1932

Abstract

Use of microscopic computed-tomography (micro-CT) scanning continues to grow in biomedical research. Laboratory-based micro-CT scanners, laboratory-based nano-CT scanners, and integrated micro-CT/SPECT and micro-CT/PET scanners are now manufactured for “turn-key” operation by a number of commercial vendors. In recent years a number of technical developments in X-ray sources and X-ray imaging arrays have broadened the utility of micro-CT. Of particular interest are photon-counting and energy-resolving detector arrays. These are being explored to maximize micro-CT image grayscale dynamic range and to further increase image contrast by utilizing the unique spectral attenuation characteristics of individual chemical elements. X-ray phase-shift images may increase contrast resolution and reduce radiation exposure. Although radiation exposure is becoming a concern with the drive for increased spatial and temporal resolution, especially for longitudinal studies, gated scans and limited scan-data-set reconstruction algorithms show great potential for keeping radiation exposure to a minimum.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071910-124717
2011-08-15
2024-04-14
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-bioeng-071910-124717
Loading
/content/journals/10.1146/annurev-bioeng-071910-124717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error