1932

Abstract

Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-073123-022334
2024-07-03
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-073123-022334.html?itemId=/content/journals/10.1146/annurev-bioeng-073123-022334&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tempany CM, McDannold NJ, Hynynen K, Jolesz FA. 2011.. Focused ultrasound surgery in oncology: overview and principles. . Radiology 259::3956
    [Crossref] [Google Scholar]
  2. 2.
    Cranston D, Leslie T, Ter Haar G. 2021.. A review of high-intensity focused ultrasound in urology. . Cancers 13::5696
    [Crossref] [Google Scholar]
  3. 3.
    Li F, Chen J, Yin L, Zeng D, Wang L, et al. 2023.. HIFU as an alternative modality for patients with uterine fibroids who require fertility-sparing treatment. . Int. J. Hyperth. 40::2155077
    [Crossref] [Google Scholar]
  4. 4.
    Maestroni U, Tafuri A, Dinale F, Campobasso D, Antonelli A, Ziglioli F. 2021.. Oncologic outcome of salvage high-intensity focused ultrasound (HIFU) in radiorecurrent prostate cancer. A systematic review. . Acta Biomed. 92::e2021191
    [Google Scholar]
  5. 5.
    van der Stouwe AMM, Jameel A, Gedroyc W, Nandi D, Bain PG. 2023.. Tremor assessment scales before, during and after MRgFUS for essential tremor—results, recommendations and implications. . Br. J. Neurosurg. In press. https://doi.org/10.1080/02688697.2023.2167932
    [Google Scholar]
  6. 6.
    Khokhlova VA, Fowlkes JB, Roberts WW, Schade GR, Xu Z, et al. 2015.. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. . Int. J. Hyperth. 31::14562
    [Crossref] [Google Scholar]
  7. 7.
    Xu Z, Ludomirsky A, Eun LY, Hall TL, Tran BC, et al. 2004.. Controlled ultrasound tissue erosion. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51::72636
    [Crossref] [Google Scholar]
  8. 8.
    Xu Z, Hall TL, Vlaisavljevich E, Lee FT Jr. 2021.. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. . Int. J. Hyperth. 38::56175
    [Crossref] [Google Scholar]
  9. 9.
    Vidal-Jove J, Serres X, Vlaisavljevich E, Cannata J, Duryea A, et al. 2022.. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. . Int. J. Hyperth. 39::111523
    [Crossref] [Google Scholar]
  10. 10.
    Xu Z, Owens G, Gordon D, Cain CA, Ludomirsky A. 2010.. Non-invasive creation of an atrial septal defect by histotripsy in a canine model. . Circulation 121::74249
    [Crossref] [Google Scholar]
  11. 11.
    Khokhlova TD, Wang YN, Simon JC, Cunitz BW, Starr F, et al. 2014.. Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model. . PNAS 111::816166
    [Crossref] [Google Scholar]
  12. 12.
    Knott EA, Swietlik JF, Longo KC, Watson RF, Green CM, et al. 2019.. Robotically-assisted sonic therapy for renal ablation in a live porcine model: initial preclinical results. . J. Vasc. Interv. Radiol. 30::1293302
    [Crossref] [Google Scholar]
  13. 13.
    Wang TY, Xu Z, Winterroth F, Hall TL, Fowlkes JB, et al. 2009.. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy—histotripsy. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56::9951005
    [Crossref] [Google Scholar]
  14. 14.
    Khokhlova TD, Schade GR, Wang YN, Buravkov SV, Chernikov VP, et al. 2019.. Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney. . Sci. Rep. 9::20176
    [Crossref] [Google Scholar]
  15. 15.
    Hall TL, Fowlkes JB, Cain CA. 2007.. A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54::56975
    [Crossref] [Google Scholar]
  16. 16.
    Lundt JE, Allen SP, Shi J, Hall TL, Cain CA, Xu Z. 2017.. Non-invasive, rapid ablation of tissue volume using histotripsy. . Ultrasound Med. Biol. 43::283447
    [Crossref] [Google Scholar]
  17. 17.
    Vlaisavljevich E, Kim Y, Allen S, Owens G, Pelletier S, et al. 2013.. Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. . Ultrasound Med. Biol. 39::1398409
    [Crossref] [Google Scholar]
  18. 18.
    Bawiec CR, Khokhlova TD, Sapozhnikov OA, Rosnitskiy PB, Cunitz BW, et al. 2021.. A prototype therapy system for boiling histotripsy in abdominal targets based on a 256-element spiral array. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::1496510
    [Crossref] [Google Scholar]
  19. 19.
    Lake AM, Xu Z, Wilkinson JE, Cain CA, Roberts WW. 2008.. Renal ablation by histotripsy—does it spare the collecting system?. J. Urol. 179::115054
    [Crossref] [Google Scholar]
  20. 20.
    Wang YN, Khokhlova TD, Buravkov S, Chernikov V, Kreider W, et al. 2018.. Mechanical decellularization of tissue volumes using boiling histotripsy. . Phys. Med. Biol. 63::235023
    [Crossref] [Google Scholar]
  21. 21.
    Hoogenboom M, Eikelenboom D, den Brok MH, Heerschap A, Futterer JJ, Adema GJ. 2015.. Mechanical high-intensity focused ultrasound destruction of soft tissue: working mechanisms and physiologic effects. . Ultrasound Med. Biol. 41::150017
    [Crossref] [Google Scholar]
  22. 22.
    Maxwell AD, Wang TY, Cain CA, Fowlkes JB, Sapozhnikov OA, et al. 2011.. Cavitation clouds created by shock scattering from bubbles during histotripsy. . J. Acoust. Soc. Am. 130::188898
    [Crossref] [Google Scholar]
  23. 23.
    Wheat JC, Hall TL, Hempel CR, Cain CA, Xu Z, Roberts WW. 2010.. Prostate histotripsy in an anticoagulated model. . Urology 75::20711
    [Crossref] [Google Scholar]
  24. 24.
    Hempel CR, Hall TL, Cain CA, Fowlkes JB, Xu Z, Roberts WW. 2011.. Histotripsy fractionation of prostate tissue: local effects and systemic response in a canine model. . J. Urol. 185::148489
    [Crossref] [Google Scholar]
  25. 25.
    Hall TL, Hempel CR, Wojno K, Xu Z, Cain CA, Roberts WW. 2009.. Histotripsy of the prostate: dose effects in a chronic canine model. . Urology 74::93237
    [Crossref] [Google Scholar]
  26. 26.
    Owens GE, Miller RM, Owens ST, Swanson SD, Ives K, et al. 2012.. Intermediate-term effects of intracardiac communications created noninvasively by therapeutic ultrasound (histotripsy) in a porcine model. . Pediatr. Cardiol. 33::8389
    [Crossref] [Google Scholar]
  27. 27.
    Hall TL, Kieran K, Ives K, Fowlkes JB, Cain CA, Roberts WW. 2007.. Histotripsy of rabbit renal tissue in vivo: temporal histologic trends. . J. Endourol. 21::115966
    [Crossref] [Google Scholar]
  28. 28.
    Styn NR, Hall TL, Fowlkes JB, Cain CA, Roberts WW. 2012.. Histotripsy of renal implanted VX-2 tumor in a rabbit model: investigation of metastases. . Urology 80::72429
    [Crossref] [Google Scholar]
  29. 29.
    Lu N, Gupta D, Daou BJ, Fox A, Choi D, et al. 2022.. Transcranial magnetic resonance-guided histotripsy for brain surgery: pre-clinical investigation. . Ultrasound Med. Biol. 48::98110
    [Crossref] [Google Scholar]
  30. 30.
    Sukovich JR, Cain CA, Pandey AS, Chaudhary N, Camelo-Piragua S, et al. 2018.. In vivo histotripsy brain treatment. . J. Neurosurg. 131::133138
    [Crossref] [Google Scholar]
  31. 31.
    Swietlik JF, Mauch SC, Knott EA, Zlevor A, Longo KC, et al. 2021.. Noninvasive thyroid histotripsy treatment: proof of concept study in a porcine model. . Int. J. Hyperth. 38::798804
    [Crossref] [Google Scholar]
  32. 32.
    Hendricks-Wenger A, Sereno J, Gannon J, Zeher A, Brock RM, et al. 2021.. Histotripsy ablation alters the tumor microenvironment and promotes immune system activation in a subcutaneous model of pancreatic cancer. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::29873000
    [Crossref] [Google Scholar]
  33. 33.
    Maxwell AD, Owens G, Gurm HS, Ives K, Myers DD Jr., Xu Z. 2011.. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model. . J. Vasc. Interv. Radiol. 22::36977
    [Crossref] [Google Scholar]
  34. 34.
    Zhang X, Macoskey JJ, Ives K, Owens GE, Gurm HS, et al. 2017.. Non-invasive thrombolysis using microtripsy in a porcine deep vein thrombosis model. . Ultrasound Med. Biol. 43::137890
    [Crossref] [Google Scholar]
  35. 35.
    Khokhlova TD, Canney MS, Khokhlova VA, Sapozhnikov OA, Crum LA, Bailey MR. 2011.. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling. . J. Acoust. Soc. Am. 130::3498510
    [Crossref] [Google Scholar]
  36. 36.
    Simon JC, Sapozhnikov OA, Khokhlova VA, Wang YN, Crum LA, Bailey MR. 2012.. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. . Phys. Med. Biol. 57::806178
    [Crossref] [Google Scholar]
  37. 37.
    Pahk KJ, de Andrade MO, Gelat P, Kim H, Saffari N. 2019.. Mechanical damage induced by the appearance of rectified bubble growth in a viscoelastic medium during boiling histotripsy exposure. . Ultrason. Sonochem. 53::16477
    [Crossref] [Google Scholar]
  38. 38.
    Dubinsky TJ, Khokhlova TD, Khokhlova V, Schade GR. 2020.. Histotripsy: the next generation of high-intensity focused ultrasound for focal prostate cancer therapy. . J. Ultrasound Med. 39::105767
    [Crossref] [Google Scholar]
  39. 39.
    Matula TJ, Wang YN, Khokhlova T, Leotta DF, Kucewicz J, et al. 2021.. Treating porcine abscesses with histotripsy: a pilot study. . Ultrasound Med. Biol. 47::60319
    [Crossref] [Google Scholar]
  40. 40.
    Eranki A, Farr N, Partanen A, Sharma KV, Rossi CT, et al. 2018.. Mechanical fractionation of tissues using microsecond-long HIFU pulses on a clinical MR-HIFU system. . Int. J. Hyperth. 34::121324
    [Crossref] [Google Scholar]
  41. 41.
    Worlikar T, Mendiratta-Lala M, Vlaisavljevich E, Hubbard R, Shi J, et al. 2020.. Effects of histotripsy on local tumor progression in an in vivo orthotopic rodent liver tumor model. . BME Front. 2020::9830304
    [Crossref] [Google Scholar]
  42. 42.
    Worlikar T, Zhang M, Ganguly A, Hall TL, Shi J, et al. 2022.. Impact of histotripsy on development of intrahepatic metastases in a rodent liver tumor model. . Cancers 14::1612
    [Crossref] [Google Scholar]
  43. 43.
    Owens GE, Miller RM, Ensing G, Ives K, Gordon D, et al. 2011.. Therapeutic ultrasound to non-invasively create intracardiac communications in an intact animal model. . Catheter Cardiovasc. Interv. 77::58088
    [Crossref] [Google Scholar]
  44. 44.
    Messas E, Remond MC, Goudot G, Zarka S, Penot R, et al. 2020.. Feasibility and safety of non-invasive ultrasound therapy (NIUT) on a porcine aortic valve. . Phys. Med. Biol. 65::215004
    [Crossref] [Google Scholar]
  45. 45.
    Khokhlova TD, Monsky WL, Haider YA, Maxwell AD, Wang YN, Matula TJ. 2016.. Histotripsy liquefaction of large hematomas. . Ultrasound Med. Biol. 42::149198
    [Crossref] [Google Scholar]
  46. 46.
    Li Y, Liu Y, Li R, Lu M, Wang X, et al. 2020.. Histotripsy liquefaction of large hematoma for intracerebral hemorrhage using millisecond-length ultrasound pulse groups combined with fundamental and second harmonic superposition: a preliminary study. . Ultrasound Med. Biol. 46::124457
    [Crossref] [Google Scholar]
  47. 47.
    Qu S, Worlikar T, Felsted AE, Ganguly A, Beems MV, et al. 2020.. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. . J. Immunother. Cancer 8::e000200
    [Crossref] [Google Scholar]
  48. 48.
    Schade GR, Wang YN, D'Andrea S, Hwang JH, Liles WC, Khokhlova TD. 2019.. Boiling histotripsy ablation of renal cell carcinoma in the Eker rat promotes a systemic inflammatory response. . Ultrasound Med. Biol. 45::13747
    [Crossref] [Google Scholar]
  49. 49.
    Gerhardson T, Sukovich JR, Chaudhary N, Chenevert TL, Ives K, et al. 2020.. Histotripsy clot liquefaction in a porcine intracerebral hemorrhage model. . Neurosurgery 86::42936
    [Crossref] [Google Scholar]
  50. 50.
    Schuster TG, Wei JT, Hendlin K, Jahnke R, Roberts WW. 2018.. histotripsy treatment of benign prostatic enlargement using the Vortx Rx system: initial human safety and efficacy outcomes. . Urology 114::18487
    [Crossref] [Google Scholar]
  51. 51.
    Vidal-Jove J, Serres-Creixams X, Ziemlewicz TJ, Cannata JM. 2021.. Liver histotripsy mediated abscopal effect—case report. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::30015
    [Crossref] [Google Scholar]
  52. 52.
    Chevillet JR, Khokhlova TD, Giraldez MD, Schade GR, Starr F, et al. 2017.. Release of cell-free microRNA tumor biomarkers into the blood circulation with pulsed focused ultrasound: a noninvasive, anatomically localized, molecular liquid biopsy. . Radiology 283::15867
    [Crossref] [Google Scholar]
  53. 53.
    Khokhlova TD, Wang YN, Son H, Totten S, Whang S, Hwang JH. 2023.. Chronic effects of pulsed high intensity focused ultrasound aided delivery of gemcitabine in a mouse model of pancreatic cancer. . Ultrasonics 132::106993
    [Crossref] [Google Scholar]
  54. 54.
    Smallcomb M, Simon JC. 2023.. High intensity focused ultrasound atomization and erosion in healthy and tendinopathic tendons. . Phys. Med. Biol. 68::025005
    [Crossref] [Google Scholar]
  55. 55.
    Maxwell AD, Cain CA, Hall TL, Fowlkes JB, Xu Z. 2013.. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. . Ultrasound Med. Biol. 39::44965
    [Crossref] [Google Scholar]
  56. 56.
    Bader KB, Vlaisavljevich E, Maxwell AD. 2019.. For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy. . Ultrasound Med. Biol. 45::105680
    [Crossref] [Google Scholar]
  57. 57.
    Parsons JE, Cain CA, Abrams GD, Fowlkes JB. 2006.. Pulsed cavitational ultrasound therapy for controlled tissue homogenization. . Ultrasound Med. Biol. 32::11529
    [Crossref] [Google Scholar]
  58. 58.
    Lin KW, Kim Y, Maxwell AD, Wang TY, Hall TL, et al. 2014.. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61::25165
    [Crossref] [Google Scholar]
  59. 59.
    Vlaisavljevich E, Gerhardson T, Hall T, Xu Z. 2017.. Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior. . Phys. Med. Biol. 62::126990
    [Crossref] [Google Scholar]
  60. 60.
    Vlaisavljevich E, Lin KW, Maxwell A, Warnez MT, Mancia L, et al. 2015.. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation. . Ultrasound Med. Biol. 41::165167
    [Crossref] [Google Scholar]
  61. 61.
    Vlaisavljevich E, Xu Z, Maxwell A, Mancia L, Zhang X, et al. 2016.. Effects of temperature on the histotripsy intrinsic threshold for cavitation. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63::106477
    [Crossref] [Google Scholar]
  62. 62.
    Vlaisavljevich E, Lin KW, Warnez MT, Singh R, Mancia L, et al. 2015.. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior. . Phys. Med. Biol. 60::227192
    [Crossref] [Google Scholar]
  63. 63.
    Vlaisavljevich E, Maxwell A, Mancia L, Johnsen E, Cain C, Xu Z. 2016.. Visualizing the histotripsy process: bubble cloud-cancer cell interactions in a tissue-mimicking environment. . Ultrasound Med. Biol. 42::246677
    [Crossref] [Google Scholar]
  64. 64.
    Vlaisavljevich E, Kim Y, Owens G, Roberts W, Cain C, Xu Z. 2014.. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. . Phys. Med. Biol. 59::25370
    [Crossref] [Google Scholar]
  65. 65.
    Mancia L, Vlaisavljevich E, Yousefi N, Rodriguez M, Ziemlewicz TJ, et al. 2019.. Modeling tissue-selective cavitation damage. . Phys. Med. Biol. 64::225001
    [Crossref] [Google Scholar]
  66. 66.
    Macoskey JJ, Zhang X, Hall TL, Shi J, Beig SA, et al. 2018.. Bubble-induced color Doppler feedback correlates with histotripsy-induced destruction of structural components in liver tissue. . Ultrasound Med. Biol. 44::60212
    [Crossref] [Google Scholar]
  67. 67.
    Styn N, Hall TL, Fowlkes JB, Cain CA, Roberts WW. 2011.. Histotripsy homogenization of the prostate: thresholds for cavitation damage of periprostatic structures. . J. Endourol. 25::153135
    [Crossref] [Google Scholar]
  68. 68.
    Knott EA, Longo KC, Vlaisavljevich E, Zhang X, Swietlik JF, et al. 2021.. Transcostal histotripsy ablation in an in vivo acute hepatic porcine model. . Cardiovasc. Interv. Radiol. 44::164350
    [Crossref] [Google Scholar]
  69. 69.
    Canney MS, Bailey MR, Crum LA, Khokhlova VA, Sapozhnikov OA. 2008.. Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach. . J. Acoust. Soc. Am. 124::240620
    [Crossref] [Google Scholar]
  70. 70.
    Maxwell A, Sapozhnikov O, Bailey M, Crum L, Xu Z, et al. 2012.. Disintegration of tissue using high intensity focused ultrasound: two approaches that utilize shock waves. . Acoust. Today 8::2436
    [Crossref] [Google Scholar]
  71. 71.
    Canney MS, Khokhlova VA, Bessonova OV, Bailey MR, Crum LA. 2010.. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound. . Ultrasound Med. Biol. 36::25067
    [Crossref] [Google Scholar]
  72. 72.
    Pahk KJ, Shin CH, Bae IY, Yang Y, Kim SH, et al. 2019.. Boiling histotripsy-induced partial mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers. . Sci. Rep. 9::9050
    [Crossref] [Google Scholar]
  73. 73.
    Karzova MM, Kreider W, Partanen A, Khokhlova TD, Sapozhnikov OA, et al. 2023.. Comparative characterization of nonlinear ultrasound fields generated by Sonalleve V1 and V2 MR-HIFU systems. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 70::52137
    [Crossref] [Google Scholar]
  74. 74.
    Guan Y, Lu M, Li Y, Liu F, Gao Y, et al. 2016.. Histotripsy produced by hundred-microsecond-long focused ultrasonic pulses: a preliminary study. . Ultrasound Med. Biol. 42::223244
    [Crossref] [Google Scholar]
  75. 75.
    Li Y, Wang R, Lu M, Zhang L, Liu Y, et al. 2018.. Histotripsy using fundamental and second harmonic superposition combined with hundred-microsecond ultrasound pulses. . Ultrasound Med. Biol. 44::2089104
    [Crossref] [Google Scholar]
  76. 76.
    Lu N, Hall TL, Choi D, Gupta D, Daou BJ, et al. 2021.. Transcranial MR-guided histotripsy system. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::291729
    [Crossref] [Google Scholar]
  77. 77.
    Stocker GE, Lundt JE, Sukovich JR, Miller RM, Duryea AP, et al. 2022.. A modular, kerf-minimizing approach for therapeutic ultrasound phased array construction. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69::276675
    [Crossref] [Google Scholar]
  78. 78.
    Song M, Thomas GPL, Khokhlova VA, Sapozhnikov OA, Bailey MR, et al. 2022.. Quantitative assessment of boiling histotripsy progression based on color Doppler measurements. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69::325569
    [Crossref] [Google Scholar]
  79. 79.
    Woodacre JK, Landry TG, Brown JA. 2018.. a low-cost miniature histotripsy transducer for precision tissue ablation. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65::213140
    [Crossref] [Google Scholar]
  80. 80.
    Stocker GE, Zhang M, Xu Z, Hall TL. 2021.. Endocavity histotripsy for efficient tissue ablation—transducer design and characterization. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::2896905
    [Crossref] [Google Scholar]
  81. 81.
    Hall TL, Cain CA. 2006.. A low cost, compact, 512 channel therapeutic system for transcutaneous ultrasound surgery. . AIP Conf. Proc. 829::44549
    [Crossref] [Google Scholar]
  82. 82.
    Lu N, Hall TL, Sukovich JR, Choi SW, Snell J, et al. 2022.. Two-step aberration correction: application to transcranial histotripsy. . Phys. Med. Biol. 67::125009
    [Crossref] [Google Scholar]
  83. 83.
    Sukovich JR, Macoskey JJ, Lundt JE, Gerhardson TI, Hall TL, Xu Z. 2020.. Real-time transcranial histotripsy treatment localization and mapping using acoustic cavitation emission feedback. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67::117891
    [Crossref] [Google Scholar]
  84. 84.
    Kim Y, Maxwell AD, Hall TL, Xu Z, Lin KW, Cain CA. 2014.. Rapid prototyping fabrication of focused ultrasound transducers. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61::155974
    [Crossref] [Google Scholar]
  85. 85.
    Maxwell AD, Yuldashev PV, Kreider W, Khokhlova TD, Schade GR, et al. 2017.. A prototype therapy system for transcutaneous application of boiling histotripsy. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64::154257
    [Crossref] [Google Scholar]
  86. 86.
    Yeats E, Lu N, Sukovich JR, Xu Z, Hall TL. 2023.. Soft tissue aberration correction for histotripsy using acoustic emissions from cavitation cloud nucleation and collapse. . Ultrasound Med. Biol. 49::118293
    [Crossref] [Google Scholar]
  87. 87.
    Khokhlova VA, Rosnitskiy PB, Tsysar SA, Buravkov SV, Ponomarchuk EM, et al. 2023.. Initial assessment of boiling histotripsy for mechanical ablation of ex vivo human prostate tissue. . Ultrasound Med. Biol. 49::6271
    [Crossref] [Google Scholar]
  88. 88.
    Mouratidis PXE, Costa M, Rivens I, Repasky EE, Ter Haar G. 2021.. Pulsed focused ultrasound can improve the anti-cancer effects of immune checkpoint inhibitors in murine pancreatic cancer. . J. R. Soc. Interface 18::20210266
    [Crossref] [Google Scholar]
  89. 89.
    Thomas GPL, Khokhlova TD, Sapozhnikov OA, Wang YN, Totten SI, Khokhlova VA. 2022.. In vivo aberration correction for transcutaneous HIFU therapy using a multielement array. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69::295564
    [Crossref] [Google Scholar]
  90. 90.
    Schade GR, Khokhlova TD, Hunter C, Kreider W, Rosnitskiy PB, et al. 2019.. A preclinical transrectal boiling histotripsy system for prostate ablation. . In Abstract Book of the 34th Annual Meeting of the Engineering and Urology Society, p. 46. Chicago:: Eng. Urol. Soc.
    [Google Scholar]
  91. 91.
    Kreider W, Yuldashev PV, Sapozhnikov OA, Farr N, Partanen A, et al. 2013.. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60::168398
    [Crossref] [Google Scholar]
  92. 92.
    Eranki A, Farr N, Partanen A, Sharma KV, Chen H, et al. 2017.. Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system. . PLOS ONE 12::e0173867
    [Crossref] [Google Scholar]
  93. 93.
    Hoogenboom M, van Amerongen MJ, Eikelenboom DC, Wassink M, den Brok MH, et al. 2015.. Development of a high-field MR-guided HIFU setup for thermal and mechanical ablation methods in small animals. . J. Ther. Ultrasound. 3::14
    [Crossref] [Google Scholar]
  94. 94.
    Hoogenboom M, Eikelenboom D, den Brok MH, Veltien A, Wassink M, et al. 2016.. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology. . NMR Biomed. 29::72131
    [Crossref] [Google Scholar]
  95. 95.
    Schade GR, Styn NR, Ives KA, Hall TL, Roberts WW. 2014.. Prostate histotripsy: evaluation of prostatic urethral treatment parameters in a canine model. . BJU Int. 113::498503
    [Crossref] [Google Scholar]
  96. 96.
    Woodacre JK, Mallay M, Brown JA. 2023.. Fabrication and characterization of a flat aperture Fresnel lens based histotripsy transducer. . Ultrasonics 131::106934
    [Crossref] [Google Scholar]
  97. 97.
    Parsons JE, Cain CA, Fowlkes JB. 2006.. Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields. . J. Acoust. Soc. Am. 119::143240
    [Crossref] [Google Scholar]
  98. 98.
    Wilkens V, Sonntag S, Georg O. 2016.. Robust spot-poled membrane hydrophones for measurement of large amplitude pressure waveforms generated by high intensity therapeutic ultrasonic transducers. . J. Acoust. Soc. Am. 139::131932
    [Crossref] [Google Scholar]
  99. 99.
    Yuldashev PV, Karzova MM, Kreider W, Rosnitskiy PB, Sapozhnikov OA, Khokhlova VA. 2021.. “ HIFU beam:” a simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::283752
    [Crossref] [Google Scholar]
  100. 100.
    Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Maxwell AD, Kreider W, et al. 2017.. Design of HIFU transducers for generating specified nonlinear ultrasound fields. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64::37490
    [Crossref] [Google Scholar]
  101. 101.
    Pilatou MC, Stewart EA, Maier SE, Fennessy FM, Hynynen K, et al. 2009.. MRI-based thermal dosimetry and diffusion-weighted imaging of MRI-guided focused ultrasound thermal ablation of uterine fibroids. . J. Magnet. Reson. Imaging 29::40411
    [Crossref] [Google Scholar]
  102. 102.
    Longo KC, Zlevor AM, Laeseke PF, Swietlik JF, Knott EA, et al. 2020.. Histotripsy ablations in a porcine liver model: feasibility of respiratory motion compensation by alteration of the ablation zone prescription shape. . Cardiovasc. Interv. Radiol. 43::1695701
    [Crossref] [Google Scholar]
  103. 103.
    Vlaisavljevich E, Owens G, Lundt J, Teofilovic D, Ives K, et al. 2017.. Non-invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model. . Ultrasound Med. Biol. 43::123751
    [Crossref] [Google Scholar]
  104. 104.
    Vlaisavljevich E, Greve J, Cheng X, Ives K, Shi J, et al. 2016.. Non-invasive ultrasound liver ablation using histotripsy: chronic study in an in vivo rodent model. . Ultrasound Med. Biol. 42::1890902
    [Crossref] [Google Scholar]
  105. 105.
    Wang TY, Hall TL, Xu Z, Fowlkes JB, Cain CA. 2012.. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59::116781
    [Crossref] [Google Scholar]
  106. 106.
    Bader KB, Haworth KJ, Maxwell AD, Holland CK. 2018.. Post hoc analysis of passive cavitation imaging for classification of histotripsy-induced liquefaction in vitro. . IEEE Trans. Med. Imaging 37::10615
    [Crossref] [Google Scholar]
  107. 107.
    Macoskey JJ, Choi SW, Hall TL, Vlaisavljevich E, Lundt JE, et al. 2018.. Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation. . Phys. Med. Biol. 63::055013
    [Crossref] [Google Scholar]
  108. 108.
    Bader KB, Hendley SA, Anthony GJ, Bollen V. 2019.. Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. . Phys. Med. Biol. 64::115012
    [Crossref] [Google Scholar]
  109. 109.
    Choi SW, Duclos S, Camelo-Piragua S, Chaudhary N, Sukovich J, et al. 2023.. Histotripsy treatment of murine brain and glioma: temporal profile of magnetic resonance imaging and histological characteristics post-treatment. . Ultrasound Med. Biol. 49::188291
    [Crossref] [Google Scholar]
  110. 110.
    Allen SP, Vlaisavljevich E, Shi J, Hernandez-Garcia L, Cain CA, et al. 2017.. The response of MRI contrast parameters in in vitro tissues and tissue mimicking phantoms to fractionation by histotripsy. . Phys. Med. Biol. 62::716780
    [Crossref] [Google Scholar]
  111. 111.
    Elbes D, Denost Q, Robert B, Kohler MO, Tanter M, Bruno Q. 2014.. Magnetic resonance imaging for the exploitation of bubble-enhanced heating by high-intensity focused ultrasound: a feasibility study in ex vivo liver. . Ultrasound Med. Biol. 40::95664
    [Crossref] [Google Scholar]
  112. 112.
    Allen SP, Hernandez-Garcia L, Cain CA, Hall TL. 2016.. MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms. . Magn. Reson. Med. 76::148693
    [Crossref] [Google Scholar]
  113. 113.
    Khokhlova TD, Canney MS, Lee D, Marro KI, Crum LA, et al. 2009.. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound. . J. Acoust. Soc. Am. 125::242031
    [Crossref] [Google Scholar]
  114. 114.
    Schade GR, Keller J, Ives K, Cheng X, Rosol TJ, et al. 2012.. Histotripsy focal ablation of implanted prostate tumor in an ACE-1 canine cancer model. . J. Urol. 188::195764
    [Crossref] [Google Scholar]
  115. 115.
    Rosnitskiy PB, Tsysar SA, Karzova MM, Buravkov SV, Malkov PG, et al. 2023.. Pilot ex vivo study on non-thermal ablation of human prostate adenocarcinoma tissue using boiling histotripsy. . Ultrasonics 133::107029
    [Crossref] [Google Scholar]
  116. 116.
    Hendricks A, Weber P, Simon A, Saunier S, Coutermarsh-Ott S, et al. 2021.. Histotripsy for the treatment of cholangiocarcinoma liver tumors: in vivo feasibility and ex vivo dosimetry study. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::295364
    [Crossref] [Google Scholar]
  117. 117.
    Ruger LN, Hay AN, Gannon JM, Sheppard HO, Coutermarsh-Ott SL, et al. 2023.. Histotripsy ablation of spontaneously occurring canine bone tumors in vivo. . IEEE Trans. Biomed. Eng. 70::33142
    [Crossref] [Google Scholar]
  118. 118.
    Shao Q, O'Flanagan S, Lam T, Roy P, Pelaez F, et al. 2019.. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. . Int. J. Hyperth. 36::13038
    [Crossref] [Google Scholar]
  119. 119.
    Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. 2012.. Immunogenic cell death and DAMPs in cancer therapy. . Nat. Rev. Cancer 12::86075
    [Crossref] [Google Scholar]
  120. 120.
    Pepple AL, Guy JL, McGinnis R, Felsted AE, Song B, et al. 2023.. Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation. . Front. Immunol. 14::1012799
    [Crossref] [Google Scholar]
  121. 121.
    Singh MP, Sethuraman SN, Miller C, Malayer J, Ranjan A. 2021.. Boiling histotripsy and in-situ CD40 stimulation improve the checkpoint blockade therapy of poorly immunogenic tumors. . Theranostics 11::54054
    [Crossref] [Google Scholar]
  122. 122.
    Lang X, Green MD, Wang W, Yu J, Choi JE, et al. 2019.. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. . Cancer Discov. 9::167385
    [Crossref] [Google Scholar]
  123. 123.
    Wang W, Green M, Choi JE, Gijon M, Kennedy PD, et al. 2019.. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. . Nature 569::27074
    [Crossref] [Google Scholar]
  124. 124.
    Rai V, Gladki M, Dudynska M, Skalski J. 2019.. Hypoplastic left heart syndrome [HLHS]: treatment options in present era. . Indian J. Thorac. Cardiovasc. Surg. 35::196202
    [Crossref] [Google Scholar]
  125. 125.
    Xu Z, Fan Z, Hall TL, Winterroth F, Fowlkes JB, Cain CA. 2009.. Size measurement of tissue debris particles generated from pulsed ultrasound cavitational therapy—histotripsy. . Ultrasound Med. Biol. 35::24555
    [Crossref] [Google Scholar]
  126. 126.
    Maxwell AD, Cain CA, Duryea AP, Yuan L, Gurm HS, Xu Z. 2009.. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy—histotripsy. . Ultrasound Med. Biol. 35::198294
    [Crossref] [Google Scholar]
  127. 127.
    Zhang X, Owens GE, Gurm HS, Ding Y, Cain CA, Xu Z. 2015.. Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy). . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62::134255
    [Crossref] [Google Scholar]
  128. 128.
    Zhang X, Owens GE, Cain CA, Gurm HS, Macoskey J, Xu Z. 2016.. Histotripsy thrombolysis on retracted clots. . Ultrasound Med. Biol. 42::190318
    [Crossref] [Google Scholar]
  129. 129.
    Park S, Maxwell AD, Owens GE, Gurm HS, Cain CA, Xu Z. 2013.. Non-invasive embolus trap using histotripsy—an acoustic parameter study. . Ultrasound Med. Biol. 39::61119
    [Crossref] [Google Scholar]
  130. 130.
    Bader KB, Haworth KJ, Shekhar H, Maxwell AD, Peng T, et al. 2016.. Efficacy of histotripsy combined with rt-PA in vitro. . Phys. Med. Biol. 61::525374
    [Crossref] [Google Scholar]
  131. 131.
    Hendley SA, Paul JD, Maxwell AD, Haworth KJ, Holland CK, Bader KB. 2021.. Clot degradation under the action of histotripsy bubble activity and a lytic drug. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::294252
    [Crossref] [Google Scholar]
  132. 132.
    Bollen V, Hendley SA, Paul JD, Maxwell AD, Haworth KJ, et al. 2020.. In vitro thrombolytic efficacy of single- and five-cycle histotripsy pulses and rt-PA. . Ultrasound Med. Biol. 46::33649
    [Crossref] [Google Scholar]
  133. 133.
    Khokhlova TD, Kucewicz JC, Ponomarchuk EM, Hunter C, Bruce M, et al. 2020.. Effect of stiffness of large extravascular hematomas on their susceptibility to boiling histotripsy liquefaction in vitro. . Ultrasound Med. Biol. 46::200716
    [Crossref] [Google Scholar]
  134. 134.
    Gerhardson T, Sukovich JR, Pandey AS, Hall TL, Cain CA, Xu Z. 2017.. Effect of frequency and focal spacing on transcranial histotripsy clot liquefaction, using electronic focal steering. . Ultrasound Med. Biol. 43::230217
    [Crossref] [Google Scholar]
  135. 135.
    Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Gavrilov LR, Khokhlova VA. 2019.. Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction. . J. Acoust. Soc. Am. 146::1786
    [Crossref] [Google Scholar]
  136. 136.
    Jones RM, O'Reilly MA, Hynynen K. 2015.. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections. . Med. Phys. 42::4385400
    [Crossref] [Google Scholar]
  137. 137.
    Macoskey JJ, Hall TL, Sukovich JR, Choi SW, Ives K, et al. 2018.. Soft-tissue aberration correction for histotripsy. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65::207385
    [Crossref] [Google Scholar]
  138. 138.
    Brayman AA, MacConaghy BE, Wang YN, Chan KT, Monsky WL, et al. 2018.. Inactivation of planktonic Escherichia coli by focused 1-MHz ultrasound pulses with shocks: efficacy and kinetics upon volume scale-up. . Ultrasound Med. Biol. 44::19962008
    [Crossref] [Google Scholar]
  139. 139.
    Bigelow TA, Thomas CL, Wu H, Itani KMF. 2018.. Histotripsy treatment of S. aureus biofilms on surgical mesh samples under varying scan parameters. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65::101724
    [Crossref] [Google Scholar]
  140. 140.
    Childers C, Edsall C, Gannon J, Whittington AR, Muelenaer AA, et al. 2021.. Focused ultrasound biofilm ablation: investigation of histotripsy for the treatment of catheter-associated urinary tract infections (CAUTIs). . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68::296580
    [Crossref] [Google Scholar]
  141. 141.
    Pahk KJ, Mohammad GH, Malago M, Saffari N, Dhar DK. 2016.. A novel approach to ultrasound-mediated tissue decellularization and intra-hepatic cell delivery in rats. . Ultrasound Med. Biol. 42::195867
    [Crossref] [Google Scholar]
  142. 142.
    Froghi S, de Andrade MO, Hadi LM, Gelat P, Rashidi H, et al. 2023.. Liver ultrasound histotripsy: novel analysis of the histotripsy site cell constituents with implications for histotripsy application in cell transplantation and cancer therapy. . Bioengineering 10::276
    [Crossref] [Google Scholar]
  143. 143.
    Stettinius A, Holmes H, Zhang Q, Mehochko I, Winters M, et al. 2023.. DNA release from plant tissue using focused ultrasound extraction (FUSE). . Appl. Plant Sci. 11::e11510
    [Crossref] [Google Scholar]
  144. 144.
    Pacia CP, Yuan J, Yue Y, Xu L, Nazeri A, et al. 2022.. Sonobiopsy for minimally invasive, spatiotemporally-controlled, and sensitive detection of glioblastoma-derived circulating tumor DNA. . Theranostics 12::36278
    [Crossref] [Google Scholar]
  145. 145.
    Duryea AP, Hall TL, Maxwell AD, Xu Z, Cain CA, Roberts WW. 2011.. Histotripsy erosion of model urinary calculi. . J. Endourol. 25::34144
    [Crossref] [Google Scholar]
  146. 146.
    Arnold L, Hendricks-Wenger A, Coutermarsh-Ott S, Gannon J, Hay AN, et al. 2021.. Histotripsy ablation of bone tumors: feasibility study in excised canine osteosarcoma tumors. . Ultrasound Med. Biol. 47::343546
    [Crossref] [Google Scholar]
  147. 147.
    Villemain O, Robin J, Bel A, Kwiecinski W, Bruneval P, et al. 2017.. Pulsed cavitational ultrasound softening: a new non-invasive therapeutic approach of calcified bioprosthetic valve stenosis. . JACC Basic Transl. Sci. 2::37283
    [Crossref] [Google Scholar]
  148. 148.
    Messas E, IJsselmuiden A, Goudot G, Vlieger S, Zarka S, et al. 2021.. Feasibility and performance of noninvasive ultrasound therapy in patients with severe symptomatic aortic valve stenosis: a first-in-human study. . Circulation 143::96870
    [Crossref] [Google Scholar]
  149. 149.
    Trifunovic-Zamaklar D, Velinovic M, Kovacevic-Kostic N, Messas E. 2023.. Systematic brain magnetic resonance imaging and safety evaluation of non-invasive ultrasound therapy for patients with severe symptomatic aortic valve stenosis. . Eur. Heart J. Cardiovasc. Imaging 24::e1089
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-073123-022334
Loading
/content/journals/10.1146/annurev-bioeng-073123-022334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error