]
  79. 79.
    Shan Y, Wang E, Cui X, Xi Y, Ji J, et al. 2024.. A biodegradable piezoelectric sensor for real-time evaluation of the motor function recovery after nerve injury. . Adv. Funct. Mater. 34::2400295
    [Crossref] [Google Scholar]
  80. 80.
    Fan W, Lei R, Dou H, Wu Z, Lu L, et al. 2024.. Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. . Nat. Commun. 15::3509
    [Crossref] [Google Scholar]
  81. 81.
    Ge R, Yu Q, Zhou F, Liu S, Qin Y. 2023.. Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing. . Nat. Commun. 14::6315
    [Crossref] [Google Scholar]
  82. 82.
    Dagdeviren C, Ramadi KB, Joe P, Spencer K, Schwerdt HN, et al. 2018.. Miniaturized neural system for chronic, local intracerebral drug delivery. . Sci. Transl. Med. 10::eaan2742
    [Crossref] [Google Scholar]
  83. 83.
    Hou JF, Nayeem MOG, Caplan KA, Ruesch EA, Caban-Murillo A, et al. 2024.. An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation. . Nat. Commun. 15::4601
    [Crossref] [Google Scholar]
  84. 84.
    Kim D, Yokota T, Suzuki T, Lee S, Woo T, et al. 2020.. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. . PNAS 117::2113846
    [Crossref] [Google Scholar]
  85. 85.
    Burton A, Wang Z, Song D, Tran S, Hanna J, et al. 2023.. Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation. . Nat. Commun. 14::7887
    [Crossref] [Google Scholar]
  86. 86.
    Cotero V, Fan Y, Tsaava T, Kressel AM, Hancu I, et al. 2019.. Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. . Nat. Commun. 10::952
    [Crossref] [Google Scholar]
  87. 87.
    Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, et al. 2019.. Deep brain stimulation: current challenges and future directions. . Nat. Rev. Neurol. 15::14860
    [Crossref] [Google Scholar]
  88. 88.
    Fisher RS, Velasco AL. 2014.. Electrical brain stimulation for epilepsy. . Nat. Rev. Neurol. 10::26170
    [Crossref] [Google Scholar]
  89. 89.
    Malyshev A, Goz R, LoTurco JJ, Volgushev M. 2015.. Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding. . PLOS ONE 10::e0122286
    [Crossref] [Google Scholar]
  90. 90.
    Kamimura HAS, Conti A, Toschi N, Konofagou EE. 2020.. Ultrasound neuromodulation: mechanisms and the potential of multimodal stimulation for neuronal function assessment. . Front. Phys. 8::150
    [Crossref] [Google Scholar]
  91. 91.
    Badadhe JD, Roh H, Lee BC, Kim JH, Im M. 2022.. Ultrasound stimulation for non-invasive visual prostheses. . Front. Cell. Neurosci. 16::971148
    [Crossref] [Google Scholar]
  92. 92.
    Kook G, Jo Y, Oh C, Liang X, Kim J, et al. 2023.. Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography. . Microsyst. Nanoeng. 9::45
    [Crossref] [Google Scholar]
  93. 93.
    Ye PP, Brown JR, Pauly KB. 2016.. Frequency dependence of ultrasound neurostimulation in the mouse brain. . Ultrasound Med. Biol. 42::151230
    [Crossref] [Google Scholar]
  94. 94.
    Seok C, Yamaner FY, Sahin M, Oralkan Ö. 2021.. A wearable ultrasonic neurostimulator—part I: a 1D CMUT phased array system for chronic implantation in small animals. . IEEE Trans. Biomed. Circuits Syst. 15::692704
    [Crossref] [Google Scholar]
  95. 95.
    Thomas N, Agrawal A. 2021.. Quantification of in-plane flexoelectricity in lipid bilayers. . Europhys. Lett. 134::68003
    [Crossref] [Google Scholar]
  96. 96.
    Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. 2008.. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. . PLOS ONE 3::e3511
    [Crossref] [Google Scholar]
  97. 97.
    Kubanek J, Shi J, Marsh J, Chen D, Deng C, Cui J. 2016.. Ultrasound modulates ion channel currents. . Sci. Rep. 6::24170
    [Crossref] [Google Scholar]
  98. 98.
    Prieto ML, Firouzi K, Khuri-Yakub BT, Maduke M. 2018.. Activation of Piezo1 but not NaV1.2 channels by ultrasound at 43MHz. . Ultrasound Med. Biol. 44::121732
    [Crossref] [Google Scholar]
  99. 99.
    Qiu Z, Guo J, Kala S, Zhu J, Xian Q, et al. 2019.. The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. . iScience 21::44857
    [Crossref] [Google Scholar]
  100. 100.
    Hoffman BU, Baba Y, Lee SA, Tong C-K, Konofagou EE, Lumpkin EA. 2022.. Focused ultrasound excites action potentials in mammalian peripheral neurons in part through the mechanically gated ion channel PIEZO2. . PNAS 119::e2115821119
    [Crossref] [Google Scholar]
  101. 101.
    Kim E, Kum J, Lee SH, Kim H. 2022.. Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents. . Front. Neurosci. 16::1011699
    [Crossref] [Google Scholar]
  102. 102.
    Ilham SJ, Kashani Z, Kiani M. 2021.. Design and optimization of ultrasound phased arrays for large-scale ultrasound neuromodulation. . IEEE Trans. Biomed. Circuits Syst. 15::145466
    [Crossref] [Google Scholar]
  103. 103.
    Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. 2017.. Next-generation probes, particles, and proteins for neural interfacing. . Sci. Adv. 3::e1601649
    [Crossref] [Google Scholar]
  104. 104.
    Jiang L, Lu G, Zeng Y, Sun Y, Kang H, et al. 2022.. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. . Nat. Commun. 13::3853
    [Crossref] [Google Scholar]
  105. 105.
    Li S, Xu J, Li R, Wang Y, Zhang M, et al. 2022.. Stretchable electronic facial masks for sonophoresis. . ACS Nano 16::596174
    [Crossref] [Google Scholar]
  106. 106.
    Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. 2018.. Advances in biomaterials for drug delivery. . Adv. Mater. 30::1705328
    [Crossref] [Google Scholar]
  107. 107.
    Tan M, Xu Y, Gao Z, Yuan T, Liu Q, et al. 2022.. Recent advances in intelligent wearable medical devices integrating biosensing and drug delivery. . Adv. Mater. 34::2108491
    [Crossref] [Google Scholar]
  108. 108.
    Mariello M, I, Proctor CM. 2023.. Soft and flexible bioelectronic micro-systems for electronically controlled drug delivery. . Adv. Healthc. Mater. 13::2302969
    [Crossref] [Google Scholar]
  109. 109.
    Magisson J, Sassi A, Kobalyan A, Burcez C-T, Bouaoun R, et al. 2020.. A fully implantable device for diffuse insulin delivery at extraperitoneal site for physiological treatment of type 1 diabetes. . J. Control. Release 320::43141
    [Crossref] [Google Scholar]
  110. 110.
    Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S. 2013.. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. . Nat. Commun. 4::1707
    [Crossref] [Google Scholar]
  111. 111.
    Vannozzi L, Ricotti L, Filippeschi C, Sartini S, Coviello V, et al. 2016.. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. . Int. J. Nanomed. 11::6991
    [Google Scholar]
  112. 112.
    Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. 2014.. Engineered nanoparticles for drug delivery in cancer therapy. . Angew. Chem. Int. Ed. 53::1232064
    [Crossref] [Google Scholar]
  113. 113.
    Ramadi KB, Dagdeviren C, Spencer KC, Joe P, Cotler M, et al. 2018.. Focal, remote-controlled, chronic chemical modulation of brain microstructures. . PNAS 115::725459
    [Crossref] [Google Scholar]
  114. 114.
    Vargason AM, Anselmo AC, Mitragotri S. 2021.. The evolution of commercial drug delivery technologies. . Nat. Biomed. Eng. 5::95167
    [Crossref] [Google Scholar]
  115. 115.
    Nance E, Pun SH, Saigal R, Sellers DL. 2022.. Drug delivery to the central nervous system. . Nat. Rev. Mater. 7::31431
    [Crossref] [Google Scholar]
  116. 116.
    Paunovska K, Loughrey D, Dahlman JE. 2022.. Drug delivery systems for RNA therapeutics. . Nat. Rev. Genet. 23::26580
    [Crossref] [Google Scholar]
  117. 117.
    Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. 2021.. Engineering precision nanoparticles for drug delivery. . Nat. Rev. Drug Discov. 20::10124
    [Crossref] [Google Scholar]
  118. 118.
    Azagury A, Khoury L, Enden G, Kost J. 2014.. Ultrasound mediated transdermal drug delivery. . Adv. Drug Deliv. Rev. 72::12743
    [Crossref] [Google Scholar]
  119. 119.
    Prausnitz MR, Langer R. 2008.. Transdermal drug delivery. . Nat. Biotechnol. 26::126168
    [Crossref] [Google Scholar]
  120. 120.
    Boucaud A, Machet L, Arbeille B, Machet MC, Sournac M, et al. 2001.. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. . Int. J. Pharm. 228::6977
    [Crossref] [Google Scholar]
  121. 121.
    Pagneux Q, Ye R, Chengnan L, Barras A, Hennuyer N, et al. 2020.. Electrothermal patches driving the transdermal delivery of insulin. . Nanoscale Horiz. 5::66370
    [Crossref] [Google Scholar]
  122. 122.
    Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. 2022.. Overcoming skin barriers through advanced transdermal drug delivery approaches. . J. Control. Release 351::36180
    [Crossref] [Google Scholar]
  123. 123.
    Park J, Lee H, Lim G-S, Kim N, Kim D, Kim Y-C. 2019.. Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. . AAPS PharmSciTech 20::96
    [Crossref] [Google Scholar]
  124. 124.
    Chen X, Zhu L, Li R, Pang L, Zhu S, et al. 2020.. Electroporation-enhanced transdermal drug delivery: effects of logP, pKa, solubility and penetration time. . Eur. J. Pharm. Sci. 151::105410
    [Crossref] [Google Scholar]
  125. 125.
    Park D, Park H, Seo J, Lee S. 2014.. Sonophoresis in transdermal drug deliverys. . Ultrasonics 54::5665
    [Crossref] [Google Scholar]
  126. 126.
    Szunerits S, Boukherroub R. 2018.. Heat: a highly efficient skin enhancer for transdermal drug delivery. . Front. Bioeng. Biotechnol. 6::15
    [Crossref] [Google Scholar]
  127. 127.
    Karande P, Mitragotri S. 2009.. Enhancement of transdermal drug delivery via synergistic action of chemicals. . Biochim. Biophys. Acta Biomembr. 1788::236273
    [Crossref] [Google Scholar]
  128. 128.
    He J, Zhang Y, Yu X, Xu C. 2023.. Wearable patches for transdermal drug delivery. . Acta Pharm. Sin. B 13::2298309
    [Crossref] [Google Scholar]
  129. 129.
    Zeng Q, Li G, Chen W. 2023.. Ultrasound-activatable and skin-associated minimally invasive microdevices for smart drug delivery and diagnosis. . Adv. Drug Deliv. Rev. 203::115133
    [Crossref] [Google Scholar]
  130. 130.
    Polat BE, Hart D, Langer R, Blankschtein D. 2011.. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. . J. Control. Release 152::33048
    [Crossref] [Google Scholar]
  131. 131.
    Tuan-Mahmood T-M, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, et al. 2013.. Microneedles for intradermal and transdermal drug delivery. . Eur. J. Pharm. Sci. 50::62337
    [Crossref] [Google Scholar]
  132. 132.
    Prausnitz MR. 2004.. Microneedles for transdermal drug delivery. . Adv. Drug Deliv. Rev. 56::58187
    [Crossref] [Google Scholar]
  133. 133.
    Yang Y, Xu L, Jiang D, Chen BZ, Luo R, et al. 2021.. Self-powered controllable transdermal drug delivery system. . Adv. Funct. Mater. 31::2104092
    [Crossref] [Google Scholar]
  134. 134.
    Wu Q, Pan C, Shi P, Zou L, Huang S, et al. 2023.. On-demand transdermal drug delivery platform based on wearable acoustic microneedle array. . Chem. Eng. J. 477::147124
    [Crossref] [Google Scholar]
  135. 135.
    Zhao Z, Saiding Q, Cai Z, Cai M, Cui W. 2023.. Ultrasound technology and biomaterials for precise drug therapy. . Mater. Today 63::21038
    [Crossref] [Google Scholar]
  136. 136.
    Kossoff G. 2000.. Basic physics and imaging characteristics of ultrasound. . World J. Surg. 24::13442
    [Crossref] [Google Scholar]
  137. 137.
    Nyborg WL. 2002.. Safety of medical diagnostic ultrasound. . Semin. Ultrasound CT MRI 23::37786
    [Crossref] [Google Scholar]
  138. 138.
    Zhou Q, Lam KH, Zheng H, Qiu W, Shung KK. 2014.. Piezoelectric single crystal ultrasonic transducers for biomedical applications. . Prog. Mater. Sci. 66::87111
    [Crossref] [Google Scholar]
  139. 139.
    Yin J, Tao C, Liu X. 2017.. Dynamic focusing of acoustic wave utilizing a randomly scattering lens and a single fixed transducer. . J. Appl. Phys. 121::174901
    [Crossref] [Google Scholar]
  140. 140.
    dos Santos MJSF, dos Santos JB. 2011.. FPGA-based control system of an ultrasonic phased array. Strog. vestn. . J. Mech. Eng. 57:(2):13541
    [Crossref] [Google Scholar]
  141. 141.
    Bhuyan A, Choe JW, Lee BC, Cristman P, Oralkan Ö, Khuri-Yakub BT. 2011.. Miniaturized, wearable, ultrasound probe for on-demand ultrasound screening. . In Proc. 2011 IEEE International Ultrasonics Symposium, Orlando, FL, USA, October 18–21, 2011, pp. 106063. New York:: IEEE
    [Google Scholar]
  142. 142.
    Harput S, Christensen-Jeffries K, Ramalli A, Brown J, Zhu J, et al. 2020.. 3-D super-resolution ultrasound imaging with a 2-D sparse array. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67::26977
    [Crossref] [Google Scholar]
  143. 143.
    Feigenbaum H. 2010.. Role of M-mode technique in today's echocardiography. . J. Am. Soc. Echocardiogr. 23::24057
    [Crossref] [Google Scholar]
  144. 144.
    Kenny J-ÉS, Munding CE, Eibl JK, Eibl AM, Long BF, et al. 2021.. A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. . Sci. Rep. 11::7780
    [Crossref] [Google Scholar]
  145. 145.
    Lin M, Zhang Z, Gao X, Bian Y, Wu RS, et al. 2024.. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. . Nat. Biotechnol. 42::44857
    [Crossref] [Google Scholar]
  146. 146.
    Zhang L, Marcus C, Lin D, Mejorado D, Schoen SJ, et al. 2024.. A conformable phased-array ultrasound patch for bladder volume monitoring. . Nat. Electron. 7::7790
    [Crossref] [Google Scholar]
  147. 147.
    Liu H-C, Zeng Y, Gong C, Chen X, Kijanka P, et al. 2024.. Wearable bioadhesive ultrasound shear wave elastography. . Sci. Adv. 10::eadk8426
    [Crossref] [Google Scholar]
  148. 148.
    Wang C, Chen X, Wang L, Makihata M, Liu H-C, et al. 2022.. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. . Science 377::51723
    [Crossref] [Google Scholar]
  149. 149.
    Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, et al. 2017.. Shear-wave elastography: basic physics and musculoskeletal applications. . RadioGraphics 37::85570
    [Crossref] [Google Scholar]
  150. 150.
    China D, Feng Z, Hooshangnejad H, Sforza D, Vagdargi P, et al. 2024.. FLEX: flexible transducer with external tracking for ultrasound imaging with patient-specific geometry estimation. . IEEE. Trans. Biomed. Eng. 71::1298307
    [Crossref] [Google Scholar]
  151. 151.
    Huang X, Bell MAL, Ding K. 2021.. Deep learning for ultrasound beamforming in flexible array transducer. . IEEE Trans. Med. Imaging 40::317889
    [Crossref] [Google Scholar]
  152. 152.
    Bosco E, Spairani E, Toffali E, Meacci V, Ramalli A, Matrone G. 2024.. A deep learning approach for beamforming and contrast enhancement of ultrasound images in monostatic synthetic aperture imaging: a proof-of-concept. . IEEE Open J. Eng. Med. Biol. 5::37682
    [Crossref] [Google Scholar]
  153. 153.
    Beard P. 2011.. Biomedical photoacoustic imaging. . Interface Focus 1::60231
    [Crossref] [Google Scholar]
  154. 154.
    Lin L, Wang LV. 2022.. The emerging role of photoacoustic imaging in clinical oncology. . Nat. Rev. Clin. Oncol. 19::36584
    [Crossref] [Google Scholar]
  155. 155.
    Gao X, Chen X, Hu H, Wang X, Yue W, et al. 2022.. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. . Nat. Commun. 13::7757
    [Crossref] [Google Scholar]
  156. 156.
    Griffin MF, Leung BC, Premakumar Y, Szarko M, Butler PE. 2017.. Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction. . J. Otolaryngol. Head Neck Surg. 46::33
    [Crossref] [Google Scholar]
  157. 157.
    Sirohi J, Chopra I. 2000.. Fundamental understanding of piezoelectric strain sensors. . J. Intell. Mater. Syst. Struct. 11::24657
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-020524-121438
Loading
/content/journals/10.1146/annurev-bioeng-020524-121438
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error