1932

Abstract

Microengineering advances have enabled the development of perfusable, endothelialized models of the microvasculature that recapitulate the unique biological and biophysical conditions of the microcirculation in vivo. Indeed, at that size scale (<100 μm)—where blood no longer behaves as a simple continuum fluid; blood cells approximate the size of the vessels themselves; and complex interactions among blood cells, plasma molecules, and the endothelium constantly ensue—vascularized microfluidics are ideal tools to investigate these microvascular phenomena. Moreover, perfusable, endothelialized microfluidics offer unique opportunities for investigating microvascular diseases by enabling systematic dissection of both the blood and vascular components of the pathophysiology at hand. We review () the state of the art in microvascular devices and () the myriad of microvascular diseases and pressing challenges. The engineering community has unique opportunities to innovate with new microvascular devices and to partner with biomedical researchers to usher in a new era of understanding and discovery of microvascular diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-091520-025358
2021-07-13
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-091520-025358.html?itemId=/content/journals/10.1146/annurev-bioeng-091520-025358&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pappano AJ, Wier WG. 2019. Cardiovascular Physiology Philadelphia, PA: Elsevier
    [Google Scholar]
  2. 2. 
    Aird WC. 2005. Spatial and temporal dynamics of the endothelium. J. Thromb. Haemost. 3:1392–406
    [Google Scholar]
  3. 3. 
    Feletou M. 2011. The Endothelium San Rafael, CA: Morgan & Claypool Life Sciences
    [Google Scholar]
  4. 4. 
    Jackson SP, Darbousset R, Schoenwaelder SM. 2019. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 133:906–18
    [Google Scholar]
  5. 5. 
    Koeppen BM, Stanton BA. 2018. Overview of circulation. Berne & Levy Physiology, pp. 301–3 Philadelphia, PA: Elsevier
    [Google Scholar]
  6. 6. 
    Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. 2011. The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci 12:40
    [Google Scholar]
  7. 7. 
    Grant MA, Karsan A 2018. The blood vessel wall. Hematology: Basic Principles and Practice R Hoffman, EJ Benz, LE Silberstein, HE Heslop, JI Weitz, et al 1843–56 Philadelphia, PA: Elsevier
    [Google Scholar]
  8. 8. 
    Sumpio B, Chin J 2019. Vessel wall biology. Rutherford's Vascular Surgery and Endovascular Therapy AN Sidawy, BA Perler 30–43 Philadelphia, PA: Elsevier
    [Google Scholar]
  9. 9. 
    Rayner SG, Zheng Y. 2016. Engineered microvessels for the study of human disease. J. Biomech. Eng. 138:110801
    [Google Scholar]
  10. 10. 
    Kim J, Chung M, Kim S, Jo DH, Kim JH, Jeon NL. 2015. Engineering of a biomimetic pericyte-covered 3D microvascular network. PLOS ONE 10:e0133880
    [Google Scholar]
  11. 11. 
    Rak J 2018. Vascular growth in health and disease. Hematology: Basic Principles and Practice R Hoffman, EJ Benz, LE Silberstein, HE Heslop, JI Weitz, et al 152–62 Philadelphia, PA: Elsevier
    [Google Scholar]
  12. 12. 
    Fay ME, Myers DR, Kumar A, Turbyfield CT, Byler R et al. 2016. Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. PNAS 113:1987–92
    [Google Scholar]
  13. 13. 
    Williams EK, Oshinowo O, Ravindram A, Lam WA, Myers DR. 2018. Feeling the force: measurements of platelet contraction and their diagnostic implications. Semin. Thromb. Hemost. 45:3285–96
    [Google Scholar]
  14. 14. 
    Myers DR, Qiu Y, Fay ME, Tennenbaum M, Chester D et al. 2017. Single-platelet nanomechanics measured by high-throughput cytometry. Nat. Mater. 16:230–35
    [Google Scholar]
  15. 15. 
    Qiu Y, Myers DR, Lam WA. 2019. The biophysics and mechanics of blood from a materials perspective. Nat. Rev. Mater. 4:294–311
    [Google Scholar]
  16. 16. 
    Carden MA, Fay ME, Lu X, Mannino RG, Sakurai Y et al. 2017. Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion. Blood 130:2654–63
    [Google Scholar]
  17. 17. 
    Guruprasad P, Mannino RG, Caruso C, Zhang H, Josephson CD et al. 2019. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders. Am. J. Hematol. 94:189–99
    [Google Scholar]
  18. 18. 
    Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT 2003. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. PNAS 100:14618–22
    [Google Scholar]
  19. 19. 
    Guo Q, Reiling SJ, Rohrbach P, Ma H. 2012. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Lab Chip 12:1143–50
    [Google Scholar]
  20. 20. 
    Kucukal E, Little JA, Gurkan UA. 2018. Shear dependent red blood cell adhesion in microscale flow. Integr. Biol. 10:194–206
    [Google Scholar]
  21. 21. 
    Kim M, Alapan Y, Adhikari A, Little JA, Gurkan UA. 2017. Hypoxia-enhanced adhesion of red blood cells in microscale flow. Microcirculation 24:e12374
    [Google Scholar]
  22. 22. 
    Wang X, Hossain M, Bogoslowski A, Kubes P, Irimia D. 2020. Chemotaxing neutrophils enter alternate branches at capillary bifurcations. Nat. Commun. 11:2385
    [Google Scholar]
  23. 23. 
    Chiu JJ, Chien S. 2011. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–87
    [Google Scholar]
  24. 24. 
    Cunningham KS, Gotlieb AI. 2005. The role of shear stress in the pathogenesis of atherosclerosis. Lab Investig 85:9–23
    [Google Scholar]
  25. 25. 
    Koutsiaris AG, Tachmitzi SV, Batis N. 2013. Wall shear stress quantification in the human conjunctival pre-capillary arterioles in vivo. Microvasc. Res. 85:34–39
    [Google Scholar]
  26. 26. 
    Koutsiaris AG, Tachmitzi SV, Batis N, Kotoula MG, Karabatsas CH et al. 2007. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44:375–86
    [Google Scholar]
  27. 27. 
    Ferrell N, Sandoval RM, Bian A, Campos-Bilderback SB, Molitoris BA, Fissell WH. 2015. Shear stress is normalized in glomerular capillaries following ⅚ nephrectomy. Am. J. Physiol. Ren. Physiol. 308:F588–93
    [Google Scholar]
  28. 28. 
    Chien S. 1970. Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168:977–79
    [Google Scholar]
  29. 29. 
    Lanotte L, Mauer J, Mendez S, Fedosov DA, Fromental JM et al. 2016. Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. PNAS 113:13289–94
    [Google Scholar]
  30. 30. 
    Wells RE Jr., Merrill EW 1962. Influence of flow properties of blood upon viscosity-hematocrit relationships. J. Clin. Invest. 41:1591–98
    [Google Scholar]
  31. 31. 
    Fåhræus R, Lindqvist T. 1931. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96:562–68
    [Google Scholar]
  32. 32. 
    Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. 1994. Resistance to blood flow in microvessels in vivo. Circ. Res. 75:904–15
    [Google Scholar]
  33. 33. 
    Iendaltseva O, Orlova VV, Mummery CL, Danen EHJ, Schmidt T. 2020. Fibronectin patches as anchoring points for force sensing and transmission in human induced pluripotent stem cell-derived pericytes. Stem Cell Rep 14:1107–22
    [Google Scholar]
  34. 34. 
    Sazonova OV, Isenberg BC, Herrmann J, Lee KL, Purwada A et al. 2015. Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction. Matrix Biol 41:36–43
    [Google Scholar]
  35. 35. 
    Qiu Y, Ahn B, Sakurai Y, Hansen CE, Tran R et al. 2018. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2:453–63
    [Google Scholar]
  36. 36. 
    Handorf AM, Zhou Y, Halanski MA, Li WJ. 2015. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11:1–15
    [Google Scholar]
  37. 37. 
    Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP et al. 2011. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3:112ra122
    [Google Scholar]
  38. 38. 
    Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T et al. 2020. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383:120–28
    [Google Scholar]
  39. 39. 
    Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A et al. 2019. Amyloid beta oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science 365:eaav9518
    [Google Scholar]
  40. 40. 
    Hottz E, Tolley ND, Zimmerman GA, Weyrich AS, Bozza FA. 2011. Platelets in dengue infection. Drug Discov. Today Dis. Mech. 8:1e33–38
    [Google Scholar]
  41. 41. 
    Lam WA, Rosenbluth MJ, Fletcher DA. 2006. Chemotherapy exposure increases leukemia cell stiffness. Blood 109:83505–8
    [Google Scholar]
  42. 42. 
    Lee WL, Slutsky AS. 2010. Sepsis and endothelial permeability. N. Engl. J. Med. 363:689–91
    [Google Scholar]
  43. 43. 
    Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li X-M, Friedman MH. 2004. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–22
    [Google Scholar]
  44. 44. 
    Warboys CM, Berson RE, Mann GE, Pearson JD, Weinberg PD. 2010. Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules. Am. J. Physiol. Heart Circ. Physiol. 298:H1850–56
    [Google Scholar]
  45. 45. 
    Peirce SM, Skalak TC. 2003. Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10:99–111
    [Google Scholar]
  46. 46. 
    Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL et al. 2013. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121:1875–85
    [Google Scholar]
  47. 47. 
    Zhang C, Hein TW, Wang W, Kuo L 2003. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ. Res. 92:3322–29
    [Google Scholar]
  48. 48. 
    Trask AJ, Katz PS, Kelly AP, Galantowicz ML, Cismowski MJ et al. 2012. Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. J. Appl. Physiol. 113:71128–40
    [Google Scholar]
  49. 49. 
    Karreman MA, Hyenne V, Schwab Y, Goetz JG. 2016. Intravital correlative microscopy: imaging life at the nanoscale. Trends Cell Biol 26:848–63
    [Google Scholar]
  50. 50. 
    Neeves KB, Maloney SF, Fong KP, Schmaier AA, Kahn ML et al. 2008. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J. Thromb. Haemost. 6:2193–201
    [Google Scholar]
  51. 51. 
    Wong KH, Chan JM, Kamm RD, Tien J. 2012. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14:205–30
    [Google Scholar]
  52. 52. 
    Bogorad MI, DeStefano J, Karlsson J, Wong AD, Gerecht S, Searson PC. 2015. Review: in vitro microvessel models. Lab Chip 15:4242–55
    [Google Scholar]
  53. 53. 
    Haase K, Kamm RD. 2017. Advances in on-chip vascularization. Regen. Med. 12:285–302
    [Google Scholar]
  54. 54. 
    Tsai M, Kita A, Leach J, Rounsevell R, Huang JN et al. 2012. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Investig. 122:408–18
    [Google Scholar]
  55. 55. 
    Brown AC, Stabenfeldt SE, Ahn B, Hannan RT, Dhada KS et al. 2014. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat. Mater. 13:1108–14
    [Google Scholar]
  56. 56. 
    Sakurai Y, Hardy ET, Ahn B, Tran R, Fay ME et al. 2018. A microengineered vascularized bleeding model that integrates the principal components of hemostasis. Nat. Commun. 9:509
    [Google Scholar]
  57. 57. 
    Batsuli G, Deng W, Healey JF, Parker ET, Baldwin WH et al. 2016. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors. Blood 128:2055–67
    [Google Scholar]
  58. 58. 
    Ciciliano JC, Sakurai Y, Myers DR, Fay ME, Hechler B et al. 2015. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood 126:817–24
    [Google Scholar]
  59. 59. 
    Polacheck WJ, Kutys ML, Tefft JB, Chen CS. 2019. Microfabricated blood vessels for modeling the vascular transport barrier. Nat. Protoc. 14:1425–54
    [Google Scholar]
  60. 60. 
    Polacheck WJ, Kutys ML, Yang J, Eyckmans J, Wu Y et al. 2017. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552:258–62
    [Google Scholar]
  61. 61. 
    Linville RM, Boland NF, Covarrubias G, Price GM, Tien J. 2016. Physical and chemical signals that promote vascularization of capillary-scale channels. Cell. Mol. Bioeng. 9:73–84
    [Google Scholar]
  62. 62. 
    Chrobak KM, Potter DR, Tien J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:185–96
    [Google Scholar]
  63. 63. 
    Mannino RG, Santiago-Miranda AN, Pradhan P, Qiu Y, Mejias JC et al. 2017. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro. Lab Chip 17:407–14
    [Google Scholar]
  64. 64. 
    Golden AP, Tien J. 2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:6720–25
    [Google Scholar]
  65. 65. 
    Zheng Y, Chen J, Craven M, Choi NW, Totorica S et al. 2012. In vitro microvessels for the study of angiogenesis and thrombosis. PNAS 109:9342–47
    [Google Scholar]
  66. 66. 
    Zheng Y, Chen J, Lopez JA 2015. Flow-driven assembly of VWF fibres and webs in in vitro microvessels. Nat. Commun. 6:7858
    [Google Scholar]
  67. 67. 
    Johnston ID, McCluskey DK, Tan CKL, Tracey MC. 2014. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:035017
    [Google Scholar]
  68. 68. 
    Heintz KA, Bregenzer ME, Mantle JL, Lee KH, West JL, Slater JH. 2016. Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv. Healthc. Mater. 5:172153–60
    [Google Scholar]
  69. 69. 
    Arakawa C, Gunnarsson C, Howard C, Bernabeu M, Phong K et al. 2020. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. Sci. Adv. 6:eaay7243
    [Google Scholar]
  70. 70. 
    Tien J, Dance YW. 2021. Microfluidic biomaterials. Adv. Healthc. Mater. 10:42001028
    [Google Scholar]
  71. 71. 
    Kim S, Lee H, Chung M, Jeon NL 2013. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–500
    [Google Scholar]
  72. 72. 
    Bischel LL, Young EW, Mader BR, Beebe DJ. 2013. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34:1471–77
    [Google Scholar]
  73. 73. 
    Hsu Y-H, Moya ML, Hughes CCW, George SC, Lee AP. 2013. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13:2990–98
    [Google Scholar]
  74. 74. 
    Kim S, Chung M, Ahn J, Lee S, Jeon NL. 2016. Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16:4189–99
    [Google Scholar]
  75. 75. 
    Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 2018. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180:117–29
    [Google Scholar]
  76. 76. 
    Myers DR, Sakurai Y, Tran R, Ahn B, Hardy ET et al. 2012. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. JoVE 64:e3958
    [Google Scholar]
  77. 77. 
    Nagao RJ, Marcu R, Wang Y, Wang L, Arakawa C et al. 2019. Transforming endothelium with platelet-rich plasma in engineered microvessels. Adv. Sci. 6:1901725
    [Google Scholar]
  78. 78. 
    Qiu Y, Lam WA. 2020. Platelet-rich plasma as endothelial rocket fuel for engineered in vitro microvasculature. J. Thromb. Haemost. 18:1239–41
    [Google Scholar]
  79. 79. 
    Lehmann M, Wallbank AM, Dennis KA, Wufsus AR, Davis KM et al. 2015. On-chip recalcification of citrated whole blood using a microfluidic herringbone mixer. Biomicrofluidics 9:064106
    [Google Scholar]
  80. 80. 
    Yoshida H, Matsusaki M, Akashi M. 2013. Multilayered blood capillary analogs in biodegradable hydrogels for in vitro drug permeability assays. Adv. Funct. Mater. 23:1736–42
    [Google Scholar]
  81. 81. 
    Matsusaki M, Kadowaki K, Nakahara Y, Akashi M. 2007. Fabrication of cellular multilayers with nanometer-sized extracellular matrix films. Angew. Chem. Int. Ed. 46:4689–92
    [Google Scholar]
  82. 82. 
    Yue T, Nakajima M, Takeuchi M, Hu C, Huang Q, Fukuda T. 2014. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes. Lab Chip 14:1151–61
    [Google Scholar]
  83. 83. 
    Raman R, Bhaduri B, Mir M, Shkumatov A, Lee MK et al. 2016. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 5:610–19
    [Google Scholar]
  84. 84. 
    Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL et al. 2019. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364:458–64
    [Google Scholar]
  85. 85. 
    Higgins JM, Eddington DT, Bhatia SN, Mahadevan L 2007. Sickle cell vasoocclusion and rescue in a microfluidic device. PNAS 104:20496–500
    [Google Scholar]
  86. 86. 
    Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT. 2014. Oxygen control with microfluidics. Lab Chip 14:4305–18
    [Google Scholar]
  87. 87. 
    Shirure VS, Lam SF, Shergill B, Chu YE, Ng NR, George SC. 2020. Quantitative design strategies for fine control of oxygen in microfluidic systems. Lab Chip 20:3036–50
    [Google Scholar]
  88. 88. 
    Caggiati A, Phillips M, Lametschwandtner A, Allegra C 2006. Valves in small veins and venules. Eur. J. Vasc. Endovasc. Surg. 32:447–52
    [Google Scholar]
  89. 89. 
    Tien J. 2019. Tissue engineering of the microvasculature. Compr. Physiol. 9:31155–212
    [Google Scholar]
  90. 90. 
    Li X, Xia J, Nicolescu CT, Massidda MW, Ryan TJ, Tien J. 2018. Engineering of microscale vascularized fat that responds to perfusion with lipoactive hormones. Biofabrication 11:1014101
    [Google Scholar]
  91. 91. 
    Tien J, Ghani U, Dance YW, Seibel AJ, Karakan et al. 2020. Matrix pore size governs escape of human breast cancer cells from a microtumor to an empty cavity. iScience 23:11101673
    [Google Scholar]
  92. 92. 
    Taqueti VR, Di Carli MF. 2018. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72:2625–41
    [Google Scholar]
  93. 93. 
    Vancheri F, Longo G, Vancheri S, Henein M. 2020. Coronary microvascular dysfunction. J. Clin. Med. 9:2880
    [Google Scholar]
  94. 94. 
    Loyola-Leyva A, Loyola-Rodríguez JP, Atzori M, González FJ. 2018. Morphological changes in erythrocytes of people with type 2 diabetes mellitus evaluated with atomic force microscopy: a brief review. Micron 105:11–17
    [Google Scholar]
  95. 95. 
    Viswanathan A, Greenberg SM. 2011. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70:871–80
    [Google Scholar]
  96. 96. 
    Keable A, Fenna K, Yuen HM, Johnston DA, Smyth NR et al. 2016. Deposition of amyloid beta in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim. Biophys. Acta 1862:1037–46
    [Google Scholar]
  97. 97. 
    Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R et al. 2017. Diabetic microvascular disease: an endocrine society scientific statement. J. Clin. Endocrinol. Metab. 102:4343–410
    [Google Scholar]
  98. 98. 
    Vithian K, Hurel S. 2010. Microvascular complications: pathophysiology and management. Clin. Med. 10:505–9
    [Google Scholar]
  99. 99. 
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–10
    [Google Scholar]
  100. 100. 
    Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–11
    [Google Scholar]
  101. 101. 
    Hotchkiss RS, Monneret G, Payen D. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13:862–74
    [Google Scholar]
  102. 102. 
    Ellett F, Jorgensen J, Marand AL, Liu YM, Martinez MM et al. 2018. Diagnosis of sepsis from a drop of blood by measurement of spontaneous neutrophil motility in a microfluidic assay. Nat. Biomed. Eng. 2:207–14
    [Google Scholar]
  103. 103. 
    Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. 2011. The pathogenesis of sepsis. Annu. Rev. Pathol. Mech. Dis. 6:19–48
    [Google Scholar]
  104. 104. 
    Gando S, Levi M, Toh CH. 2016. Disseminated intravascular coagulation. Nat. Rev. Dis. Primers 2:16037
    [Google Scholar]
  105. 105. 
    Levi M, Iba T. 2021. COVID-19 coagulopathy: Is it disseminated intravascular coagulation?. Intern. Emerg. Med. 16:309–12
    [Google Scholar]
  106. 106. 
    Bazzan M, Todros T, Tedeschi S, Ardissino G, Cardaropoli S et al. 2020. Genetic and molecular evidence for complement dysregulation in patients with HELLP syndrome. Thromb. Res. 196:167–74
    [Google Scholar]
  107. 107. 
    Barabino GA, Platt MO, Kaul DK. 2010. Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 12:345–67
    [Google Scholar]
  108. 108. 
    Cheng OZ, Palaniyar N. 2013. NET balancing: a problem in inflammatory lung diseases. Front. Immunol. 4:1
    [Google Scholar]
  109. 109. 
    Worthen GS, Schwab B 3rd, Elson EL, Downey GP 1989. Mechanics of stimulated neutrophils: Cell stiffening induces retention in capillaries. Science 245:183–86
    [Google Scholar]
  110. 110. 
    Hanahan D, Folkman J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–64
    [Google Scholar]
  111. 111. 
    De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M et al. 2012. Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J. Vasc. Res. 49:390–404
    [Google Scholar]
  112. 112. 
    Patterson JW. 2021. The psoriasiform reaction pattern. Weedon's Skin Pathology99–120 London: Churchill Livingstone Elsevier
    [Google Scholar]
  113. 113. 
    Firestein GS 2021. Pathogenesis of rheumatoid arthritis. Firestein & Kelly's Textbook of Rheumatology GS Firestein, RC Budd, SE Gabriel, IB McInnes, JR O'Dell, G Koretzky 1200–35 Amsterdam: Elsevier. , 11th ed..
    [Google Scholar]
  114. 114. 
    Int. Soc. Stud. Vasc. Anom 2018. ISSVA classification of vascular anomalies. International Society for the Study of Vascular Anomalies. http://issva.org/classification
    [Google Scholar]
  115. 115. 
    Lee B-B, Villavicencio JL 2019. Congenital vascular malformations: general considerations. Rutherford's Vascular Surgery and Endovascular Therapy AN Sidawy, BA Perler 2236–50 Philadelphia, PA: Elsevier. , 9th ed..
    [Google Scholar]
  116. 116. 
    Boulpaep EL 2017. The microcirculation. Medical Physiology WF Boron, EL Boulpaep 461–82 Philadelphia, PA: Elsevier
    [Google Scholar]
  117. 117. 
    Burton AC. 1954. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34:619–42
    [Google Scholar]
  118. 118. 
    Myers DR, Fletcher DA, Lam WA 2013. Towards high-throughput cell mechanics assays for research and clinical applications. Nano and Cell Mechanics HD Espinosa, G Bao 255–92 Chichester, UK: Wiley
    [Google Scholar]
  119. 119. 
    Ye H, Shen Z, Li Y. 2019. Interplay of deformability and adhesion on localization of elastic micro-particles in blood flow. J. Fluid Mech. 861:55–87
    [Google Scholar]
  120. 120. 
    Thomas AE, Baird SF, Anderson J 2016. Purpuric and petechial rashes in adults and children: initial assessment. BMJ 352:i1285
    [Google Scholar]
  121. 121. 
    Geerts AM, De Vriese AS, Vanheule E, Van Vlierberghe H, Mortier S et al. 2006. Increased angiogenesis and permeability in the mesenteric microvasculature of rats with cirrhosis and portal hypertension: an in vivo study. Liver Int 26:889–98
    [Google Scholar]
  122. 122. 
    Chung KC, Ross P 2021. Pathomechanics of deformities of the arthritic hand and wrist. Rehabilitation of the Hand and Upper Extremity TM Skirven, AL Osterman, JM Fedorczyk, PC Amadio, SB Feldscher, EK Shin, pp. 1196–208. Philadelphia, PA: Elsevier. 7th ed.
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-091520-025358
Loading
/content/journals/10.1146/annurev-bioeng-091520-025358
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error