1932

Abstract

Cochlear implants are the most successful neural prostheses used to restore hearing in severe-to-profound hearing-impaired individuals. The field of cochlear implant coding investigates interdisciplinary approaches to translate acoustic signals into electrical pulses transmitted at the electrode–neuron interface, ranging from signal preprocessing algorithms, enhancement, and feature extraction methodologies to electric signal generation. In the last five decades, numerous coding strategies have been proposed clinically and experimentally. Initially developed to restore speech perception, increasing computational possibilities now allow coding of more complex signals, and new techniques to optimize the transmission of electrical signals are constantly gaining attention. This review provides insights into the history of multichannel coding and presents an extensive list of implemented strategies. The article briefly addresses each method and considers promising future directions of neural prostheses and possible signal processing, with the ultimate goal of providing a current big picture of the large field of cochlear implant coding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-102623-121249
2025-05-01
2025-05-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-102623-121249.html?itemId=/content/journals/10.1146/annurev-bioeng-102623-121249&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Stevens SS. 1937.. On hearing by electrical stimulation. . J. Acoust. Soc. Am. 8:(3):19195
    [Crossref] [Google Scholar]
  2. 2.
    Stevens SS, Jones RC. 1939.. The mechanism of hearing by electrical stimulation. . J. Acoust. Soc. Am. 10:(4):26169
    [Crossref] [Google Scholar]
  3. 3.
    Flottorp G. 1953.. Effect of different types of electrodes in electrophonic hearing. . J. Acoust. Soc. Am. 25:(2):23645
    [Crossref] [Google Scholar]
  4. 4.
    Djourno A, Eyries C. 1957.. Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling. . Presse Med. 65:(63):1417
    [Google Scholar]
  5. 5.
    Doyle JH, Doyle JB, Turnbull FM. 1964.. Electrical stimulation of eighth cranial nerve. . Arch. Otolaryngol. 80:(4):38891
    [Crossref] [Google Scholar]
  6. 6.
    Simmons FB, Epley JM, Lummis RC, Guttman N, Frishkopf LS, et al. 1965.. Auditory nerve: electrical stimulation in man. . Science 148:(3666):1046
    [Crossref] [Google Scholar]
  7. 7.
    House WF, Urban J. 1973.. Long term results of electrode implantation and electronic stimulation of the cochlea in man. . Ann. Otol. Rhinol. Laryngol. 82:(4):50417
    [Crossref] [Google Scholar]
  8. 8.
    Loizou PC. 1998.. Mimicking the human ear. . IEEE Signal Process. Mag. 15:(5):10130
    [Crossref] [Google Scholar]
  9. 9.
    Wilson BS, Dorman MF. 2008.. Cochlear implants: a remarkable past and a brilliant future. . Hear. Res. 242:(1–2):321
    [Crossref] [Google Scholar]
  10. 10.
    Zeng FG, Rebscher S, Harrison W, Sun X, Feng H. 2008.. Cochlear implants: system design, integration, and evaluation. . IEEE Rev. Biomed. Eng. 1::11542
    [Crossref] [Google Scholar]
  11. 11.
    Michelson RP, Schindler RA. 1981.. Multichannel cochlear implants. Current status and future developments. . Laryngoscope 91:(6):88688
    [Crossref] [Google Scholar]
  12. 12.
    White MW, Merzenich MM, Gardi JN. 1984.. Multichannel cochlear implants: channel interactions and processor design. . Arch. Otolaryngol. 110:(8):493501
    [Crossref] [Google Scholar]
  13. 13.
    Wilson BS, Lawson DT, Finley CC, Wolford RD. 1991.. Coding strategies for multichannel cochlear prostheses. . Am. J. Otol. 12::5661
    [Crossref] [Google Scholar]
  14. 14.
    Lawson DT, Wilson BS, Finley CC. 1993.. New processing strategies for multichannel cochlear prostheses. . Prog. Brain Res. 97::31321
    [Crossref] [Google Scholar]
  15. 15.
    Hollow RD, Dowell RC, Cowan RS, Skok MC, Pyman BC, Clark GM. 1995.. Continuing improvements in speech processing for adult cochlear implant patients. . Ann. Otol. Rhinol. Laryngol. 104::29294
    [Google Scholar]
  16. 16.
    Wilson BS. 1997.. Guest editorial: the future of cochlear implants. . Br. J. Audiol. 31:(4):20525
    [Crossref] [Google Scholar]
  17. 17.
    Loizou PC. 1999.. Signal-processing techniques for cochlear implants: a review of progress in deriving electrical stimuli from the speech signal. . IEEE Eng. Med. Biol. Mag. 18:(3):3446
    [Crossref] [Google Scholar]
  18. 18.
    Moore JA, Teagle HF. 2002.. An introduction to cochlear implant technology, activation, and programming. . Lang. Speech Hear. Serv. Sch. 33:(3):15361
    [Crossref] [Google Scholar]
  19. 19.
    Loizou PC, Stickney G, Mishra L, Assmann P. 2003.. Comparison of speech processing strategies used in the Clarion implant processor. . Ear Hear. 24:(1):1219
    [Crossref] [Google Scholar]
  20. 20.
    Wilson BS, Lawson DT, Müller JM, Tyler RS, Kiefer J. 2003.. Cochlear implants: some likely next steps. . Annu. Rev. Biomed. Eng. 5::20749
    [Crossref] [Google Scholar]
  21. 21.
    McDermott HJ. 2004.. Music perception with cochlear implants: a review. . Trends Amplif. 8:(2):4982
    [Crossref] [Google Scholar]
  22. 22.
    Rubinstein JT. 2004.. How cochlear implants encode speech. . Curr. Opin. Otolaryngol. Head Neck Surg. 12:(5):44448
    [Crossref] [Google Scholar]
  23. 23.
    Zeng FG. 2004.. Trends in cochlear implants. . Trends Amplif. 8:(1):134
    [Crossref] [Google Scholar]
  24. 24.
    Wilson BS, Schatzer R, Lopez-Poveda EA, Sun X, Lawson DT, Wolford RD. 2005.. Two new directions in speech processor design for cochlear implants. . Ear Hear. 26:(4):73S81S
    [Crossref] [Google Scholar]
  25. 25.
    Somek B, Fajt S, Dembitz A, Ostojić J. 2006.. Coding strategies for cochlear implants. . Automatika 47:(1–2):6974
    [Google Scholar]
  26. 26.
    Patrick JF, Busby PA, Gibson PJ. 2006.. The development of the Nucleus® Freedom cochlear implant system. . Trends Amplif. 10:(4):175200
    [Crossref] [Google Scholar]
  27. 27.
    Waltzman SB. 2006.. Cochlear implants: current status. . Expert Rev. Med. Devices 3:(5):64755
    [Crossref] [Google Scholar]
  28. 28.
    Wilson BS, Dorman MF. 2007.. The surprising performance of present-day cochlear implants. . IEEE Trans. Biomed. Eng. 54:(6):96972
    [Crossref] [Google Scholar]
  29. 29.
    Bonham BH, Litvak LM. 2008.. Current focusing and steering: modeling, physiology, and psychophysics. . Hear. Res. 242:(1–2):14153
    [Crossref] [Google Scholar]
  30. 30.
    Wilson BS, Dorman MF. 2008.. Cochlear implants: current designs and future possibilities. . J. Rehabil. Res. Dev. 45:(5):695730
    [Crossref] [Google Scholar]
  31. 31.
    Rouiha K, Bachir D, Ali B. 2008.. Analysis of speech processing strategies in cochlear implants. . J. Comput. Sci. 4:(5):37274
    [Crossref] [Google Scholar]
  32. 32.
    Nie KB, Drennan WR, Rubinstein JT. 2009.. Cochlear implant coding strategies and device programming. . In Ballenger's Otorhinolaryngology: Head and Neck Surgery, ed. JB Snow Jr., PA Wackym , pp. 38994. Shelton, CT:: People's Med. Publ. House
    [Google Scholar]
  33. 33.
    Cosetti MK, Waltzman SB. 2011.. Cochlear implants: current status and future potential. . Expert Rev. Med. Devices 8:(3):389401
    [Crossref] [Google Scholar]
  34. 34.
    Eshraghi AA, Nazarian R, Telischi FF, Rajguru SM, Truy E, Gupta C. 2012.. The cochlear implant: historical aspects and future prospects. . Anat. Rec. 295:(11):196780
    [Crossref] [Google Scholar]
  35. 35.
    Mudry A, Mills M. 2013.. The early history of the cochlear implant: a retrospective. . JAMA Otolaryngol. Head Neck Surg. 139:(5):44653
    [Crossref] [Google Scholar]
  36. 36.
    Clark GM. 2014.. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. . Hear. Res. 322::413
    [Crossref] [Google Scholar]
  37. 37.
    Macherey O, Carlyon RP. 2014.. Cochlear implants. . Curr. Biol. 24:(18):R87884
    [Crossref] [Google Scholar]
  38. 38.
    Chouard CH. 2015.. The early days of the multi channel cochlear implant: efforts and achievement in France. . Hear. Res. 322::4751
    [Crossref] [Google Scholar]
  39. 39.
    Wouters J, McDermott HJ, Francart T. 2015.. Sound coding in cochlear implants: from electric pulses to hearing. . IEEE Signal Process. Mag. 32:(2):6780
    [Crossref] [Google Scholar]
  40. 40.
    Wilson BS. 2015.. Getting a decent (but sparse) signal to the brain for users of cochlear implants. . Hear. Res. 322::2438
    [Crossref] [Google Scholar]
  41. 41.
    Zeng FG, Rebscher SJ, Fu QJ, Chen H, Sun X, et al. 2015.. Development and evaluation of the Nurotron 26-electrode cochlear implant system. . Hear. Res. 322::18899
    [Crossref] [Google Scholar]
  42. 42.
    Lenarz T. 2017.. Cochlear implant—state of the art. . Laryngorhinootologie 96:(S 01):S12351
    [Crossref] [Google Scholar]
  43. 43.
    Zeng FG. 2017.. Challenges in improving cochlear implant performance and accessibility. . IEEE Trans. Biomed. Eng. 64:(8):166264
    [Crossref] [Google Scholar]
  44. 44.
    Carlyon RP, Goehring T. 2021.. Cochlear implant research and development in the twenty-first century: a critical update. . J. Assoc. Res. Otolaryngol. 22:(5):481508
    [Crossref] [Google Scholar]
  45. 45.
    Zeng FG. 2022.. Celebrating the one millionth cochlear implant. . JASA Express Lett. 2:(7):077201
    [Crossref] [Google Scholar]
  46. 46.
    Skinner WM, Holden KL, Holden AT, Dowell CR, Seligman MP, et al. 1991.. Performance of postlinguistically deaf adults with the Wearable Speech Processor (WSP III) and Mini Speech Processor (MSP) of the Nucleus Multi-Electrode Cochlear Implant. . Ear Hear. 12:(1):322
    [Crossref] [Google Scholar]
  47. 47.
    Skinner MW, Clark GM, Whitford LA, Seligman PM, Staller JS, et al. 1994.. Evaluation of a new spectral peak coding strategy for the nucleus 22 channel cochlear implant system. . Am. J. Otol. 15:(Suppl. 2):1527
    [Google Scholar]
  48. 48.
    Holden LK, Skinner MW, Holden TA. 1997.. Speech recognition with the MPEAK and SPEAK speech-coding strategies of the Nucleus Cochlear Implant. . Otolaryngol. Head Neck Surg. 116:(2):16367
    [Google Scholar]
  49. 49.
    Kessler DK. 1999.. The Clarion® Multi-Strategy cochlear implant. . Ann. Otol. Rhinol. Laryngol. 108:(4 II):816
    [Crossref] [Google Scholar]
  50. 50.
    Zimmerman-Phillips S, Murad C. 1999.. Programming features of the CLARION® Multi-Strategy™ Cochlear Implant. . Ann. Otol. Rhinol. Laryngol. 108:(4 II):1721
    [Crossref] [Google Scholar]
  51. 51.
    Kiefer J, Hohl S, Stürzebecher E, Pfennigdorff T, Gstöettner W. 2001.. Comparison of speech recognition with different speech coding strategies (SPEAK, CIS, and ACE) and their relationship to telemetric measures of compound action potentials in the Nucleus CI 24M cochlear implant system. . Int. J. Audiol. 40:(1):3242
    [Crossref] [Google Scholar]
  52. 52.
    Skinner MW, Holden LK, Whitford LA, Plant KL, Psarros C, Holden TA. 2002.. Speech recognition with the Nucleus 24 SPEAK, ACE, and CIS speech coding strategies in newly implanted adults. . Ear Hear. 23:(3):20723
    [Crossref] [Google Scholar]
  53. 53.
    Pasanisi E, Bacciu A, Vincenti V, Guida M, Berghenti MT, et al. 2002.. Comparison of speech perception benefits with SPEAK and ACE coding strategies in pediatric Nucleus CI24M cochlear implant recipients. . Int. J. Pediatr. Otorhinolaryngol. 64:(2):15963
    [Crossref] [Google Scholar]
  54. 54.
    David EE, Ostroff JM, Shipp D, Nedzelski JM, Chen JM, et al. 2003.. Speech coding strategies and revised cochlear implant candidacy: an analysis of post-implant performance. . Otol. Neurotol. 24:(2):22833
    [Crossref] [Google Scholar]
  55. 55.
    Buechner A, Frohne-Buechner C, Stoever T, Gaertner L, Battmer RD, Lenarz T. 2005.. Comparison of a paired or sequential stimulation paradigm with Advanced Bionics' high-resolution mode. . Otol. Neurotol. 26:(5):94147
    [Crossref] [Google Scholar]
  56. 56.
    Buechner A, Frohne-Buechner C, Gaertner L, Lesinski-Schiedat A, Battmer RD, Lenarz T. 2006.. Evaluation of Advanced Bionics high resolution mode. . Int. J. Audiol. 45:(7):40716
    [Crossref] [Google Scholar]
  57. 57.
    Dunn CC, Tyler RS, Witt SA, Gantz BJ. 2006.. Effects of converting bilateral cochlear implant subjects to a strategy with increased rate and number of channels. . Ann. Otol. Rhinol. Laryngol. 115:(6):42532
    [Crossref] [Google Scholar]
  58. 58.
    Arnoldner C, Riss D, Brunner M, Durisin M, Baumgartner WD, Hamzavi JS. 2007.. Speech and music perception with the new fine structure speech coding strategy: preliminary results. . Acta Oto-Laryngol. 127:(12):1298303
    [Crossref] [Google Scholar]
  59. 59.
    Firszt JB, Holden LK, Reeder RM, Skinner MW. 2009.. Speech recognition in cochlear implant recipients: comparison of standard HiRes and HiRes 120 sound processing. . Otol. Neurotol. 30:(2):14652
    [Crossref] [Google Scholar]
  60. 60.
    Lorens A, Zgoda M, Obrycka A, Skarzynski H. 2010.. Fine structure processing improves speech perception as well as objective and subjective benefits in pediatric MED-EL COMBI 40+ users. . Int. J. Pediatr. Otorhinolaryngol. 74:(12):137278
    [Crossref] [Google Scholar]
  61. 61.
    Vermeire K, Punte AK, Van De Heyning P. 2010.. Better speech recognition in noise with the fine structure processing coding strategy. . ORL J. Otorhinolaryngol. Relat. Spec. 72:(6):30511
    [Crossref] [Google Scholar]
  62. 62.
    Buechner A, Beynon A, Szyfter W, Niemczyk K, Hoppe U, et al. 2011.. Clinical evaluation of cochlear implant sound coding taking into account conjectural masking functions, MP3000. . Cochlear Implants Int. 12:(4):194204
    [Crossref] [Google Scholar]
  63. 63.
    Donaldson GS, Dawson PK, Borden LZ. 2011.. Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: speech perception and its relation to place-pitch sensitivity. . Ear Hear. 32:(2):23850
    [Crossref] [Google Scholar]
  64. 64.
    Looi V, Winter P, Anderson I, Sucher C. 2011.. A music quality rating test battery for cochlear implant users to compare the FSP and HDCIS strategies for music appreciation. . Int. J. Audiol. 50:(8):50318
    [Crossref] [Google Scholar]
  65. 65.
    Mueller J, Brill S, Hagen R, Moeltner A, Brockmeier SJ, et al. 2012.. Clinical trial results with the MED-EL fine structure processing coding strategy in experienced cochlear implant users. . ORL J. Otorhinolaryngol. Relat. Spec. 74:(4):18598
    [Crossref] [Google Scholar]
  66. 66.
    Kleine Punte A, De Bodt M, Van De Heyning P. 2014.. Long-term improvement of speech perception with the fine structure processing coding strategy in cochlear implants. . ORL J. Otorhinolaryngol. Relat. Spec. 76:(1):3643
    [Crossref] [Google Scholar]
  67. 67.
    Riss D, Hamzavi JS, Blineder M, Honeder C, Ehrenreich I, et al. 2014.. FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies. . Ear Hear. 35:(6):e27281
    [Crossref] [Google Scholar]
  68. 68.
    Hochmair I, Hochmair E, Nopp P, Waller M, Jolly C. 2015.. Deep electrode insertion and sound coding in cochlear implants. . Hear. Res. 322::1423
    [Crossref] [Google Scholar]
  69. 69.
    Laback B, Egger K, Majdak P. 2015.. Perception and coding of interaural time differences with bilateral cochlear implants. . Hear. Res. 322::13850
    [Crossref] [Google Scholar]
  70. 70.
    Riss D, Hamzavi JS, Blineder M, Flak S, Baumgartner WD, et al. 2016.. Effects of stimulation rate with the FS4 and HDCIS coding strategies in cochlear implant recipients. . Otol. Neurotol. 37:(7):88288
    [Crossref] [Google Scholar]
  71. 71.
    Dillon MT, Buss E, King ER, Deres EJ, Obarowski SN, et al. 2016.. Comparison of two cochlear implant coding strategies on speech perception. . Cochlear Implants Int. 17:(6):26370
    [Crossref] [Google Scholar]
  72. 72.
    Reynolds SM, Gifford RH. 2019.. Effect of signal processing strategy and stimulation type on speech and auditory perception in adult cochlear implant users. . Int. J. Audiol. 58:(6):36372
    [Crossref] [Google Scholar]
  73. 73.
    Crowson MG, Lin V, Chen JM, Chan TC. 2020.. Machine learning and cochlear implantation—a structured review of opportunities and challenges. . Otol. Neurotol. 41:(1):E3645
    [Crossref] [Google Scholar]
  74. 74.
    Holcomb MA, Dornhoffer JR, McRackan TR. 2021.. The effects of paired versus sequential stimulation on speech recognition outcomes of adult cochlear implant recipients. . Audiol. Neurotol. 26:(3):18894
    [Crossref] [Google Scholar]
  75. 75.
    Gauer J, Nagathil A, Lentz B, Völter C, Martin R. 2023.. A subjective evaluation of different music preprocessing approaches in cochlear implant listeners. . J. Acoust. Soc. Am. 153:(2):130718
    [Crossref] [Google Scholar]
  76. 76.
    Chouard CH, MacLeod P. 1976.. Implantation of multiple intracochlear electrodes for rehabilitation of total deafness: preliminary report. . Laryngoscope 86:(11):174351
    [Crossref] [Google Scholar]
  77. 77.
    Clark GM, Tong YC, Black R, Forster IC, Patrick JF, Dewhurst DJ. 1977.. A multiple electrode cochlear implant. . J. Laryngol. Otol. 91:(11):93545
    [Crossref] [Google Scholar]
  78. 78.
    Merzenich MM. 1985.. UCSF cochlear implant device. Tech. Rep., Univ. Calif., San Francisco, CA:
    [Google Scholar]
  79. 79.
    Wilson BS, Finley CC, Lawson DT. 1985.. Speech processors for auditory prostheses, seventh quarterly progress report. Tech. Rep. N01-NS-3-2356 , Natl. Inst. Health, Bethesda, MD:
    [Google Scholar]
  80. 80.
    Eddington DK, Dobelle WH, Brackmann DE. 1978.. Auditory prostheses research with multiple channel intracochlear stimulation in man. . Ann. Otol. Rhinol. Laryngol. 87:(6 Suppl.):539
    [Crossref] [Google Scholar]
  81. 81.
    Merzenich MM, White M, Vivion MC, Leake-Jones PA, Walsh S. 1979.. Some considerations of multichannel electrical stimulation of the auditory nerve in the profoundly deaf; interfacing electrode arrays with the auditory nerve array. . Acta Oto-Laryngol. 87:(3–6):196203
    [Crossref] [Google Scholar]
  82. 82.
    Eddington DK. 1980.. Speech discrimination in deaf subjects with cochlear implants. . J. Acoust. Soc. Am. 68:(3):88591
    [Crossref] [Google Scholar]
  83. 83.
    Tong YC, Clark GM, Blamey PJ, Busby PA, Dowell RC. 1982.. Psychophysical studies for two multiple-channel cochlear implant patients. . J. Acoust. Soc. Am. 71:(1):15360
    [Crossref] [Google Scholar]
  84. 84.
    Eddington DK. 1983.. Speech recognition in deaf subjects with multichannel intracochlear electrodes. . Ann. N. Y. Acad. Sci. 405:(1):24158
    [Crossref] [Google Scholar]
  85. 85.
    Wilson B, Finley C, Weber B, White M, Farmer JC Jr., et al. 1988.. Comparative studies of speech processing strategies for cochlear implants. . Laryngoscope 98:(10):106977
    [Crossref] [Google Scholar]
  86. 86.
    Wilson B, Finley C, Lawson D. 1986.. Speech processors for auditory prostheses, second quarterly progress report. Tech. Rep. N01-NS-5-2396 , Natl. Inst. Health, Bethesda, MD:
    [Google Scholar]
  87. 87.
    Wilson BS, Finley CC, Lawson DT, Wolford RD. 1988.. Speech processors for cochlear prostheses. . Proc. IEEE 76:(9):114354
    [Crossref] [Google Scholar]
  88. 88.
    Tong YC, Blamey PJ, Dowell RC, Clark GM. 1983.. Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant. . J. Acoust. Soc. Am. 74:(1):7380
    [Crossref] [Google Scholar]
  89. 89.
    Dorman MF, Hannley MT, Dankowski K, Smith L, McCandless G. 1989.. Word recognition by 50 patients fitted with the Symbion multichannel cochlear implant. . Ear Hear. 10:(1):4449
    [Crossref] [Google Scholar]
  90. 90.
    Clark GM, Black R, Forster IC, Patrick JF, Tong YC. 1978.. Design criteria of a multiple-electrode cochlear implant hearing prosthesis. . J. Acoust. Soc. Am. 63:(2):63133
    [Crossref] [Google Scholar]
  91. 91.
    Clark GM, Tong YC, Bailey QR. 1978.. A multiple-electrode cochlear implant. . J. Otolaryngol. Soc. Aust. 4:(3):20812
    [Google Scholar]
  92. 92.
    Tong YC, Black RC, Clark GM, Forster IC, Millar JB, et al. 1979.. A preliminary report on a multiple-channel cochlear implant operation. . J. Laryngol. Otol. 93:(7):67995
    [Crossref] [Google Scholar]
  93. 93.
    Xu SA, Dowell RC, Clark GM. 1987.. Results for Chinese and English in a multichannel cochlear implant patient. . Ann. Otol. Rhinol. Laryngol. 96:(1 Suppl.):12627
    [Crossref] [Google Scholar]
  94. 94.
    Tong YC, Dowell RC, Blamey PJ, Clark GM. 1983.. Two-component hearing sensations produced by two-electrode stimulation in the cochlea of a deaf patient. . Science 219:(4587):99394
    [Crossref] [Google Scholar]
  95. 95.
    Blamey PJ, Martin LF, Clark GM. 1985.. A comparison of three speech coding strategies using an acoustic model of a cochlear implant. . J. Acoust. Soc. Am. 77:(1):20917
    [Crossref] [Google Scholar]
  96. 96.
    Dowell RC, Seligman PM, Blamey PJ, Clark GM. 1987.. Speech perception using a two-formant 22-electrode cochlear prosthesis in quiet and in noise. . Acta Oto-Laryngol. 104:(5–6):43946
    [Crossref] [Google Scholar]
  97. 97.
    Dowell R. 1990.. Preliminary results with a miniature speech processor for the 22-electrode Melbourne/Cochlear hearing prosthesis. . Otolaryngol. Head Neck Surg. 10:(15):116773
    [Google Scholar]
  98. 98.
    McKay CM, McDermott HJ, Vandali AE, Clark GM. 1991.. Preliminary results with a six spectral maxima sound processor for the University of Melbourne/Nucleus multiple-electrode cochlear implant. . Aust. J. Oto-Laryngol. 6:(5):35459
    [Google Scholar]
  99. 99.
    McDermott HJ, McKay CM, Vandali AE. 1992.. A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. . J. Acoust. Soc. Am. 91:(6):336771
    [Crossref] [Google Scholar]
  100. 100.
    Vandali AE, Whitford LA, Plant KL, Clark GM. 2000.. Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system. . Ear Hear. 21:(6):60824
    [Crossref] [Google Scholar]
  101. 101.
    Wilson BS, Finley CC, Lawson DT, Wolford RD, Zerbi M. 1993.. Design and evaluation of a continuous interleaved sampling (CIS) processing strategy for multichannel cochlear implants. . J. Rehabil. Res. Dev. 30:(1):11016
    [Google Scholar]
  102. 102.
    Hochmair I, Nopp P, Jolly C, Schmidt M, Schößer H, et al. 2006.. MED-EL cochlear implants: state of the art and a glimpse into the future. . Trends Amplif. 10:(4):20119
    [Crossref] [Google Scholar]
  103. 103.
    Zeng FG, Shannon RV. 1992.. Loudness balance between electric and acoustic stimulation. . Hear. Res. 60:(2):23135
    [Crossref] [Google Scholar]
  104. 104.
    Zeng FG, Grant G, Niparko J, Galvin J, Shannon R, et al. 2002.. Speech dynamic range and its effect on cochlear implant performance. . J. Acoust. Soc. Am. 111:(1):37786
    [Crossref] [Google Scholar]
  105. 105.
    Nogueira W, Büchner A, Lenarz T, Edler B. 2005.. A psychoacoustic ``NofM''-type speech coding strategy for cochlear implants. . EURASIP J. Appl. Signal Proc. 2005:(18):304459
    [Google Scholar]
  106. 106.
    Firszt JB. 2003.. HiResolution™ sound processing. Tech. Rep., Med. Coll. Wis., Milwaukee, WI:
    [Google Scholar]
  107. 107.
    Koch DB, Osberger MJ, Segel P, Kessler D. 2004.. HiResolution™ and conventional sound processing in the HiResolution™ bionic ear: using appropriate outcome measures to assess speech recognition ability. . Audiol. Neuro-Otol. 9::21423
    [Crossref] [Google Scholar]
  108. 108.
    Donaldson GS, Kreft HA, Litvak L. 2005.. Place-pitch discrimination of single- versus dual-electrode stimuli by cochlear implant users. . J. Acoust. Soc. Am. 118:(2):62326
    [Crossref] [Google Scholar]
  109. 109.
    Trautwein P. 2006.. HiRes with Fidelity 120 sound processing: implementing active current steering for increased spectral resolution in CII BionicEar and HiRes90K users. Advanced Bionics Corp., Valencia, CA:
    [Google Scholar]
  110. 110.
    Buechner A, Brendel M, Krüeger B, Frohne-Büchner C, Nogueira W, et al. 2008.. Current steering and results from novel speech coding strategies. . Otol. Neurotol. 29:(2):2037
    [Crossref] [Google Scholar]
  111. 111.
    Wilson AJ. 1965.. The location of peaks. . Br. J. Appl. Phys. 16:(5):66574
    [Crossref] [Google Scholar]
  112. 112.
    Nogueira W, Litvak L, Edler B, Ostermann J, Büchner A. 2009.. Signal processing strategies for cochlear implants using current steering. . EURASIP J. Adv. Signal Process. 2009::531213
    [Crossref] [Google Scholar]
  113. 113.
    Buechner A, Brendel M, Saalfeld H, Litvak L, Frohne-Buechner C, Lenarz T. 2010.. Results of a pilot study with a signal enhancement algorithm for HiRes 120 cochlear implant users. . Otol. Neurotol. 31:(9):138690
    [Crossref] [Google Scholar]
  114. 114.
    Holden LK, Firszt JB, Reeder RM, Dwyer NY, Stein AL, Litvak LM. 2019.. Evaluation of a new algorithm to optimize audibility in cochlear implant recipients. . Ear Hear. 40:(4):9901000
    [Crossref] [Google Scholar]
  115. 115.
    Traunmüller H, Eriksson A. 1994.. The frequency range of the voice fundamental in the speech of male and female adults. Dep. Linguist., Univ. Stockholm:
    [Google Scholar]
  116. 116.
    Nopp P, Polak M. 2009.. From electric acoustic stimulation to improved sound coding in cochlear implants. . In Advances in Oto-Rhino-Laryngology, Vol. 67: Cochlear Implants and Hearing Preservation, ed. P Van de Heyning, A Kleine Punte , pp. 8895. Basel, Switz:.: Karger
    [Google Scholar]
  117. 117.
    Zierhofer CM, Schatzer R. 2008.. Simultaneous intracochlear stimulation based on channel interaction compensation: analysis and first results. . IEEE Trans. Biomed. Eng. 55:(7):190716
    [Crossref] [Google Scholar]
  118. 118.
    Bacciu A, Pasanisi E, Vincenti V, Ormitti F, Di Lella F, et al. 2009.. Cochlear implantation in children with cerebral palsy. A preliminary report. . Int. J. Pediatr. Otorhinolaryngol. 73:(5):71721
    [Crossref] [Google Scholar]
  119. 119.
    Lawson DT, Wilson BS, Zerbi M, Van Den Honert C, Finley CC, et al. 1998.. Bilateral cochlear implants controlled by a single speech processor. . Am. J. Otol. 19:(6):75861
    [Google Scholar]
  120. 120.
    Truy E, Ionescu E, Ceruse P, Gallego S. 2002.. The Binaural Digisonic cochlear implant: surgical technique. . Otol. Neurotol. 23:(5):7049
    [Crossref] [Google Scholar]
  121. 121.
    Bergeron F, Hotton M. 2016.. Perception in noise with the Digisonic SP cochlear implant: clinical trial of Saphyr processor's upgraded signal processing. . Eur. Ann. Otorhinolaryngol. Head Neck Dis. 133::S46
    [Crossref] [Google Scholar]
  122. 122.
    Guevara N, Bozorg-Grayeli A, Bebear JP, Ardoint M, Saaï S, et al. 2016.. The Voice Track multiband single-channel modified Wiener-filter noise reduction system for cochlear implants: patients' outcomes and subjective appraisal. . Int. J. Audiol. 55:(8):43138
    [Crossref] [Google Scholar]
  123. 123.
    Langner F, Büchner A, Nogueira W. 2020.. Evaluation of an adaptive dynamic compensation system in cochlear implant listeners. . Trends Hear. 24::2331216520970349
    [Crossref] [Google Scholar]
  124. 124.
    Segovia-Martinez M, Gnansia D, Hoen M. 2016.. Coordinated adaptive processing in the Neuro cochlear implant system. White Pap., Oticon Med., Copenhagen, Den:.
    [Google Scholar]
  125. 125.
    Schindler R, Kessler D, Yanda J, Rebscher S, Jackler R. 1986.. The UCSF/STORZ multichannel cochlear implant. . Laryngoscope 96:(6):597603
    [Crossref] [Google Scholar]
  126. 126.
    Wilson BS, Sun X, Schatzer R, Wolford RD. 2004.. Representation of fine structure or fine frequency information with cochlear implants. . Int. Congr. Ser. 1273::36
    [Crossref] [Google Scholar]
  127. 127.
    Wilson BS. 2004.. Engineering design of cochlear implants. . In Cochlear Implants: Auditory Prostheses and Electric Hearing, ed. FG Zeng, AN Popper, RR Fay , pp. 1452. New York:: Springer
    [Google Scholar]
  128. 128.
    Xu L, Zwolan TA, Thompson CS, Pfingst BE. 2005.. Efficacy of a cochlear implant simultaneous analog stimulation strategy coupled with a monopolar electrode configuration. . Ann. Otol. Rhinol. Laryngol. 114:(11):88693
    [Crossref] [Google Scholar]
  129. 129.
    Dillier N, Bögli H. 1991.. Evaluation of digital speech coding strategies for the Nucleus 22-electrode cochlear implant. . J. Acoust. Soc. Am. 90:(4):2290
    [Crossref] [Google Scholar]
  130. 130.
    Lai WK, Dillier N. 1992.. Hybrid speech coding strategies for the Melbourne-Nucleus cochlear implant: preliminary results. . In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 4, pp. 131011. New York:: IEEE
    [Google Scholar]
  131. 131.
    Dillier N, Bogli H, Spillmann T. 1993.. Speech discrimination via cochlear implants with two different digital speech processing strategies: preliminary results for 7 patients. . Scand. Audiol. 22:(Suppl. 38):14553
    [Google Scholar]
  132. 132.
    Dillier N, Lai W, Bögli H. 1994.. A high spectral transmission coding strategy for a multi-electrode cochlear implant. . In Proceedings of the 3rd International Cochlear Implant Conference, Innsbruck, Austria, pp. 15257. Munich:: Fraunhofer-Gesellschaft
    [Google Scholar]
  133. 133.
    Wilson B, Lawson D, Zerbi M, Finley C. 1992.. Virtual channels interleaved sampling (VCIS) processor, first quarterly progress report. Tech. Rep. N01-DC-2-2401 , Natl. Inst. Health, Bethesda, MD:
    [Google Scholar]
  134. 134.
    Wilson BS, Lawson DT, Zerbi M, Finley CC. 1994.. Recent developments with the CIS strategies. . In Advances in Cochlear Implants, ed. IJ Hochmair-Desoyer, ES Hochmair , pp. 10312. Vienna:: Verlag Manz
    [Google Scholar]
  135. 135.
    McDermott HJ, McKay CM. 1994.. Pitch ranking with nonsimultaneous dual-electrode electrical stimulation of the cochlea. . J. Acoust. Soc. Am. 96:(1):15562
    [Crossref] [Google Scholar]
  136. 136.
    Jones PA, McDermott HJ, Seligman PM, Millar JB. 1995.. Coding of voice source information in the nucleus cochlear implant system. . Ann. Otol. Rhinol. Laryngol. 104::36365
    [Google Scholar]
  137. 137.
    Vandali AE, Harrison JM, Huigen JM, Plant K, Clark GM. 1995.. Multichannel cochlear implant speech processing: further variations of the spectral maxima sound processor strategy. . Ann. Otol. Rhinol. Laryngol. 104:(9 Suppl.):37881
    [Google Scholar]
  138. 138.
    Vandali AE. 2001.. Emphasis of short-duration acoustic speech cues for cochlear implant users. . J. Acoust. Soc. Am. 109:(5):204961
    [Crossref] [Google Scholar]
  139. 139.
    Lyzenga J, Festen JM, Houtgast T. 2002.. A speech enhancement scheme incorporating spectral expansion evaluated with simulated loss of frequency selectivity. . J. Acoust. Soc. Am. 112:(3):114557
    [Crossref] [Google Scholar]
  140. 140.
    Bhattacharya A, Vandali A, Zeng FG. 2011.. Combined spectral and temporal enhancement to improve cochlear-implant speech perception. . J. Acoust. Soc. Am. 130:(5):295160
    [Crossref] [Google Scholar]
  141. 141.
    Lawson D, Wilson B, Zerbi M, Finley C. 1996.. Speech processors for auditory prostheses, third quarterly progress report. Tech. Rep. N01-DC-5-2103 , Natl. Inst. Health, Bethesda, MD:
    [Google Scholar]
  142. 142.
    Nie KB, Lan N, Gao SK. 1998.. Novel speech processing strategy for cochlear implants based on tonal information of Chinese language. . In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, pp. 315457. New York:: IEEE
    [Google Scholar]
  143. 143.
    Nie K, Lan N, Gao S. 1998.. Implementation of CIS speech signal processing for cochlea implants by using wavelet transform. . In ICSP'98. 1998 Fourth International Conference on Signal Processing, Vol. 2, pp. 139598. New York:: IEEE
    [Google Scholar]
  144. 144.
    Zwolan T, Kileny PR, Smith S, Mills D, Koch D, Osberger MJ. 2001.. Adult cochlear implant patient performance with evolving electrode technology. . Otol. Neurotol. 22:(6):84449
    [Crossref] [Google Scholar]
  145. 145.
    Geurts L, Wouters J. 2001.. Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants. . J. Acoust. Soc. Am. 109:(2):71326
    [Crossref] [Google Scholar]
  146. 146.
    Loizou PC, Poroy O, Dorman M. 2000.. The effect of parametric variations of cochlear implant processors on speech understanding. . J. Acoust. Soc. Am. 108:(2):790802
    [Crossref] [Google Scholar]
  147. 147.
    Stickney GS, Nie K, Zeng F. 2002.. Realistic listening improved by adding fine structure. . J. Acoust. Soc. Am. 112:(5):2355
    [Crossref] [Google Scholar]
  148. 148.
    Nie K, Zeng FG. 2004.. A perception-based processing strategy for cochlear implants and speech coding. . In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 26, pp. 42058. New York:: IEEE
    [Google Scholar]
  149. 149.
    Nie K, Stickney G, Zeng FG. 2005.. Encoding frequency modulation to improve cochlear implant performance in noise. . IEEE Trans. Biomed. Eng. 52:(1):6473
    [Crossref] [Google Scholar]
  150. 150.
    Flanagan JL, Golden RM. 1966.. Phase vocoder. . Bell Syst. Tech. J. 45:(9):1493509
    [Crossref] [Google Scholar]
  151. 151.
    Flanagan JL. 1980.. Parametric coding of speech spectra. . J. Acoust. Soc. Am. 68:(2):41219
    [Crossref] [Google Scholar]
  152. 152.
    McDermott HJ, McKay CM, Richardson LM, Henshall KR. 2003.. Application of loudness models to sound processing for cochlear implants. . J. Acoust. Soc. Am. 114:(4):219097
    [Crossref] [Google Scholar]
  153. 153.
    Green T, Faulkner A, Rosen S. 2004.. Enhancing temporal cues to voice pitch in continuous interleaved sampling cochlear implants. . J. Acoust. Soc. Am. 116:(4):2298310
    [Crossref] [Google Scholar]
  154. 154.
    Green T, Faulkner A, Rosen S, Macherey O. 2005.. Enhancement of temporal periodicity cues in cochlear implants: effects on prosodic perception and vowel identification. . J. Acoust. Soc. Am. 118:(1):37585
    [Crossref] [Google Scholar]
  155. 155.
    Vandali AE, Sucher C, Tsang DJ, McKay CM, Chew JWD, McDermott HJ. 2005.. Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies. . J. Acoust. Soc. Am. 117:(5):312638
    [Crossref] [Google Scholar]
  156. 156.
    Wong LL, Vandali AE, Ciocca V, Luk B, Ip VW, et al. 2008.. New cochlear implant coding strategy for tonal language speakers. . Int. J. Audiol. 47:(6):33747
    [Crossref] [Google Scholar]
  157. 157.
    Throckmorton CS, Selin Kucukoglu M, Remus JJ, Collins LM. 2006.. Acoustic model investigation of a multiple carrier frequency algorithm for encoding fine frequency structure: implications for cochlear implants. . Hear. Res. 218:(1–2):3042
    [Crossref] [Google Scholar]
  158. 158.
    Laneau J, Wouters J, Moonen M. 2006.. Improved music perception with explicit pitch coding in cochlear implants. . Audiol. Neurotol. 11:(1):3852
    [Crossref] [Google Scholar]
  159. 159.
    Milczynski M, Wouters J, van Wieringen A. 2009.. Improved fundamental frequency coding in cochlear implant signal processing. . J. Acoust. Soc. Am. 125:(4):226071
    [Crossref] [Google Scholar]
  160. 160.
    Milczynski M, Chang JE, Wouters J, van Wieringen A. 2012.. Perception of Mandarin Chinese with cochlear implants using enhanced temporal pitch cues. . Hear. Res. 285:(1–2):112
    [Crossref] [Google Scholar]
  161. 161.
    Chen F, Zhang YT. 2006.. A new acoustic model incorporating temporal fine structure cue for cochlear implant. . In Proceedings of 5th International Special Topic Conference on Information Technology Applications in Biomedicine (ITAB 2006), pp. 14. New York:: IEEE
    [Google Scholar]
  162. 162.
    Chen F, Zhang YT. 2008.. A novel temporal fine structure-based speech synthesis model for cochlear implant. . Signal Process. 88:(11):269399
    [Crossref] [Google Scholar]
  163. 163.
    Balkany T, Hodges A, Menapace C, Hazard L, Driscoll C, et al. 2007.. Nucleus Freedom North American clinical trial. . Otolaryngol. Head Neck Surg. 136:(5):75762
    [Crossref] [Google Scholar]
  164. 164.
    Weber BP, Lai WK, Dillier N, Von Wallenberg EL, Killian MJ, et al. 2007.. Performance and preference for ACE stimulation rates obtained with Nucleus RP 8 and Freedom system. . Ear Hear. 28:(Suppl. 2):46S48S
    [Crossref] [Google Scholar]
  165. 165.
    Plant K, Holden L, Skinner M, Arcaroli J, Whitford L, et al. 2007.. Clinical evaluation of higher stimulation rates in the Nucleus Research Platform 8 system. . Ear Hear. 28:(3):38193
    [Crossref] [Google Scholar]
  166. 166.
    Arora K, Dawson P, Dowell R, Vandali A. 2009.. Electrical stimulation rate effects on speech perception in cochlear implants. . Int. J. Audiol. 48:(8):56167
    [Crossref] [Google Scholar]
  167. 167.
    Hu Y, Loizou PC. 2008.. A new sound coding strategy for suppressing noise in cochlear implants. . J. Acoust. Soc. Am. 124:(1):498509
    [Crossref] [Google Scholar]
  168. 168.
    French NR, Steinberg JC. 1947.. Factors governing the intelligibility of speech sounds. . J. Acoust. Soc. Am. 19:(1):90119
    [Crossref] [Google Scholar]
  169. 169.
    Roman N, Wang D, Brown GJ. 2003.. Speech segregation based on sound localization. . J. Acoust. Soc. Am. 114:(4):223652
    [Crossref] [Google Scholar]
  170. 170.
    Buechner A, Frohne-Buechner C, Boyle P, Battmer RD, Lenarz T. 2009.. A high rate n-of-m speech processing strategy for the first generation Clarion cochlear implant. . Int. J. Audiol. 48:(12):86875
    [Crossref] [Google Scholar]
  171. 171.
    Gopalakrishna V, Kehtarnavaz N, Loizou PC. 2010.. A recursive wavelet-based strategy for real-time cochlear implant speech processing on PDA platforms. . IEEE Trans. Biomed. Eng. 57:(8):205363
    [Crossref] [Google Scholar]
  172. 172.
    Wang WD, Liu HY, Yuan H, Ang Q. 2010.. A new speech coding strategy for cochlear implant. . J. Med. Biol. Eng. 30:(5):33542
    [Crossref] [Google Scholar]
  173. 173.
    Liu H, Wang W, Liu G, Zhang Z. 2010.. An improved speech coding strategy for cochlear implants. . In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Vol. 4, pp. 141619. New York:: IEEE
    [Google Scholar]
  174. 174.
    Varsavsky A, McDermott HJ. 2012.. Application of real-time loudness models can improve speech recognition for cochlear implant users. . IEEE Trans. Neural Syst. Rehabil. Eng. 21:(1):8187
    [Crossref] [Google Scholar]
  175. 175.
    Francart T, McDermott H. 2012.. Speech perception and localisation with SCORE bimodal: a loudness normalisation strategy for combined cochlear implant and hearing aid stimulation. . PLOS ONE 7:(10):e45385
    [Crossref] [Google Scholar]
  176. 176.
    Smith ZM, McKay C, McDermott H. 2013.. Efficient coding for auditory prostheses. Presented at Conference on Implantable Auditory Prostheses, Lake Tahoe, CA:
    [Google Scholar]
  177. 177.
    Desmond JM, Collins LM, Throckmorton CS. 2013.. Using channel-specific statistical models to detect reverberation in cochlear implant stimuli. . J. Acoust. Soc. Am. 134:(2):111220
    [Crossref] [Google Scholar]
  178. 178.
    Carlyon RP, Monstrey J, Deeks JM, Macherey O. 2014.. Evaluation of a cochlear-implant processing strategy incorporating phantom stimulation and asymmetric pulses. . Int. J. Audiol. 53:(12):87179
    [Crossref] [Google Scholar]
  179. 179.
    Saoji AA, Litvak LM. 2010.. Use of ``phantom electrode'' technique to extend the range of pitches available through a cochlear implant. . Ear Hear. 31:(5):693701
    [Crossref] [Google Scholar]
  180. 180.
    Macherey O, Deeks JM, Carlyon RP. 2011.. Extending the limits of place and temporal pitch perception in cochlear implant users. . J. Assoc. Res. Otolaryngol. 12:(2):23351
    [Crossref] [Google Scholar]
  181. 181.
    Macherey O, Carlyon RP. 2012.. Place-pitch manipulations with cochlear implants. . J. Acoust. Soc. Am. 131:(3):222536
    [Crossref] [Google Scholar]
  182. 182.
    Hajiaghababa F, Kermani S, Marateb HR. 2014.. An undecimated wavelet-based method for cochlear implant speech processing. . J. Med. Signals Sens. 4:(4):24755
    [Crossref] [Google Scholar]
  183. 183.
    Nogueira W, Rode T, Büchner A. 2016.. Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants. . J. Acoust. Soc. Am. 139:(2):72839
    [Crossref] [Google Scholar]
  184. 184.
    Loizou PC, Poroy O. 2001.. Minimum spectral contrast needed for vowel identification by normal hearing and cochlear implant listeners. . J. Acoust. Soc. Am. 110:(3):161927
    [Crossref] [Google Scholar]
  185. 185.
    Nogueira W, Litvak LM, Landsberger DM, Büchner A. 2017.. Loudness and pitch perception using dynamically compensated virtual channels. . Hear. Res. 344::22334
    [Crossref] [Google Scholar]
  186. 186.
    Landsberger DM, Srinivasan AG. 2009.. Virtual channel discrimination is improved by current focusing in cochlear implant recipients. . Hear. Res. 254:(1–2):3441
    [Crossref] [Google Scholar]
  187. 187.
    Brochier T, McKay C, McDermott H. 2018.. Encoding speech in cochlear implants using simultaneous amplitude and rate modulation. . J. Acoust. Soc. Am. 144:(4):204251
    [Crossref] [Google Scholar]
  188. 188.
    Lindenbeck MJ, Laback B, Majdak P, Srinivasan S. 2020.. Temporal-pitch sensitivity in electric hearing with amplitude modulation and inserted pulses with short inter-pulse intervals. . J. Acoust. Soc. Am. 147:(2):77793
    [Crossref] [Google Scholar]
  189. 189.
    Zhou H, Kong F, Zheng N, Meng Q. 2023.. F0inTFS: a lightweight periodicity enhancement strategy for cochlear implants. . In Proceedings of the Annual Conference of the International Speech Communication Association, pp. 500812. Grenoble, Fr:.: ISCA
    [Google Scholar]
  190. 190.
    Fearn R. 2001.. Music and pitch perception of cochlear implant recipients. PhD Thesis , Univ. New South Wales, Australia:
    [Google Scholar]
  191. 191.
    Kasturi KS, Loizou PC. 2007.. Effect of filter spacing on melody recognition: acoustic and electric hearing. . J. Acoust. Soc. Am. 122:(2):2934
    [Crossref] [Google Scholar]
  192. 192.
    Omran S, Büchler M, Lai W, Dillier N. 2008.. Pitch perception using a semitone mapping to improve music representation in nucleus cochlear implants. . In 11th Annual Meeting of the German Society for Audiology, pp. 14. Kiel, Ger:: Deutschen Gesellschaft für Audiologie
    [Google Scholar]
  193. 193.
    Busby PA, Plant KL. 2005.. Dual electrode stimulation using the nucleus CI24RE cochlear implant: electrode impedance and pitch ranking studies. . Ear Hear. 26:(5):50411
    [Crossref] [Google Scholar]
  194. 194.
    Nie K, Atlas L, Rubinstein J. 2008.. Single sideband encoder for music coding in cochlear implants. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 420912. New York:: IEEE
    [Google Scholar]
  195. 195.
    Li X, Nie K, Atlas L, Rubinstein J. 2010.. Harmonic coherent demodulation for improving sound coding in cochlear implants. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 546265. New York:: IEEE
    [Google Scholar]
  196. 196.
    Li X, Nie K, Imennov NS, Won JH, Drennan WR, et al. 2012.. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants. . J. Acoust. Soc. Am. 132:(5):338798
    [Crossref] [Google Scholar]
  197. 197.
    Vandali AE, van Hoesel RJM. 2011.. Development of a temporal fundamental frequency coding strategy for cochlear implants. . J. Acoust. Soc. Am. 129:(6):402336
    [Crossref] [Google Scholar]
  198. 198.
    Vandali AE, van Hoesel RJM. 2012.. Enhancement of temporal cues to pitch in cochlear implants: effects on pitch ranking. . J. Acoust. Soc. Am. 132:(1):392402
    [Crossref] [Google Scholar]
  199. 199.
    Vandali AE, Dawson PW, Arora K. 2017.. Results using the OPAL strategy in Mandarin speaking cochlear implant recipients. . Int. J. Audiol. 56::S7485
    [Crossref] [Google Scholar]
  200. 200.
    Vandali A, Dawson P, Au A, Yu Y, Brown M, et al. 2019.. Evaluation of the optimized pitch and language strategy in cochlear implant recipients. . Ear Hear. 40:(3):55567
    [Crossref] [Google Scholar]
  201. 201.
    Fuentes B, Liutkus A, Badeau R, Richard G. 2012.. Probabilistic model for main melody extraction using constant-Q transform. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 535760. New York:: IEEE
    [Google Scholar]
  202. 202.
    Buyens W, Van Dijk B, Moonen M, Wouters J. 2014.. Music mixing preferences of cochlear implant recipients: a pilot study. . Int. J. Audiol. 53:(5):294301
    [Crossref] [Google Scholar]
  203. 203.
    Buyens W, Van Dijk B, Wouters J, Moonen M. 2015.. A stereo music preprocessing scheme for cochlear implant users. . IEEE Trans. Biomed. Eng. 62:(10):243442
    [Crossref] [Google Scholar]
  204. 204.
    Meng Q, Zheng N, Li X. 2015.. A temporal limits encoder for cochlear implants. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 586367. New York:: IEEE
    [Google Scholar]
  205. 205.
    Meng Q, Zheng N, Li X. 2016.. Mandarin speech-in-noise and tone recognition using vocoder simulations of the temporal limits encoder for cochlear implants. . J. Acoust. Soc. Am. 139:(1):30110
    [Crossref] [Google Scholar]
  206. 206.
    Nagathil A, Weihs C, Martin R. 2016.. Spectral complexity reduction of music signals for mitigating effects of cochlear hearing loss. . IEEE/ACM Trans. Audio Speech Lang. Proc. 24:(3):44558
    [Crossref] [Google Scholar]
  207. 207.
    Nagathil A, Weihs C, Neumann K, Martin R. 2017.. Spectral complexity reduction of music signals based on frequency-domain reduced-rank approximations: an evaluation with cochlear implant listeners. . J. Acoust. Soc. Am. 142:(3):121928
    [Crossref] [Google Scholar]
  208. 208.
    Gauer J, Nagathil A, Martin R, Thomas JP, Völter C. 2019.. Interactive evaluation of a music preprocessing scheme for cochlear implants based on spectral complexity reduction. . Front. Neurosci. 13::469114
    [Crossref] [Google Scholar]
  209. 209.
    Pons J, Janer J, Rode T, Nogueira W. 2016.. Remixing music using source separation algorithms to improve the musical experience of cochlear implant users. . J. Acoust. Soc. Am. 140:(6):433849
    [Crossref] [Google Scholar]
  210. 210.
    Lee DD, Seung HS. 2001.. Algorithms for non-negative matrix factorization. . In Advances in Neural Information Processing Systems 13 (NIPS 2000), ed. T Leen, T Dietterich, V Tresp , pp. 17. Cambridge, MA:: MIT Press
    [Google Scholar]
  211. 211.
    Ozerov A, Vincent E, Bimbot F. 2012.. A general flexible framework for the handling of prior information in audio source separation. . IEEE Trans. Audio Speech Lang. Proc. 20:(4):111833
    [Crossref] [Google Scholar]
  212. 212.
    Lentz B, Nagathil A, Gauer J, Martin R. 2020.. Harmonic/percussive sound separation and spectral complexity reduction of music signals for cochlear implant listeners. . In IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 871317. New York:: IEEE
    [Google Scholar]
  213. 213.
    Tahmasebi S, Segovia-Martinez M, Nogueira W. 2023.. Optimization of sound coding strategies to make singing music more accessible for cochlear implant users. . Trends Hear. 27::23312165221148022
    [Crossref] [Google Scholar]
  214. 214.
    Rafii Z, Liutkus A, Stöter FR, Mimilakis SI, Bittner R. 2017.. MUSDB18—a corpus for music separation. Tech. Rep. , Zenodo, Geneva:. https://doi.org/10.5281/zenodo.1117372
    [Google Scholar]
  215. 215.
    Geurts L, Wouters J. 1999.. Enhancing the speech envelope of continuous interleaved sampling processors for cochlear implants. . J. Acoust. Soc. Am. 105:(4):247684
    [Crossref] [Google Scholar]
  216. 216.
    Rubinstein JT, Wilson BS, Finley CC, Abbas PJ. 1999.. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. . Hear. Res. 127:(1–2):10818
    [Crossref] [Google Scholar]
  217. 217.
    Yao J, Zhang YT. 2002.. The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations. . IEEE Trans. Biomed. Eng. 49:(11):1299309
    [Crossref] [Google Scholar]
  218. 218.
    Grayden DB, Burkitt AN, Kenny OP, Clarey JC, Paolini AG, Clark GM. 2004.. A cochlear implant speech processing strategy based on an auditory model. . In Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, pp. 49196. New York:: IEEE
    [Google Scholar]
  219. 219.
    Mens LH, Berenstein CK. 2005.. Speech perception with mono- and quadrupolar electrode configurations: a crossover study. . Otol. Neurotol. 26:(5):95764
    [Crossref] [Google Scholar]
  220. 220.
    Berenstein CK, Mens LH, Mulder JJ, Vanpoucke FJ. 2008.. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. . Ear Hear. 29:(2):25060
    [Crossref] [Google Scholar]
  221. 221.
    Suesserman MF, Spelman FA. 1993.. Lumped-parameter model for in vivo cochlear stimulation. . IEEE Trans. Biomed. Eng. 40:(3):23745
    [Crossref] [Google Scholar]
  222. 222.
    Miyoshi S, Iida Y, Shimizu S, Matsushima JI, Ifukube T. 1996.. Proposal of a new auditory nerve stimulation method for cochlear prosthesis. . Artif. Organs 20:(8):94146
    [Crossref] [Google Scholar]
  223. 223.
    Miyoshi S, Sakajiri M, Ifukube T, Matsushima J. 1997.. Evaluation of the tripolar electrode stimulation method by numerical analysis and animal experiments for cochlear implants. . In Acta Oto-Laryngol. 117:(Suppl. 532):12325
    [Crossref] [Google Scholar]
  224. 224.
    Kral A, Hartmann R, Mortazavi D, Klinke R. 1998.. Spatial resolution of cochlear implants: The electrical field and excitation of auditory afferents. . Hear. Res. 121:(1–2):1128
    [Crossref] [Google Scholar]
  225. 225.
    Rattay F, Leao RN, Felix H. 2001.. A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. . Hear. Res. 153:(1–2):6479
    [Crossref] [Google Scholar]
  226. 226.
    Bierer JA. 2007.. Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. . J. Acoust. Soc. Am. 121:(3):164253
    [Crossref] [Google Scholar]
  227. 227.
    Bierer JA, Litvak L. 2016.. Reducing channel interaction through cochlear implant programming may improve speech perception: current focusing and channel deactivation. . Trends Hear. 20::2331216516653389
    [Crossref] [Google Scholar]
  228. 228.
    Arenberg JG, Parkinson WS, Litvak L, Chen C, Kreft HA, Oxenham AJ. 2018.. A dynamically focusing cochlear implant strategy can improve vowel identification in noise. . Ear Hear. 39:(6):113645
    [Crossref] [Google Scholar]
  229. 229.
    van den Honert C, Kelsall DC. 2007.. Focused intracochlear electric stimulation with phased array channels. . J. Acoust. Soc. Am. 121:(6):370316
    [Crossref] [Google Scholar]
  230. 230.
    Litvak LM, Spahr AJ, Emadi G. 2007.. Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners. . J. Acoust. Soc. Am. 122:(2):96781
    [Crossref] [Google Scholar]
  231. 231.
    Sit JJ, Simonson AM, Oxenham AJ, Faltys MA, Sarpeshkar R. 2007.. A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information. . IEEE Trans. Biomed. Eng. 54:(1):13849
    [Crossref] [Google Scholar]
  232. 232.
    Nogueira W, Kátai A, Harczos T, Klefenz F, Buechner A, Edler B. 2007.. An auditory model based strategy for cochlear implants. . In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 412730. New York:: IEEE
    [Google Scholar]
  233. 233.
    Baumgarte F. 1999.. A physiological ear model for the emulation of masking. . ORL J. Otorhinolaryngol. Relat. Spec. 61:(5):294304
    [Crossref] [Google Scholar]
  234. 234.
    Meddis R. 1986.. Simulation of mechanical to neural transduction in the auditory receptor. . J. Acoust. Soc. Am. 79:(3):70211
    [Crossref] [Google Scholar]
  235. 235.
    Meddis R, Hewitt MJ, Shackleton TM. 1990.. Implementation details of a computation model of the inner hair-cell/auditory-nerve synapse. . J. Acoust. Soc. Am. 87:(4):181316
    [Crossref] [Google Scholar]
  236. 236.
    Bader P, Kals M, Schatzer R, Griessner A, Zierhofer C. 2013.. Compensation for channel interaction in a simultaneous cochlear implant coding strategy. . J. Acoust. Soc. Am. 133:(6):412432
    [Crossref] [Google Scholar]
  237. 237.
    Schatzer R, Koroleva I, Griessner A, Levin S, Kusovkov V, et al. 2015.. Speech perception with interaction-compensated simultaneous stimulation and long pulse durations in cochlear implant users. . Hear. Res. 322::99106
    [Crossref] [Google Scholar]
  238. 238.
    Kim KH, Choi SJ, Kim JH, Kim DH. 2009.. An improved speech processing strategy for cochlear implants based on an active nonlinear filterbank model of the biological cochlea. . IEEE Trans. Biomed. Eng. 56:(3):82836
    [Crossref] [Google Scholar]
  239. 239.
    Lopez-Poveda EA, Meddis R. 2001.. A human nonlinear cochlear filterbank. . J. Acoust. Soc. Am. 110:(6):310718
    [Crossref] [Google Scholar]
  240. 240.
    Taft DA, Grayden DB, Burkitt AN. 2010.. Across-frequency delays based on the cochlear traveling wave: enhanced speech presentation for cochlear implants. . IEEE Trans. Biomed. Eng. 57:(3):596606
    [Crossref] [Google Scholar]
  241. 241.
    Babacan O. 2010.. Implementation of a neurophsiology-based coding strategy for the cochlear implant. PhD Thesis , University of Zurich
    [Google Scholar]
  242. 242.
    Liu H, Wang W, Li K, Zhang Z. 2012.. A novel speech coding algorithm for cochlear implants. . In 2012 5th International Conference on Biomedical Engineering and Informatics, pp. 4036. New York:: IEEE
    [Google Scholar]
  243. 243.
    Zhou N, Pfingst BE. 2012.. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. . J. Acoust. Soc. Am. 132:(2):9941008
    [Crossref] [Google Scholar]
  244. 244.
    Noble JH, Labadie RF, Gifford RH, Dawant BM. 2013.. Image-guidance enables new methods for customizing cochlear implant stimulation strategies. . IEEE Trans. Neural Syst. Rehabil. Eng. 21:(5):82029
    [Crossref] [Google Scholar]
  245. 245.
    Noble JH, Gifford RH, Hedley-Williams AJ, Dawant BM, Labadie RF. 2014.. Clinical evaluation of an image-guided cochlear implant programming strategy. . Audiol. Neurotol. 19:(6):40011
    [Crossref] [Google Scholar]
  246. 246.
    Harczos T, Chilian A, Husar P. 2013.. Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: the SAM coding strategy. . IEEE Trans. Biomed. Circuits Syst. 7:(4):41425
    [Crossref] [Google Scholar]
  247. 247.
    Harczos T, Chilian A, Kátai A, Klefenz F, Baljić I, et al. 2013.. Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: first results with the SAM coding strategy. . IEEE Trans. Biomed. Circuits Syst. 7:(4):31724
    [Crossref] [Google Scholar]
  248. 248.
    Koning R, Wouters J. 2016.. Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users. . Hear. Res. 342::1322
    [Crossref] [Google Scholar]
  249. 249.
    Delgutte B. 1997.. Auditory neural processing of speech. . In The Handbook of Phonetic Sciences, ed. WJ Hardcastle, J Laver , pp. 50738. Oxford, UK:: Blackwell
    [Google Scholar]
  250. 250.
    Lai WK, Dillier N, Killian M. 2018.. A neural excitability based coding strategy for cochlear implants. . J. Biomed. Sci. Eng. 11:(7):15981
    [Crossref] [Google Scholar]
  251. 251.
    De Jong MA, Briaire JJ, Frijns JH. 2019.. Dynamic current focusing: a novel approach to loudness coding in cochlear implants. . Ear Hear. 40:(1):3444
    [Crossref] [Google Scholar]
  252. 252.
    de Jong MA, Briaire JJ, van der Woude SF, Frijns JH. 2019.. Dynamic current focusing for loudness encoding in cochlear implants: a take-home trial. . Int. J. Audiol. 58:(9):55364
    [Crossref] [Google Scholar]
  253. 253.
    Van Groesen NRA, Briaire JJ, De Jong MAM, Frijns JHM. 2023.. Dynamic current focusing compared to monopolar stimulation in a take-home trial of cochlear implant users. . Ear Hear. 44:(2):30617
    [Crossref] [Google Scholar]
  254. 254.
    Tabibi S, Kegel A, Lai WK, Dillier N. 2020.. A bio-inspired coding (BIC) strategy for cochlear implants. . Hear. Res. 388::107885
    [Crossref] [Google Scholar]
  255. 255.
    Bolner F, Magits S, van Dijk B, Wouters J. 2020.. Precompensating for spread of excitation in a cochlear implant coding strategy. . Hear. Res. 395::107977
    [Crossref] [Google Scholar]
  256. 256.
    Lamping W, Goehring T, Marozeau J, Carlyon RP. 2020.. The effect of a coding strategy that removes temporally masked pulses on speech perception by cochlear implant users. . Hear. Res. 391::107969
    [Crossref] [Google Scholar]
  257. 257.
    Luo X, Wu CC, Pulling K. 2021.. Combining current focusing and steering in a cochlear implant processing strategy. . Int. J. Audiol. 60:(3):23237
    [Crossref] [Google Scholar]
  258. 258.
    Wu CC, Luo X. 2013.. Current steering with partial tripolar stimulation mode in cochlear implants. . J. Assoc. Res. Otolaryngol. 14:(2):21331
    [Crossref] [Google Scholar]
  259. 259.
    Wu CC, Luo X. 2016.. Excitation patterns of standard and steered partial tripolar stimuli in cochlear implants. . J. Assoc. Res. Otolaryngol. 17:(2):14558
    [Crossref] [Google Scholar]
  260. 260.
    Kludt E, Nogueira W, Lenarz T, Buechner A. 2021.. A sound coding strategy based on a temporal masking model for cochlear implants. . PLOS ONE 16:(1):e0244433
    [Crossref] [Google Scholar]
  261. 261.
    Seeber BU. 2022.. Neural model based sound coding for cochlear implants. Presented at 19th International Symposium on Hearing, Lyon, Fr:.
    [Google Scholar]
  262. 262.
    Takanen M, Seeber BU. 2022.. A phenomenological model reproducing temporal response characteristics of an electrically stimulated auditory nerve fiber. . Trends Hear. 26::23312165221117079
    [Crossref] [Google Scholar]
  263. 263.
    McCulloch WS, Pitts W. 1943.. A logical calculus of the ideas immanent in nervous activity. . Bull. Math. Biophys. 5:(4):11533
    [Crossref] [Google Scholar]
  264. 264.
    Beck DL. 2015.. Brain hearing: maximizing hearing and listening. . Hear. Rev. 21:(3):2023
    [Google Scholar]
  265. 265.
    Zadák J, Unbehauen R. 1993.. An application of mapping neural networks and a digital signal processor for cochlear neuroprostheses. . Biol. Cybernet. 68:(6):54552
    [Crossref] [Google Scholar]
  266. 266.
    Leisenberg M. 1995.. Unsupervised neural networks for speech perception with cochlear implant systems for the profoundly deaf. . In From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks, Vol. 930, pp. 46270. Berlin:: Springer
    [Google Scholar]
  267. 267.
    Hermansky H. 1990.. Perceptual linear predictive (PLP) analysis of speech. . J. Acoust. Soc. Am. 87:(4):173852
    [Crossref] [Google Scholar]
  268. 268.
    Chang CH, Anderson GT, Loizou PC. 2001.. A neural network model for optimizing vowel recognition by cochlear implant listeners. . IEEE Trans. Neural Syst. Rehabil. Eng. 9:(1):4248
    [Crossref] [Google Scholar]
  269. 269.
    Lan N, Nie KB, Gao SK, Zeng FG. 2004.. A novel speech-processing strategy incorporating tonal information for cochlear implants. . IEEE Trans. Biomed. Eng. 51:(5):75260
    [Crossref] [Google Scholar]
  270. 270.
    Hu Y, Loizou PC. 2010.. Environment-specific noise suppression for improved speech intelligibility by cochlear implant users. . J. Acoust. Soc. Am. 127:(6):368995
    [Crossref] [Google Scholar]
  271. 271.
    Hazrati O, Sadjadi SO, Hansen JH. 2014.. Robust and efficient environment detection for adaptive speech enhancement in cochlear implants. . In IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 900904. New York:: IEEE
    [Google Scholar]
  272. 272.
    Healy E, Yoho S, Chen J, Wang Y, Wang D. 2015.. An algorithm to increase speech intelligibility for hearing-impaired listeners in novel segments of the same noise type. . J. Acoust. Soc. Am. 138:(3):166069
    [Crossref] [Google Scholar]
  273. 273.
    Chen J, Wang Y, Yoho SE, Wang D, Healy EW. 2016.. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises. . J. Acoust. Soc. Am. 139:(5):260412
    [Crossref] [Google Scholar]
  274. 274.
    Nogueira W, Gajecki T, Krüger B, Janer J, Büchner A. 2016.. Development of a sound coding strategy based on a deep recurrent neural network for monaural source separation in cochlear implants. . In Speech Communication: 12th ITG Symp., pp. 15559. New York:: IEEE
    [Google Scholar]
  275. 275.
    Huang PS, Kim M, Hasegawa-Johnson M, Smaragdis P. 2014.. Deep learning for monaural speech separation. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 156266. New York:: IEEE
    [Google Scholar]
  276. 276.
    Bolner F, Goehring T, Monaghan J, Van Dijk B, Wouters J, Bleeck S. 2016.. Speech enhancement based on neural networks applied to cochlear implant coding strategies. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 652024. New York:: IEEE
    [Google Scholar]
  277. 277.
    Goehring T, Bolner F, Monaghan JJ, van Dijk B, Zarowski A, Bleeck S. 2017.. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. . Hear. Res. 344::18394
    [Crossref] [Google Scholar]
  278. 278.
    Drossos K, Magron P, Mimilakis SI, Virtanen T. 2018.. Harmonic-percussive source separation with deep neural networks and phase recovery. . In 16th International Workshop on Acoustic Signal Enhancement (IWAENC), pp. 42125. New York:: IEEE
    [Google Scholar]
  279. 279.
    Lai YH, Chen F, Wang SS, Lu X, Tsao Y, Lee CH. 2017.. A deep denoising autoencoder approach to improving the intelligibility of vocoded speech in cochlear implant simulation. . IEEE Trans. Biomed. Eng. 64:(7):156878
    [Crossref] [Google Scholar]
  280. 280.
    Wang SS, Tsao Y, Wang HLS, Lai YH, Li LPH. 2017.. A deep learning based noise reduction approach to improve speech intelligibility for cochlear implant recipients in the presence of competing speech noise. . In Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 80812. New York:: IEEE
    [Google Scholar]
  281. 281.
    Lai YH, Tsao Y, Lu X, Chen F, Su YT, et al. 2018.. Deep learning-based noise reduction approach to improve speech intelligibility for cochlear implant recipients. . Ear Hear. 39:(4):795809
    [Crossref] [Google Scholar]
  282. 282.
    Lu X, Tsao Y, Matsuda S, Hori C. 2013.. Speech enhancement based on deep denoising autoencoder. . In Proceedings of the Annual Conference of the International Speech Communication Association, pp. 43640. Grenoble, Fr:.: ISCA
    [Google Scholar]
  283. 283.
    Hajiaghababa F, Marateb HR, Kermani S. 2018.. The design and validation of a hybrid digital-signal-processing plug-in for traditional cochlear implant speech processors. . Comput. Methods Programs Biomed. 159::1039
    [Crossref] [Google Scholar]
  284. 284.
    Hajiaghababa F, Abutalebi HR. 2024.. A wavelet network-based speech enhancement system using noisy-as-clean strategy. . Int. J. Wavelets Multiresolut. Inf. Process. 22:(1):2350033
    [Crossref] [Google Scholar]
  285. 285.
    Goehring T, Keshavarzi M, Carlyon RP, Moore BCJ. 2019.. Using recurrent neural networks to improve the perception of speech in non-stationary noise by people with cochlear implants. . J. Acoust. Soc. Am. 146:(1):70518
    [Crossref] [Google Scholar]
  286. 286.
    Hochreiter S, Schmidhuber J. 1997.. Long short-term memory. . Neural Comput. 9:(8):173580
    [Crossref] [Google Scholar]
  287. 287.
    Mamun N, Khorram S, Hansen JH. 2019.. Convolutional neural network-based speech enhancement for cochlear implant recipients. . In Proceedings of the Annual Conference of the International Speech Communication Association, pp. 426569. Grenoble, Fr:.: ISCA
    [Google Scholar]
  288. 288.
    Hennequin R, Khlif A, Voituret F, Moussallam M. 2020.. Spleeter: a fast and efficient music source separation tool with pre-trained models. . J. Open Source Softw. 5:(50):2154
    [Crossref] [Google Scholar]
  289. 289.
    Tahmasebi S, Gajecki T, Nogueira W. 2020.. Design and evaluation of a real-time audio source separation algorithm to remix music for cochlear implant users. . Front. Neurosci. 14::434
    [Crossref] [Google Scholar]
  290. 290.
    Panchal G, Ganatra A, Kosta YP, Panchal D. 2011.. Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. . Int. J. Comput. Theory Eng. 3:(2):33237
    [Crossref] [Google Scholar]
  291. 291.
    Zheng N, Shi Y, Kang Y, Meng Q. 2021.. A noise-robust signal processing strategy for cochlear implants using neural networks. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 834347. New York:: IEEE
    [Google Scholar]
  292. 292.
    Gauer J, Nagathil A, Eckel K, Belomestny D, Martin R. 2022.. A versatile deep-neural-network-based music preprocessing and remixing scheme for cochlear implant listeners. . J. Acoust. Soc. Am. 151:(5):297586
    [Crossref] [Google Scholar]
  293. 293.
    Gajecki T, Nogueira W. 2022.. An end-to-end deep learning speech coding and denoising strategy for cochlear implants. . In Proceedings of ICASSP, the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 310913. New York:: IEEE
    [Google Scholar]
  294. 294.
    Gajecki T, Zhang Y, Nogueira W. 2023.. A deep denoising sound coding strategy for cochlear implants. . IEEE Trans. Biomed. Eng. 70:(9):27009
    [Crossref] [Google Scholar]
  295. 295.
    Luo Y, Mesgarani N. 2019.. Conv-TasNet: surpassing ideal time-frequency magnitude masking for speech separation. . IEEE/ACM Trans. Audio Speech Lang. Process. 27:(8):125666
    [Crossref] [Google Scholar]
  296. 296.
    Seeber B. 2022.. Machine learning-based sound coding for cochlear implants. Presented at Fortschritte der Akustik–DAGA'22, Stuttgart, Ger:.
    [Google Scholar]
  297. 297.
    Huang EHH, Hung K, Tsao Y, Wu CM. 2019.. ElectrodeNet—artificial intelligence based sound coding strategy for cochlear implants. . In Proceedings of the 12th Asia Pacific Symposium on Cochlear Implants and Related Sciences, pp. 25. Basel, Switz:.: Karger
    [Google Scholar]
  298. 298.
    Huang EHH, Chao R, Tsao Y, Wu CM. 2023.. ElectrodeNet—a deep-learning-based sound coding strategy for cochlear implants. . IEEE Trans. Cogn. Dev. Syst. 16:(1):34657
    [Crossref] [Google Scholar]
  299. 299.
    Mamun N, Hansen JHL. 2024.. Speech enhancement for cochlear implant recipients using deep complex convolution transformer with frequency transformation. . IEEE/ACM Trans. Audio Speech Lang. Proc. 32::261629
    [Crossref] [Google Scholar]
  300. 300.
    Borjigin A, Kokkinakis K, Bharadwaj HM, Stohl JS. 2024.. Deep learning restores speech intelligibility in multi-talker interference for cochlear implant users. . Sci. Rep. 14:(1):13241
    [Crossref] [Google Scholar]
  301. 301.
    Gajecki T, Nogueira W. 2024.. A fused deep denoising sound coding strategy for bilateral cochlear implants. . IEEE Trans. Biomed. Eng. 71:(7):223442
    [Crossref] [Google Scholar]
  302. 302.
    van Hoesel RJM, Tyler RS. 2003.. Speech perception, localization, and lateralization with bilateral cochlear implants. . J. Acoust. Soc. Am. 113:(3):161730
    [Crossref] [Google Scholar]
  303. 303.
    van Hoesel RJM. 2008.. Observer weighting of level and timing cues in bilateral cochlear implant users. . J. Acoust. Soc. Am. 124:(6):386172
    [Crossref] [Google Scholar]
  304. 304.
    Francart T, Lenssen A, Wouters J. 2014.. Modulation enhancement in the electrical signal improves perception of interaural time differences with bimodal stimulation. . J. Assoc. Res. Otolaryngol. 15:(4):63347
    [Crossref] [Google Scholar]
  305. 305.
    Lopez-Poveda EA, Eustaquio-Martín A, Stohl JS, Wolford RD, Schatzer R, Wilson BS. 2016.. A binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. . Ear Hear. 37:(3):e13848
    [Crossref] [Google Scholar]
  306. 306.
    Lopez-Poveda EA, Eustaquio-Martín A, Stohl JS, Wolford RD, Schatzer R, et al. 2017.. Intelligibility in speech maskers with a binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. . Hear. Res. 348::13437
    [Crossref] [Google Scholar]
  307. 307.
    Lopez-Poveda EA, Eustaquio-Martín A. 2018.. Objective speech transmission improvements with a binaural cochlear implant sound-coding strategy inspired by the contralateral medial olivocochlear reflex. . J. Acoust. Soc. Am. 143:(4):221731
    [Crossref] [Google Scholar]
  308. 308.
    Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Stohl JS, Schatzer R, et al. 2019.. Lateralization of virtual sound sources with a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. . Hear. Res. 379::10316
    [Crossref] [Google Scholar]
  309. 309.
    Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Gorospe JM, Polo López R, et al. 2020.. Speech-in-noise recognition with more realistic implementations of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. . Ear Hear. 41:(6):1492510
    [Crossref] [Google Scholar]
  310. 310.
    Marrufo-Perez MI, Araquistain-Serrat L, Eustaquio-Martín A, Lopez-Poveda EA. 2021.. On the importance of interaural noise coherence and the medial olivocochlear reflex for binaural unmasking in free-field listening. . Hear. Res. 405::108246
    [Crossref] [Google Scholar]
  311. 311.
    Fumero MJ, Eustaquio-Martín A, Gorospe JM, Polo López R, Gutiérrez Revilla MA, et al. 2021.. A state-of-the-art implementation of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. . Hear. Res. 409::108320
    [Crossref] [Google Scholar]
  312. 312.
    Williges B, Jürgens T, Hu H, Dietz M. 2018.. Coherent coding of enhanced interaural cues improves sound localization in noise with bilateral cochlear implants. . Trends Hear. 22::2331216518781746
    [Crossref] [Google Scholar]
  313. 313.
    Thakkar T, Kan A, Jones HG, Litovsky RY. 2018.. Mixed stimulation rates to improve sensitivity of interaural timing differences in bilateral cochlear implant listeners. . J. Acoust. Soc. Am. 143:(3):142840
    [Crossref] [Google Scholar]
  314. 314.
    Thakkar T, Kan A, Litovsky RY. 2023.. Lateralization of interaural time differences with mixed rates of stimulation in bilateral cochlear implant listeners. . J. Acoust. Soc. Am. 153:(3):191223
    [Crossref] [Google Scholar]
  315. 315.
    Dennison SR, Thakkar T, Kan A, Svirsky MA, Azadpour M, Litovsky RY. 2024.. A mixed-rate strategy on a bilaterally-synchronized cochlear implant processor offering the opportunity to provide both speech understanding and interaural time difference cues. . J. Clin. Med. 13:(7):1917
    [Crossref] [Google Scholar]
  316. 316.
    Gajecki T, Nogueira W. 2018.. A synchronized binaural N-of-M sound coding strategy for bilateral cochlear implant users. . In Speech Communication, 13th ITG Symposium, Oldlenburg, Ger. , pp. 15. Berlin:: VDE
    [Google Scholar]
  317. 317.
    Gajecki T, Nogueira W. 2020.. The effect of synchronized linked band selection on speech intelligibility of bilateral cochlear implant users. . Hear. Res. 396::108051
    [Crossref] [Google Scholar]
  318. 318.
    Gajecki T, Nogueira W. 2021.. Enhancement of interaural level differences for bilateral cochlear implant users. . Hear. Res. 409::108313
    [Crossref] [Google Scholar]
  319. 319.
    Meng Q, Wang X, Zheng N, Schnupp JW, Kan A. 2020.. Binaural hearing measured with the temporal limits encoder using a vocoder simulation of cochlear implants. . Acoust. Sci. Technol. 41:(1):20913
    [Crossref] [Google Scholar]
  320. 320.
    Kan A, Meng Q. 2021.. The temporal limits encoder as a sound coding strategy for bilateral cochlear implants. . IEEE/ACM Trans. Audio Speech Lang. Process. 29::26573
    [Crossref] [Google Scholar]
  321. 321.
    Wohlbauer DM, Lai WK, Dillier N. 2023.. InterlACE sound coding for unilateral and bilateral cochlear implants. . IEEE Trans. Biomed. Eng. 71:(3):90415
    [Crossref] [Google Scholar]
  322. 322.
    van Hoesel R, Tong YC, Hollow RD, Huigen JM, Clark GM. 1990.. Preliminary studies on a bilateral cochlear implant user. . J. Acoust. Soc. Am. 88:(S1):S193
    [Crossref] [Google Scholar]
  323. 323.
    van Hoesel RJ, Tong YC, Hollow RD, Clark GM. 1993.. Psychophysical and speech perception studies: a case report on a binaural cochlear implant subject. . J. Acoust. Soc. Am. 94:(6):317889
    [Crossref] [Google Scholar]
  324. 324.
    van Hoesel RJ, Clark GM. 1999.. Speech results with a bilateral multichannel cochlear implant subject for spatially separated signal and noise. . Aust. J. Audiol. 21:(1):2328
    [Google Scholar]
  325. 325.
    Tyler RS, Dunn CC, Witt SA, Preece JP. 2003.. Update on bilateral cochlear implantation. . Curr. Opin. Otolaryngol. Head Neck Surg. 11:(5):38893
    [Crossref] [Google Scholar]
  326. 326.
    van Hoesel RJM. 2004.. Exploring the benefits of bilateral cochlear implants. . Audiol. Neurotol. 9::23446
    [Crossref] [Google Scholar]
  327. 327.
    Litovsky RY, Parkinson A, Arcaroli J. 2009.. Spatial hearing and speech intelligibility in bilateral cochlear implant users. . Ear Hear. 30:(4):41931
    [Crossref] [Google Scholar]
  328. 328.
    Loizou PC, Hu Y, Litovsky RY, Yu G, Peters R, et al. 2009.. Speech recognition by bilateral cochlear implant users in a cocktail-party setting. . J. Acoust. Soc. Am. 125:(1):37283
    [Crossref] [Google Scholar]
  329. 329.
    van Hoesel R. 2011.. Bilateral cochlear implants. . In Auditory Prostheses, Vol. 39, ed. FG Zeng, A Popper, R Fay , pp. 1357. New York:: Springer
    [Google Scholar]
  330. 330.
    Moore BC. 2022.. Listening to music through hearing aids: potential lessons for cochlear implants. . Trends Hear. 26::23312165211072969
    [Crossref] [Google Scholar]
  331. 331.
    von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, et al. 1999.. Electric-acoustic stimulation of the auditory system. . ORL J. Otorhinolaryngol. Relat. Spec. 61:(6):33440
    [Crossref] [Google Scholar]
  332. 332.
    Dorman MF, Spahr AJ, Loizou PC, Dana CJ, Schmidt JS. 2005.. Acoustic simulations of combined electric and acoustic hearing (EAS). . Ear Hear. 26:(4):37180
    [Crossref] [Google Scholar]
  333. 333.
    Kiefer J, Pok M, Adunka O, Stürzebecher E, Baumgartner W, et al. 2005.. Combined electric and acoustic stimulation of the auditory system: results of a clinical study. . Audiol. Neurotol. 10:(3):13444
    [Crossref] [Google Scholar]
  334. 334.
    Gstoettner WK, Van De Heyning P, Fitzgerald O'Connor A, Morera C, Sainz M, et al. 2008.. Electric acoustic stimulation of the auditory system: results of a multi-centre investigation. . Acta Oto-Laryngol. 128:(9):96875
    [Crossref] [Google Scholar]
  335. 335.
    Von Ilberg CA, Baumann U, Kiefer J, Tillein J, Adunka OF. 2011.. Electric-acoustic stimulation of the auditory system: a review of the first decade. . Audiol. Neurotol. 16:(Suppl. 2):130
    [Crossref] [Google Scholar]
  336. 336.
    Hernandez V, Gehrt A, Reuter K, Jing Z, Jeschke M, et al. 2014.. Optogenetic stimulation of the auditory nerve. . J. Visualized Exp. 124:(3):111429
    [Google Scholar]
  337. 337.
    Moser T. 2015.. Optogenetic stimulation of the auditory pathway for research and future prosthetics. . Curr. Opin. Neurobiol. 34::2936
    [Crossref] [Google Scholar]
  338. 338.
    Keppeler D, Merino RM, Lopez de la Morena D, Bali B, Huet AT, et al. 2018.. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. . EMBO J. 37:(24):e99649
    [Crossref] [Google Scholar]
  339. 339.
    Mager T, de la Morena DL, Senn V, Schlotte J, Derrico A, et al. 2018.. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. . Nat. Commun. 9::1750
    [Crossref] [Google Scholar]
  340. 340.
    Wrobel C, Dieter A, Huet A, Keppeler D, Duque-Afonso CJ, et al. 2018.. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. . Sci. Transl. Med. 10:(449):eaao0540
    [Crossref] [Google Scholar]
  341. 341.
    Dombrowski T, Rankovic V, Moser T. 2019.. Toward the optical cochlear implant. . Cold Spring Harb. Perspect. Med. 9:(8):a033225
    [Crossref] [Google Scholar]
  342. 342.
    Dieter A, Keppeler D, Moser T. 2020.. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. . EMBO Mol. Med. 12:(4):e11618
    [Crossref] [Google Scholar]
  343. 343.
    Thompson AC, Wise AK, Hart WL, Needham K, Fallon JB, et al. 2020.. Hybrid optogenetic and electrical stimulation for greater spatial resolution and temporal fidelity of cochlear activation. . J. Neural Eng. 17:(5):56046
    [Crossref] [Google Scholar]
  344. 344.
    Trevlakis SE, Boulogeorgos AAA, Chatzidiamantis ND, Karagiannidis GK. 2020.. All-optical cochlear implants. . IEEE Trans. Mol. Biol. Multiscale Commun. 6:(1):1324
    [Crossref] [Google Scholar]
  345. 345.
    Khurana L, Harczos T, Moser T, Jablonski L. 2023.. En route to sound coding strategy for optical cochlear implants. . iScience 26::107725
    [Crossref] [Google Scholar]
  346. 346.
    Huet A, Mager T, Gossler C, Moser T. 2024.. Toward optogenetic hearing restoration. . Annu. Rev. Neurosci. 47::10321
    [Crossref] [Google Scholar]
  347. 347.
    Moser T, Chen H, Kusch K, Behr R, Vona B. 2024.. Gene therapy for deafness: Are we there now?. EMBO Mol. Med. 16:(4):67577
    [Crossref] [Google Scholar]
  348. 348.
    Mukesh S, Blake DT, McKinnon BJ, Bhatti PT. 2017.. Modeling intracochlear magnetic stimulation: a finite-element analysis. . IEEE Trans. Neural Syst. Rehabil. Eng. 25:(8):135362
    [Crossref] [Google Scholar]
  349. 349.
    Lee JI, Seist R, McInturff S, Lee DJ, Brown MC, et al. 2022.. Magnetic stimulation allows focal activation of the mouse cochlea. . eLife 11::e76682
    [Crossref] [Google Scholar]
  350. 350.
    An SK, Park SI, Jun SB, Lee CJ, Byun KM, et al. 2007.. Design for a simplified cochlear implant system. . IEEE Trans. Biomed. Eng. 54:(6):97382
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-102623-121249
Loading
/content/journals/10.1146/annurev-bioeng-102623-121249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error