1932

Abstract

Central nervous system (CNS) tumors come with vastly heterogeneous histologic, molecular, and radiographic landscapes, rendering their precise characterization challenging. The rapidly growing fields of biophysical modeling and radiomics have shown promise in better characterizing the molecular, spatial, and temporal heterogeneity of tumors. Integrative analysis of CNS tumors, including clinically acquired multi-parametric magnetic resonance imaging (mpMRI) and the inverse problem of calibrating biophysical models to mpMRI data, assists in identifying macroscopic quantifiable tumor patterns of invasion and proliferation, potentially leading to improved () detection/segmentation of tumor subregions and () computer-aided diagnostic/prognostic/predictive modeling. This article presents a summary of () biophysical growth modeling and simulation,() inverse problems for model calibration, () these models' integration with imaging workflows, and () their application to clinically relevant studies. We anticipate that such quantitative integrative analysis may even be beneficial in a future revision of the World Health Organization (WHO) classification for CNS tumors, ultimately improving patient survival prospects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-121105
2020-06-04
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/22/1/annurev-bioeng-062117-121105.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-121105&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Collins VP 1998. Gliomas. Cancer Surv. 32:37–51
    [Google Scholar]
  2. 2. 
    Holland EC 2000. Glioblastoma multiforme: the terminator. PNAS 97:6242–44
    [Google Scholar]
  3. 3. 
    Mang A, Gholami A, Davatizkos C, Biros G 2018. PDE-constrained optimization in medical image analysis. Optim. Eng. 19:3765–812
    [Google Scholar]
  4. 4. 
    Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G et al. 2013. GLISTR: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31:1941–54
    [Google Scholar]
  5. 5. 
    Kleihues P, Burger PC, Scheithauer BW 1993. The new WHO classification of brain tumours. Brain Pathol. 3:255–68
    [Google Scholar]
  6. 6. 
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D et al. 2016. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131:803–20
    [Google Scholar]
  7. 7. 
    Thust SC, van den Bent MJ, Smits M 2018. Pseudoprogression of brain tumors. J. Magnet. Reson. Imaging 48:571–89
    [Google Scholar]
  8. 8. 
    Jaffe CC 2012. Imaging and genomics: Is there a synergy?. Radiology 264:329–31
    [Google Scholar]
  9. 9. 
    Rutman AM, Kuo MD 2009. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur. J. Radiol. 70:232–41
    [Google Scholar]
  10. 10. 
    Mazurowski MA 2015. Radiogenomics: what it is and why it is important. J. Am. Coll. Radiol. 12:862–66
    [Google Scholar]
  11. 11. 
    Zinn PO, Majadan B, Sathyan P, Singh SK, Majumder S et al. 2011. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLOS ONE 6:10e25451
    [Google Scholar]
  12. 12. 
    Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S et al. 2014. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273:168–74
    [Google Scholar]
  13. 13. 
    Jain R, Poisson LM, Gutman D, Scarpace L, Hwang SN et al. 2014. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484–93
    [Google Scholar]
  14. 14. 
    Itakura H, Achrol AS, Mitchell LA, Loya JJ, Liu T et al. 2015. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci. Transl. Med. 7:303ra138
    [Google Scholar]
  15. 15. 
    Elsheikh SSM, Bakas S, Mulder NJ, Chimusa ER, Davatzikos C, Crimi A 2018. Multi-stage association analysis of glioblastoma gene expressions with texture and spatial patterns. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018 A Crimi, S Bakas, H Kuijf, F Keyvan, M Reyes, T van Walsum239–50 Lecture Notes in Computer Science, Vol. 11383. Cham, Switz.: Springer
    [Google Scholar]
  16. 16. 
    Ellingson B, Lai A, Harris R, Selfridge J, Yong W et al. 2013. Probabilistic radiographic atlas of glioblastoma phenotypes. Am. J. Neuroradiol. 34:533–40
    [Google Scholar]
  17. 17. 
    Bakas S, Akbari H, Pisapia J, Martinez-Lage M, Rozycki M et al. 2017. In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the ϕ-Index. Clin. Cancer Res. 23:4724–34
    [Google Scholar]
  18. 18. 
    Bakas S, Binder ZA, Akbari H, Martinez-Lage M, Rozycki M et al. 2016. Highly-expressed wild-type EGFR and EGFRvIII mutant glioblastomas have similar MRI signature, consistent with deep peritumoral infiltration. Neuro-Oncology 18:vi125–vi126
    [Google Scholar]
  19. 19. 
    Rathore S, Bakas S, Akbari H, Nasrallah M, Bagley S, Davatzikos C 2019. Machine learning radiomic biomarkers non-invasively assess genetic characteristics of glioma patients. Cancer Res. 79:13 Suppl.1392
    [Google Scholar]
  20. 20. 
    Rathore S, Bakas S, Nasrallah M, Akbari H, Bagley S et al. 2018. Multivariate pattern analysis of de novo glioblastoma patients offers in vivo evaluation of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status, compensating for insufficient specimen and assay failures. Neuro-Oncology 20:vi186
    [Google Scholar]
  21. 21. 
    Rathore S, Bakas S, Nasrallah M, Bagley S, Akbari H et al. 2018. Non-invasive determination of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status in glioblastoma (GBM) using magnetic resonance imaging (MRI). J. Clin. Oncol. 36:15 Suppl.2051
    [Google Scholar]
  22. 22. 
    Binder Z, Bakas S, Wileyto EP, Akbari H, Rathore S et al. 2016. Extracellular EGFR289 activating mutations confer poorer survival and suggest enhanced motility in primary GBMs. Neuro-Oncology 18:105–6
    [Google Scholar]
  23. 23. 
    Bakas S, Akbari H, Pisapia J, Rozycki M, O'Rourke DM, Davatzikos C 2015. Identification of imaging signatures of the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma. Neuro-Oncology 17:v154
    [Google Scholar]
  24. 24. 
    Bakas S, Rathore S, Nasrallah M, Akbari H, Binder Z et al. 2018. Non-invasive in vivo signature of IDH1 mutational status in high grade glioma, from clinically-acquired multi-parametric magnetic resonance imaging, using multivariate machine learning. Neuro-Oncology 20:vi184–vi185
    [Google Scholar]
  25. 25. 
    Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M et al. 2018. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 34:163–77
    [Google Scholar]
  26. 26. 
    Beig N, Patel J, Prasanna P, Hill V, Gupta A et al. 2018. Radiogenomic analysis of hypoxia pathway is predictive of overall survival in glioblastoma. Sci. Rep. 8:17
    [Google Scholar]
  27. 27. 
    Akbari H, Bakas S, Pisapia JM, Nasrallah MP, Rozycki M et al. 2018. In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro-Oncology 20:1068–79
    [Google Scholar]
  28. 28. 
    Clark K, Vendt B, Smith K, Freymann J, Kirby J et al. 2013. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26:1045–57
    [Google Scholar]
  29. 29. 
    Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S et al. 2016. Cancer Genome Atlas glioblastoma multiforme (TCGA-GBM) data collection. Cancer Imaging Archive https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
    [Google Scholar]
  30. 30. 
    Pedano N, Flanders A, Scarpace L, Mikkelsen T, Eschbacher J et al. 2016. Cancer Genome Atlas low grade glioma (TCGA-LGG) data collection. Cancer Imaging Archive. https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
    [Google Scholar]
  31. 31. 
    Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M et al. 2018. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arxiv1811.02629 [cs.CV]
  32. 32. 
    Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M et al. 2017. Advancing the Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4:170117
    [Google Scholar]
  33. 33. 
    Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K et al. 2015. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34:1993–2024
    [Google Scholar]
  34. 34. 
    Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M et al. 2017. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
    [Crossref] [Google Scholar]
  35. 35. 
    Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M et al. 2017. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
    [Crossref] [Google Scholar]
  36. 36. 
    Simpson AL, Antonelli M, Bakas S, Bilello M, Farahani K et al. 2019.A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv:1902.09063 [cs.CV]
  37. 37. 
    Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK et al. 2005. Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging 24:1334–46
    [Google Scholar]
  38. 38. 
    Hogea C, Biros G, Abraham F, Davatzikos C 2007. A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images. Phys. Med. Biol. 52:6893–908
    [Google Scholar]
  39. 39. 
    Yankeelov TE, Atuegwu N, Hormuth D, Weis JA, Barnes SL et al. 2013. Clinically relevant modeling of tumor growth and treatment response. Sci. Transl. Med. 5:187ps9
    [Google Scholar]
  40. 40. 
    Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N 2010. Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med. Image Anal. 14:111–25
    [Google Scholar]
  41. 41. 
    Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I et al. 2010. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys. Med. Biol. 55:3271–85
    [Google Scholar]
  42. 42. 
    Ivkovic S, Beadle C, Noticewala S, Massey SC, Swanson KR et al. 2012. Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Mol. Biol. Cell 23:533–42
    [Google Scholar]
  43. 43. 
    Miga M, Paulsen K, Kennedy F, Hoopes J, Hartov A, Roberts D 1998. Initial in-vivo analysis of 3D heterogeneous brain computations for model-updated image-guided neurosurgery. Proceedings of Medical Image Computing and Computer-Assisted Intervention. MICCAI’98 WM Wells, A Colchester, S Delp743–52 Berlin/Heidelberg: Springer
    [Google Scholar]
  44. 44. 
    Lipkova J, Angelikopoulos P, Wu S, Alberts E, Wiestler B et al. 2019. Personalized radiotherapy design for glioblastoma: integrating mathematical tumor models, multimodal scans, and Bayesian inference. IEEE Trans. Med. Imaging 38:1875–84
    [Google Scholar]
  45. 45. 
    Chen X, Summers RM, Yoa J 2012. Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model. IEEE Trans. Biomed. Eng. 60:169–73
    [Google Scholar]
  46. 46. 
    Wong KCL, Summers RM, Kebebew E, Yao J 2015. Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med. Image Anal. 25:72–85
    [Google Scholar]
  47. 47. 
    Wong KCL, Summers RM, Kebebew E, Yoa J 2017. Pancreatic tumor growth prediction with elastic-growth decomposition, image-derived motion, and FDM-FEM coupling. IEEE Trans. Med. Imaging 36:111–23
    [Google Scholar]
  48. 48. 
    Garcia-Cremades M, Pitou C, Iversen PW, Troconiz IF 2018. Predicting tumour growth and its impact on survival in gemcitabine-treated patients with advanced pancreatic cancer. Eur. J. Pharm. Sci. 115:296–303
    [Google Scholar]
  49. 49. 
    Filipovic N, Djukic T, Saveljic I, Milenkovic P, Jovicic G, Djuric M 2014. Modeling of liver metastatic disease with applied drug therapy. Comput. Methods Programs Biomed. 115:162–70
    [Google Scholar]
  50. 50. 
    Tariq I, Humbert-Vidan L, Chen T, South CP, Ezhil V et al. 2015. Mathematical modelling of tumour volume dynamics in response to stereotactic ablative radiotherapy for non-small cell lung cancer. Phys. Med. Biol. 60:3695–713
    [Google Scholar]
  51. 51. 
    Mi H, Petitjean C, Dubray B, Vera P, Ruan S 2014. Prediction of lung tumor evolution during radiotherapy in individual patients with PET. IEEE Trans. Med. Imaging 33:995–1003
    [Google Scholar]
  52. 52. 
    Prapidkumar KK, Manojbhai DD, Rajamenakshi R 2016. Prediction analysis for tumor growth from large scale non-invasive image. 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), Bangalore366–70 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53. 
    Atuegwu NC, Colvin DC, Loveless ME, Xu L, Gore JC, Yankeelov TE 2012. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth. Phys. Med. Biol. 57:225–40
    [Google Scholar]
  54. 54. 
    Roque T, Risser L, Kersemans V, Smart S, Allen D et al. 2018. A DCE-MRI driven 3-D reaction-diffusion model of solid tumor growth. IEEE Trans. Med. Imaging 37:724–32
    [Google Scholar]
  55. 55. 
    Hand L, Hipwell JH, Eiben B, Barratt D, Modat M et al. 2014. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images. IEEE Trans. Med. Imaging 33:682–94
    [Google Scholar]
  56. 56. 
    Lorenzo G, Scott MA, Tew K, Hughes TJR, Zhang YJ et al. 2016. Tissue-scale, personalized modeling and simulation of prostate cancer growth. PNAS 113:E7663–E7671
    [Google Scholar]
  57. 57. 
    Gutman DA, Cooper LAD, Hwang SN, Holder CA, Gao J et al. 2013. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560–69
    [Google Scholar]
  58. 58. 
    Mazurowski MA, Desjardins A, Malof JM 2013. Imaging descriptors improve the predictive power of survival models for glioblastoma patients. Neuro-Oncology 15:1389–94
    [Google Scholar]
  59. 59. 
    Bakas S, Shukla G, Akbari H, Sotiras A, Erus G et al. 2017. Accurate and generalizable pre-operative prognostic stratification of glioblastoma patients using integrative quantitative radiomic analysis of conventional MRI. Neuro-Oncology 19:vi151
    [Google Scholar]
  60. 60. 
    Bonekamp D, Deike K, Wiestler B, Wick W, Bendszus M et al. 2015. Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion MRI: comparison of intraindividually matched T1- and T2*-based bolus techniques. J. Magn. Reson. Imaging 42:87–96
    [Google Scholar]
  61. 61. 
    Akbari H, Macyszyn L, Da X, Wolf RL, Bilello M et al. 2014. Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 273:502–10
    [Google Scholar]
  62. 62. 
    Nicolasjilwan M, Hu Y, Yan C, Meerzaman D, Holder CA et al. 2015. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J. Neuroradiol. 42:212–21
    [Google Scholar]
  63. 63. 
    Velazquez ER, Meier R, Dunn WD Jr., Alexander B, Wiest R et al. 2015. Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Sci. Rep. 5:16822
    [Google Scholar]
  64. 64. 
    Akbari H, Macyszyn L, Da X, Bilello M, Wolf RL et al. 2016. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78:572–80
    [Google Scholar]
  65. 65. 
    Batmanghelich NK, Dalca A, Quon G, Sabuncu M, Golland P 2016. Probabilistic modeling of imaging, genetics and diagnosis. IEEE Trans. Med. Imaging 35:1765–79
    [Google Scholar]
  66. 66. 
    Rathore S, Akbari H, Doshi J, Shukla G, Rozycki M et al. 2018. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J. Med. Imaging 5:021219
    [Google Scholar]
  67. 67. 
    Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M et al. 2016. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 18:417–25
    [Google Scholar]
  68. 68. 
    Rathore S, Akbari H, Rozycki M, Bakas S, Davatzikos C 2016. Imaging pattern analysis reveals three distinct phenotypic subtypes of GBM with different survival rates. Neuro-Oncology 18:vi128
    [Google Scholar]
  69. 69. 
    Rathore S, Akbari H, Nasrallah M, Bakas S, Binder Z et al. 2018. Quantitative multi-parametric profiling reveals remarkable heterogeneity within IDH-wildtype glioblastoma, offering prognostic stratification beyond current WHO classifications. Neuro-Oncology 20:vi186
    [Google Scholar]
  70. 70. 
    Rathore S, Akbari H, Rozycki M, Abdullah KG, Nasrallah MP et al. 2018. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. Rep. 8:5087
    [Google Scholar]
  71. 71. 
    Tarantola A 2005. Inverse Problem Theory and Methods for Model Parameter Estimation Philadelphia: Soc. Ind. Appl. Math. (SIAM)
    [Google Scholar]
  72. 72. 
    Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML et al. 2014. Classical mathematical models for description and prediction of experimental tumor growth. PLOS Comput. Biol. 10:e1003800
    [Google Scholar]
  73. 73. 
    Collis J, Connor A, Paczkowski M, Kannan P, Pitt-Francis J et al. 2017. Bayesian calibration, validation, and uncertainty quantification for predictive modelling of tumour growth: a tutorial. Bull. Math. Biol. 79:939–74
    [Google Scholar]
  74. 74. 
    Hormuth DA II, Weis JA, Barnes SL, Miga MI, Rericha EC et al. 2015. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys. Biol. 12:046006
    [Google Scholar]
  75. 75. 
    Hormuth DA II, Weis JA, Barnes SL, Miga MI, Rechricha EC et al. 2017. A mechanically coupled reaction-diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth. J. R. Soc. Interface 14:20161010
    [Google Scholar]
  76. 76. 
    Oden JT, Hawkins A, Prudhomme S 2010. General diffuse-interface theories and an approach to predictive tumor growth modeling. Math. Models Methods Appl. Sci. 20:477–517
    [Google Scholar]
  77. 77. 
    Wong KCL, Summers RM, Kebebew E, Yao J 2015. Pancreatic tumor growth prediction with multiplicative growth and image-derived motion. Information Processing in Medical Imaging. IPMI 2015 S Ourselin, D Alexander, CF Westin, M Cardoso501–3 Cham, Switz.: Springer
    [Google Scholar]
  78. 78. 
    Rahman MM, Feng Y, Yankeelov TE, Oden JT 2017. A fully coupled space-time multiscale modeling framework for predicting tumor growth. Comput. Methods Appl. Mech. Eng. 320:261–86
    [Google Scholar]
  79. 79. 
    Rekik I, Allassonnière S, Clatz O, Geremia E, Stretton E et al. 2013. Tumor growth parameters estimation and source localization from a unique time point: application to low-grade gliomas. Comput. Vis. Image Understanding 117:238–49
    [Google Scholar]
  80. 80. 
    Baldock AL, Ahn S, Rockne R, Johnston S, Neal M et al. 2014. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLOS ONE 9:e99057
    [Google Scholar]
  81. 81. 
    Mosayebi P, Cobzas D, Murtha A, Jagersand M 2012. Tumor invasion margin on the Riemannian space of brain fibers. Med. Image Anal. 16:361–73
    [Google Scholar]
  82. 82. 
    Corwin D, Holdsworth C, Rockne RC, Trister AD, Mrugala MM et al. 2013. Toward patient-specific biologically optimized radiation therapy plans for the treatment of glioblastoma. PLOS ONE 8:e79115
    [Google Scholar]
  83. 83. 
    M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T et al. 2017. Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans. Med. Imaging 36:815–25
    [Google Scholar]
  84. 84. 
    Unkelbach J, Menze BH, Konukoglu E, Dittmann F, Ayache N, Shih HA 2014. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution. Phys. Med. Biol. 59:771–89
    [Google Scholar]
  85. 85. 
    Swanson KR, Rostomily RC, Alvord EC 2008. A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br. J. Cancer 98:113–19
    [Google Scholar]
  86. 86. 
    Wasserman RM, Acharya RS, Sibata C, Shin KH 1996. Patient-specific tumor prognosis prediction via multimodality imaging. Proc. SPIE 2709:468–79
    [Google Scholar]
  87. 87. 
    Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, Swanson KR 2015. Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice. Bull. Math. Biol. 77:846–56
    [Google Scholar]
  88. 88. 
    Lima EABF, Oden JT, Wohlmuth B, Shahmoradi A, Hormuth DA et al. 2017. Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data. Comput. Methods Appl. Mech. Eng. 327:227–308
    [Google Scholar]
  89. 89. 
    Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M 2007. Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys. Med. Biol. 52:3291–306
    [Google Scholar]
  90. 90. 
    Weis JA, Miga MI, Yankeelov TE 2017. Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy. Comput. Methods Appl. Mech. Eng. 314:494–512
    [Google Scholar]
  91. 91. 
    Scheufele K, Mang A, Gholami A, Davatzikos C, Biros G, Mehl M 2019. Coupling brain-tumor biophysical models and diffeomorphic image registration. Comput. Methods Appl. Mech. Eng. 347:533–67
    [Google Scholar]
  92. 92. 
    Zacharaki EI, Hogea CS, Shen D, Biros G, Davatzikos C 2009. Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. NeuroImage 46:762–74
    [Google Scholar]
  93. 93. 
    Stefanescu R, Commowick O, Maladain G, Bondiau PY, Ayache N, Pennec X 2004. Non-rigid atlas to subject registration with pathologies for conformal brain radiotherapy. International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004 C Barillot, DR Haynor, P Hellier704–11 Lecture Notes in Computer Science, Vol. 3216 Berlin/Heidelberg: Springer
    [Google Scholar]
  94. 94. 
    Angelini ED, Clatz O, Mandonnet E, Konukoglu E, Capelle L, Duffau H 2007. Glioma dynamics and computational models: a review of segmentation, registration, in silico growth algorithms and their clinical applications. Curr. Med. Imaging Rev. 3:262–76
    [Google Scholar]
  95. 95. 
    Bauer S, Wiest R, Nolte LP, Reyes M 2013. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58:R97–129
    [Google Scholar]
  96. 96. 
    Bakas S, Zeng K, Sotiras A, Rathore S, Akbari H et al. 2016. GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. Brainlesion 9556:144–55
    [Google Scholar]
  97. 97. 
    Mia H, Petitjean C, Vera P, Ruan S 2015. Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images. Med. Image Anal. 23:84–91
    [Google Scholar]
  98. 98. 
    Hogea C, Davatzikos C, Biros G 2008. Brain-tumor interaction biophysical models for medical image registration. SIAM J. Imaging Sci. 30:3050–72
    [Google Scholar]
  99. 99. 
    Mang A, Toma A, Schuetz TA, Becker S, Buzug TM 2012. A generic framework for modeling brain deformation as a constrained parameteric optimization problem to aid non-diffeomorphic image registration in brain tumor imaging. Methods Inform. Med. 51:429–40
    [Google Scholar]
  100. 100. 
    Bellomo N, Li NK, Maini PK 2008. On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18:593–646
    [Google Scholar]
  101. 101. 
    Roose T, Chapman SJ, Maini PK 2007. Mathematical models of avascular tumor growth. SIAM Rev. 49:179–208
    [Google Scholar]
  102. 102. 
    Wang Z, Deisboeck TS 2008. Computational modeling of brain tumors: discrete, continuum or hybrid?. Sci. Model. Simul. 15:381–93
    [Google Scholar]
  103. 103. 
    Harpold HLP, Alvord EC, Swanson KR 2007. The evolution of mathematical modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol. 66:1–9
    [Google Scholar]
  104. 104. 
    Hawkins-Daarud A, Rockne RC, Anderson ARA, Swanson KR 2013. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front. Oncol. 3:66
    [Google Scholar]
  105. 105. 
    Gu S, Chakraborty G, Champley K, Alessio AM, Claridge J et al. 2012. Applying a patient-specific bio-mathematical model of glioma growth to develop virtual [18F]-FMISO-PET images. Math. Med. Biol. 29:31–48
    [Google Scholar]
  106. 106. 
    Schuetz TA, Becker S, Mang A, Toma A, Buzug TM 2013. Modelling of glioblastoma growth by linking a molecular interaction network with an agent based model. Math. Comput. Model. Dyn. Syst. 19:417–33
    [Google Scholar]
  107. 107. 
    Toma A, Mang A, Schuetz TA, Becker S, Buzug TM 2012. A novel method for simulating the extracellular matrix in models of tumour growth. Comput. Math. Methods Med. 2012:109019
    [Google Scholar]
  108. 108. 
    Toma A, del Rocío Cisneros Castillo L, Schuetz TA, Becker S, Mang A et al. 2013. A validated mathematical model of tumour-immune interactions for glioblastoma. Curr. Med. Imaging Rev. 9:145–53
    [Google Scholar]
  109. 109. 
    Swanson KR, Alvord EC, Murray JD 2000. A quantitative model for differential motility of gliomas in grey and white matter. Cell Proliferation 33:317–30
    [Google Scholar]
  110. 110. 
    Swanson KR, Alvord EC, Murray JD 2002. Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br. J. Cancer 86:14–18
    [Google Scholar]
  111. 111. 
    Swanson KR, Bridge C, Murray JD, Alvord EC 2003. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216:1–10
    [Google Scholar]
  112. 112. 
    Deisboeck TS, Wang Z, Macklin P, Cristini V 2011. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13:127–55
    [Google Scholar]
  113. 113. 
    Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X et al. 2009. Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23:R1–R91
    [Google Scholar]
  114. 114. 
    Schuetz TA, Mang A, Becker S, Toma A, Buzug TM 2014. Identification of crucial parameters in a mathematical multiscale model of glioblastoma growth. Comput. Math. Methods Med. 2014:437094
    [Google Scholar]
  115. 115. 
    Mang A 2014. Methoden zur Numerischen Simulation der Progression von Gliomen: Modellentwicklung, Numerik und Parameteridentifikation Wiesbaden, Ger.: Springer Fachmedien
    [Google Scholar]
  116. 116. 
    Gholami A, Mang A, Biros G 2016. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas. J. Math. Biol. 72:409–33
    [Google Scholar]
  117. 117. 
    Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR et al. 2005. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn. Reson. Med. 54:616–24
    [Google Scholar]
  118. 118. 
    Mang A, Toma A, Schuetz TA, Becker S, Eckey T et al. 2012. Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Med. Phys. 39:4444–59
    [Google Scholar]
  119. 119. 
    Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber MA et al. 2010. Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans. Med. Imaging 29:77–95
    [Google Scholar]
  120. 120. 
    Mohamed A, Davatzikos C 2005. Finite element modeling of brain tumor mass-effect from 3D medical images. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005 JS Duncan, G Gerig400–8 Berlin/Heidelberg: Springer
    [Google Scholar]
  121. 121. 
    Hogea C, Davatzikos C, Biros G 2007. Modeling glioma growth and mass effect in 3D MR images of the brain. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007 N Ayache, S Ourselin, A Maeder642–50 Lecture Notes in Computer Science, Vol. 4791 Berlin/Heidelberg: Springer
    [Google Scholar]
  122. 122. 
    Subramanian S, Gholami A, Biros G 2019. Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect. J. Math. Biol. 79:941–67
    [Google Scholar]
  123. 123. 
    Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A 2012. Go or grow: the key to the emergence of invasion in tumour progression?. Math. Med. Biol. 29:49–65
    [Google Scholar]
  124. 124. 
    Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord EC, Anderson AR 2011. Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 71:7366–75
    [Google Scholar]
  125. 125. 
    Saut O, Lagaert JB, Colin T, Fathallah-Shaykh HM 2014. A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth. Bull. Math. Biol. 76:2306–33
    [Google Scholar]
  126. 126. 
    Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A et al. 2015. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14:5931–65
    [Google Scholar]
  127. 127. 
    Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J et al. 2011. Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59:4863–83
    [Google Scholar]
  128. 128. 
    Rutter EM, Stepien TL, Anderies BJ, Plasencia JD, Woolf EC et al. 2017. Mathematical analysis of glioma growth in a murine model. Sci. Rep. 7:2508
    [Google Scholar]
  129. 129. 
    Liu Y, Sadowki SM, Weisbrod AB, Kebebew E, Summers RM, Yao J 2014. Patient specific tumor growth prediction using multimodal images. Med. Image Anal. 18:555–66
    [Google Scholar]
  130. 130. 
    M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T et al. 2015. Bayesian personalization of brain tumor growth model. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 N Navab, J Hornegger, W Wells, A Frangi424–32 Lecture Notes in Computer Science, Vol 9350 Cham, Switz.: Springer
    [Google Scholar]
  131. 131. 
    Knopoff D, Fernández DR, Torres GA, Turner CV 2017. A mathematical method for parameter estimation in a tumor growth model. Comput. Appl. Math. 36:733–48
    [Google Scholar]
  132. 132. 
    Colin T, Iollo A, Lagaert JB, Saut O 2014. An inverse problem for the recovery of the vascularization of a tumor. J. Inverse Ill-Posed Probl. 22:759–86
    [Google Scholar]
  133. 133. 
    Feng X, Hormuth DA, Yankeelov TE 2018. An adjoint-based method for a linear mechanically-coupled tumor model: application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging. Comput. Mech. 63:159–80
    [Google Scholar]
  134. 134. 
    Knopoff DA, Fernández DR, Torres GA, Turner CV 2013. Adjoint method for a tumor growth PDE-constrained optimization problem. Comput. Math. Appl. 66:1104–19
    [Google Scholar]
  135. 135. 
    Quiroga AAI, Fernández D, Torres GA, Turner CV 2015. Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method. Appl. Math. Comput. 270:358–68
    [Google Scholar]
  136. 136. 
    Gholami A, Mang A, Scheufele K, Davatzikos C, Mehl M, Biros G 2017. A framework for scalable biophysics-based image analysis. SC '17: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis Art. No. 19 New York: Assoc. Comput. Mach.
    [Google Scholar]
  137. 137. 
    Subramanian S, Scheufele K, Mehl M, Biros G 2019. Where did the tumor start? An inverse solver with sparse localization for tumor growth models. arXiv1907.06564 [physics.med-ph]
  138. 138. 
    Jaroudi R, Baravdish G, Johansson BT, Aström F 2019. Numerical reconstruction of brain tumours. Inverse Probl. Sci. Eng. 27:278–98
    [Google Scholar]
  139. 139. 
    Hawkins-Daarud A, Prudhomme S, van der Zee KG, Oden JT 2013. Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth. J. Math. Biol. 67:1457–85
    [Google Scholar]
  140. 140. 
    Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA et al. 2011. A generative approach for image-based modeling of tumor growth. Information Processing in Medical Imaging. IPMI 2011 G Székely, HK Hahn735–47 Berlin/Heidelberg: Springer
    [Google Scholar]
  141. 141. 
    Oden JT, Prudencio EE, Hawkins-Daarud A 2013. Selection and assessment of phenomenological models of tumor growth. Math. Models Methods Appl. Sci. 23:1309–38
    [Google Scholar]
  142. 142. 
    Paek J, Choi I 2014. Bayesian inference of the stochastic Gompertz growth model of tumor growth. Commun. Stat. Appl. Methods 21:521–28
    [Google Scholar]
  143. 143. 
    Meghdadi N, Niroomand-Oscuii H, Soltani M, Ghalichi F, Pourgolmohammad M 2017. Brain tumor growth simulation: model validation and uncertainty quantification. Int. J. Syst. Assur. Eng. 8:655–62
    [Google Scholar]
  144. 144. 
    Kahle C, Lam KF 2018. Parameter identification via optimal control for a Cahn-Hilliard-chemotaxis system with a variable mobility. Appl. Math. Optim. https://doi.org/10.1007/s00245-018-9491-z
    [Crossref] [Google Scholar]
  145. 145. 
    Patmanidis S, Charalampidis AC, Kordonis I, Mitsis GD, Papavassilopoulos GP 2018. Tumor growth modeling: parameter estimation with maximum likelihood methods. Comput. Methods Programs Biomed. 160:1–10
    [Google Scholar]
  146. 146. 
    Kahle C, Lam KF, Latz J, Ullmann E 2019. Bayesian parameter identification in Cahn-Hilliard models for biological growth. SIAM/ASA J. Uncertain. Quantif. 7:2526–52
    [Google Scholar]
  147. 147. 
    Prastawa M, Buillitt E, Gerig G 2009. Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Med. Image Anal. 13:297–311
    [Google Scholar]
  148. 148. 
    Mohamed A, Shen D, Davatzikos C 2006. Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. Med. Image Anal. 10:752–63
    [Google Scholar]
  149. 149. 
    Kwon D, Niethammer M, Akbari H, Bilello M, Davatzikos C, Pohl KM 2014. PORTR: pre-operative and post-recurrence brain tumor registration. IEEE Trans. Med. Imaging 33:651–67
    [Google Scholar]
  150. 150. 
    Deeley MA, Chen A, Datteri R, Noble JH, Cmelak AJ et al. 2011. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study. Phys. Med. Biol. 56:4557–77
    [Google Scholar]
  151. 151. 
    Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H 2004. Brain tumor target volume determination for radiation treatment planning through automated MRI segmentations. Int. J. Radiat. Oncol. Biol. Phys. 59:300–12
    [Google Scholar]
  152. 152. 
    Isin A, Direkoglu C, Sah M 2016. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 102:317–24
    [Google Scholar]
  153. 153. 
    Gholami A, Subramanian S, Shenoy V, Himthani N, Yue X et al. 2019. A novel domain adaptation framework for medical image segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018 A Crimi, S Bakas, H Kuijf, F Keyvan, M Reyes, T van Walsum289–98 Lecture Notes in Computer Science, Vol. 11384. Cham, Switz.: Springer
    [Google Scholar]
  154. 154. 
    Sotiras A, Davatzikos C, Paragios N 2013. Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32:1153–90
    [Google Scholar]
  155. 155. 
    Mang A, Schnabel JA, Crum WR, Modat M, Camara-Rey O et al. 2008. Consistency of parametric registration in serial MRI studies of brain tumor progression. Int. J. Comput. Assisted Radiol. Surg. 3:201–11
    [Google Scholar]
  156. 156. 
    Mang A, Crum WR, Camara-Rey O, Schnabel JA, Penney GP et al. 2007. Modelling tumour growth patterns with non-rigid image registration. Advances in Medical Engineering TM Buzug, D Holz, J Bongartz, M Kohl-Bareis, U Hartmann, S Weber139–44 Springer Proceedings in Physics, Vol. 114 Berlin/Heidelberg: Springer
    [Google Scholar]
  157. 157. 
    Han X, Bakas S, Kwitt R, Aylward S, Akbari H et al. 2019. Patient-specific registration of pre-operative and post-recurrence brain tumor MRI scans. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018, ed. A Crimi, S Bakas, H Kuijf, F Keyvan, M Reyes, T van Walsum105–14 Lecture Notes in Computer Science, Vol. 11383 Cham, Switz.: Springer
    [Google Scholar]
  158. 158. 
    Bilello M, Akbari H, Da X, Pisapia JM, Mohan S et al. 2016. Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. NeuroImage Clin. 12:34–40
    [Google Scholar]
  159. 159. 
    Zacharaki EI, Hogea CS, Shen D, Biros G, Davatzikos C 2008. Parallel optimization of tumor model parameters for fast registration of brain tumor images. Proc. SPIE 691469140K
    [Google Scholar]
  160. 160. 
    Henn S, Hömke L, Witsch K 2004. Lesion preserving image. Pattern Recognition. DAGM 2004 ed. CE Rasmussen, HH Bülthof, B Schölkopf, MA Giese 496–503 Lecture Notes in Computer Science, Vol. 3175 Berlin/Heidelberg: Springer
    [Google Scholar]
  161. 161. 
    Brett M, Leff AP, Rorden C, Ashburner J 2001. Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage 14:486–500
    [Google Scholar]
  162. 162. 
    Parisot S, Wells W, Chemouny S, Duffau H, Paragios N 2014. Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Med. Image Anal. 18:647–59
    [Google Scholar]
  163. 163. 
    Li X, Long X, Laurienti P, Wyatt C 2012. Registration of images with varying topology using embedded maps. IEEE Trans. Med. Imaging 31:749–65
    [Google Scholar]
  164. 164. 
    Scheufele K, Subramanian S, Mang A, Biros G, Mehl M 2019. Image-driven biophysical tumor growth model calibration. arXiv1907.07774 [q-bio.QM]
    [Google Scholar]
  165. 165. 
    Zacharaki EI, Hogea CS, Biros G, Davatzikos C 2008. A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans. Biomed. Eng. 55:1233–36
    [Google Scholar]
  166. 166. 
    Mang A, Tharakan S, Gholami A, Nimthani N, Subramanian S et al. 2017. SIBIA-GlS: scalable biophysics-based image analysis for glioma segmentation. Proceedings of the 6th MICCAI BraTS Challenge197–204 https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
    [Google Scholar]
  167. 167. 
    Gooya A, Pohl KM, Bilello M, Biros G, Davatzikos C 2011. Joint segmentation and deformable registration of brain scans guided by a tumor growth model. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011 G Fichtinger, A Martel, T Peters532–40 Lecture Notes in Computer Science, Vol. 6892. Berlin/Heidelberg: Springer
    [Google Scholar]
  168. 168. 
    Hogea C, Davatzikos C, Biros G 2008. An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56:793–825
    [Google Scholar]
  169. 169. 
    Friedman JH 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29:1189–232
    [Google Scholar]
  170. 170. 
    Friedman JH 2002. Stochastic gradient boosting. Comput. Stat. Data Anal. 38:367–78
    [Google Scholar]
  171. 171. 
    Gaonkar B, Macyszyn L, Bilello M, Sadaghiani MS, Akbari H et al. 2015. Automated tumor volumetry using computer-aided image segmentation. Acad. Radiol. 22:653–61
    [Google Scholar]
  172. 172. 
    Bakas S, Chatzimichail K, Hunter G, Labbé B, Sidhu PSet al 2017. Fast semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound, based on a probabilistic model. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 5:329–38
    [Google Scholar]
  173. 173. 
    Mang A, Biros G 2015. An inexact Newton–Krylov algorithm for constrained diffeomorphic image registration. SIAM J. Imaging Sci. 8:1030–69
    [Google Scholar]
  174. 174. 
    Mang A, Gholami A, Biros G 2016. Distributed-memory large-deformation diffeomorphic 3D image registration. SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Salt Lake City, UT, 2016842–53 https://ieeexplore.ieee.org/document/7877150
    [Google Scholar]
  175. 175. 
    Mang A, Gholami A, Davatzikos C, Biros G 2019. CLAIRE: a distributed-memory solver for constrained large deformation diffeomorphic image registration. SIAM J. Sci. Comput. 41:5C548–C584
    [Google Scholar]
  176. 176. 
    Davatzikos C, Sotiras A, Fan Y, Habes M, Erus G et al. 2019.Precision diagnostics based on machine learning-derived imaging signatures. Magn. Reson. Imaging 64:49–61
  177. 177. 
    Tracqui P 2009. Biophysical models of tumour growth. Rep. Progress Phys. 72:056701
    [Google Scholar]
  178. 178. 
    Shukla G, Alexander GS, Bakas S, Nikam R, Talekar K et al. 2017. Advanced magnetic resonance imaging in glioblastoma: a review. Chinese Clin. Oncol. 6:40
    [Google Scholar]
  179. 179. 
    Zeng K, Bakas S, Sotiras A, Akbari H, Rozycki M et al. 2016. Segmentation of gliomas in pre-operative and post-operative multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016 A Crimi, B Menze, C Maier, M Reyes, S Winzeck, H Handels184–94 Lecture Notes in Computer Science, Vol. 10154 Cham, Switz.: Springer
    [Google Scholar]
  180. 180. 
    Kwon D, Shinohara RT, Akbari H, Davatzikos C 2014. Combining generative models for multifocal glioma segmentation and registration. Med. Image Comput. Comput. Assist. Interv. 17:Pt. 1763–70
    [Google Scholar]
  181. 181. 
    Kwon D, Akbari H, Da X, Gaonkar B, Davatzikos C 2014. Multimodal brain tumor image segmentation using GLISTR. Brain Tumor Segmentation (BraTS) Challenge Manuscripts, MICCAI 201418–19 http://people.csail.mit.edu/menze/papers/proceedings_miccai_brats_2014.pdf
    [Google Scholar]
  182. 182. 
    Davatzikos C, Rathore S, Bakas S, Pati S, Bergman M et al. 2018. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 5:011018
    [Google Scholar]
  183. 183. 
    Rathore S, Bakas S, Pati S, Akbari H, Kalarot R et al. 2018. Brain cancer imaging phenomics toolkit (brain-CaPTk): an interactive platform for quantitative analysis of glioblastoma. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017 A Crimi, S Bakas, H Kuijf, B Menze, M Reyes133–45 Lecture Notes in Computer Science, Vol. 10670 Cham, Switz.: Springer
    [Google Scholar]
  184. 184. 
    Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A et al. 2009. Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res. 69:9133–40
    [Google Scholar]
  185. 185. 
    Rathore S, Bakas S, Akbari H, Shukla G, Rozycki M, Davatzikos C 2018. Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques. Proc. SPIE 10575:1057509
    [Google Scholar]
  186. 186. 
    Rathore S, Bakas S, Akbari H, Rozycki M, Davatzikos C 2018. Quantitative imaging predictors of overall survival in glioblastoma patients robust in the presence of inter-scanner variations. Neuro-Oncology 20:vi184
    [Google Scholar]
  187. 187. 
    Shukla G, Bakas S, Rathore S, Akbari H, Sotiras A, Davatzikos C 2017. Radiomic features from multi-institutional glioblastoma MRI offer additive prognostic value to clinical and genomic markers: focus on TCGA-GBM collection. Int. J. Radiat. Oncol. Biol. Phys. 99:E107–E108
    [Google Scholar]
  188. 188. 
    Petrecca K, Guiot MC, Panet-Raymond V, Souhami L 2013. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neuro-Oncol. 111:19–23
    [Google Scholar]
  189. 189. 
    Lemée JM, Clavreul A, Menei P 2015. Intratumoral heterogeneity in glioblastoma: Don't forget the peritumoral brain zone. Neuro-Oncology 17:1322–32
    [Google Scholar]
  190. 190. 
    Chang EL, Akyurek S, Avalos T, Rebueno N, Spicer C et al. 2007. Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 68:144–50
    [Google Scholar]
  191. 191. 
    Bullitt E, Zeng D, Gerig G, Aylward S, Joshi S et al. 2005. Vessel tortuosity and brain tumor malignancy: a blinded study. Acad. Radiol. 12:1232–40
    [Google Scholar]
  192. 192. 
    Kerbel RS 2000. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–15
    [Google Scholar]
  193. 193. 
    Ellingson BM, LaViolette PS, Rand SD, Malkin MG, Connelly JM et al. 2011. Spatially quantifying microscopic tumor invasion and proliferation using a voxel-wise solution to a glioma growth model and serial diffusion MRI. Magn. Reson. Med. 65:1131–43
    [Google Scholar]
  194. 194. 
    Stein AM, Demuth T, Mobley D, Berens M, Sander LM 2007. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J. 92:356–65
    [Google Scholar]
  195. 195. 
    Burgess PK, Kulesa PM, Murray JD, Alvord EC Jr 1997. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J. Neuropathol. Exp. Neurol. 56:704–13
    [Google Scholar]
  196. 196. 
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y et al. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110
    [Google Scholar]
  197. 197. 
    Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S 2018. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018 A Crimi, S Bakas, H Kuijf, F Keyvan, M Reyes, T van Walsum92–104 Lecture Notes in Computer Science, Vol. 11383 Cham, Switz.: Springer
    [Google Scholar]
  198. 198. 
    Chang K, Balachandar N, Lam C, Yi D, Brown J et al. 2018. Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 25:945–54
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-121105
Loading
/content/journals/10.1146/annurev-bioeng-062117-121105
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error