1932

Abstract

Preclinical modeling of human circulation has been instrumental in advancing cardiovascular medicine. Alongside clinical research, the armamentarium of computational (e.g., lumped parameter or computational fluid dynamics) and experimental (e.g., benchtop or animal) models have substantially enhanced our understanding of risk factors and root causes for circulatory diseases. Recent innovations are further disrupting the boundaries of these preclinical models toward patient-specific simulations, surgical planning, and postoperative outcome prediction. This fast-paced progress empowers preclinical modeling to increasingly delve into the intricacies of single ventricle physiology, a rare and heterogeneous congenital heart disease that remains inadequately understood. Here, we review the current landscape of preclinical modeling (computational and experimental) proposed to advance clinical management of a prominent yet complex subset of single ventricle physiology: patients who have undergone Fontan-type surgical corrections. Further, we explore recent innovations and emerging technologies that are poised to bridge the gap between preclinical Fontan modeling and clinical implementation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-102723-013709
2025-05-01
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-102723-013709.html?itemId=/content/journals/10.1146/annurev-bioeng-102723-013709&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Elder RW, McCabe NM, Veledar E, Kogon BE, Jokhadar M, et al. 2015.. Risk factors for major adverse events late after Fontan palliation. . Congenit. Heart Dis. 10:(2):15968
    [Crossref] [Google Scholar]
  2. 2.
    Gewillig M. 2005.. The Fontan circulation. . Heart 91:(6):83946
    [Crossref] [Google Scholar]
  3. 3.
    Gewillig M, Brown SC. 2016.. The Fontan circulation after 45 years: update in physiology. . Heart 102:(14):108186
    [Crossref] [Google Scholar]
  4. 4.
    D'udekem Y, Iyengar AJ, Cochrane AD, Grigg LE, Ramsay JM, et al. 2007.. The Fontan procedure: contemporary techniques have improved long-term outcomes. . Circulation 116:(11):I15764
    [Google Scholar]
  5. 5.
    Schilling C, Dalziel K, Nunn R, Du Plessis K, Shi WY, et al. 2016.. The Fontan epidemic: population projections from the Australia and New Zealand Fontan Registry. . Int. J. Cardiol. 219::1419
    [Crossref] [Google Scholar]
  6. 6.
    DeGroff CG. 2008.. Modeling the Fontan circulation: where we are and where we need to go. . Pediatr. Cardiol. 29:(1):312
    [Crossref] [Google Scholar]
  7. 7.
    de Zélicourt DA, Marsden A, Fogel MA, Yoganathan AP. 2010.. Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. . Prog. Pediatr. Cardiol. 30:(1–2):3144
    [Crossref] [Google Scholar]
  8. 8.
    de Zélicourt DA, Kurtcuoglu V. 2016.. Patient-specific surgical planning, where do we stand? The example of the Fontan procedure. . Ann. Biomed. Eng. 44:(1):17486
    [Crossref] [Google Scholar]
  9. 9.
    Trusty PM, Slesnick TC, Wei ZA, Rossignac J, Kanter KR, et al. 2018.. Fontan surgical planning: previous accomplishments, current challenges, and future directions. . J. Cardiovasc. Transl. Res. 11:(2):13344
    [Crossref] [Google Scholar]
  10. 10.
    Granegger M, Valencia A, Quandt D, Dave H, Kretschmar O, et al. 2019.. Approaches to establish extracardiac total cavopulmonary connections in animal models—a review. . World J. Pediatr. Congenit. Heart Surg. 10:(1):8189
    [Crossref] [Google Scholar]
  11. 11.
    Wei ZA, Fogel MA. 2021.. Engineering perspective on cardiovascular simulations of Fontan hemodynamics: where do we stand with a look towards clinical application. . Cardiovasc. Eng. Technol. 12:(6):61830
    [Crossref] [Google Scholar]
  12. 12.
    Kung E, Marsden A. 2022.. Fontan surgery and fluid dynamics. . In Modelling Congenital Heart Disease, G Butera, S Schievano, G Biglino, DB McElhinney , eds., pp. 13948. Cham, Switz:.: Springer
    [Google Scholar]
  13. 13.
    Rosalia L, Ozturk C, Van Story D, Horvath MA, Roche ET. 2021.. Object-oriented lumped-parameter modeling of the cardiovascular system for physiological and pathophysiological conditions. . Adv. Theory Simul. 4:(3):2000216
    [Crossref] [Google Scholar]
  14. 14.
    Kung E, Pennati G, Migliavacca F, Hsia TY, Figliola R, et al. 2014.. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. . J. Biomech. Eng. 136:(8):081007
    [Crossref] [Google Scholar]
  15. 15.
    Ahmad Z, Jin LH, Penny DJ, Rusin CG, Peskin CS, Puelz C. 2022.. Optimal fenestration of the Fontan circulation. . Front. Physiol. 13::867995
    [Crossref] [Google Scholar]
  16. 16.
    Abbasi Bavil E, Doyle MG, Debbaut C, Wald RM, Mertens L, et al. 2021.. Calibration of an electrical analog model of liver hemodynamics in Fontan patients. . J. Biomech. Eng. 143:(3):3101112
    [Crossref] [Google Scholar]
  17. 17.
    Granegger M, Schweiger M, Schmid Daners M, Meboldt M, Hübler M. 2018.. Cavopulmonary mechanical circulatory support in Fontan patients and the need for physiologic control: a computational study with a closed-loop exercise model. . Int. J. Artif. Organs 41:(5):26168
    [Crossref] [Google Scholar]
  18. 18.
    Puelz C, Acosta S, Rivière B, Penny DJ, Brady KM, Rusin CG. 2017.. A computational study of the Fontan circulation with fenestration or hepatic vein exclusion. . Comput. Biol. Med. 89::40518
    [Crossref] [Google Scholar]
  19. 19.
    Di Molfetta A, Amodeo A, Fresiello L, Trivella MG, Iacobelli R, et al. 2015.. Simulation of ventricular, cavo-pulmonary, and biventricular ventricular assist devices in failing Fontan. . Artif. Organs 39:(7):55058
    [Crossref] [Google Scholar]
  20. 20.
    KrishnankuttyRema R, Dasi LP, Pekkan K, Sundareswaran K, Fogel M, et al. 2008.. Quantitative analysis of extracardiac versus intraatrial Fontan anatomic geometries. . Ann. Thorac. Surg. 85:(3):81017
    [Crossref] [Google Scholar]
  21. 21.
    Karner B, Escher A, Schorn T, Narayanaswamy K, Sachweh J, et al. 2023.. Anatomical compliance of cavopulmonary assist device designs: a virtual fitting study in Fontan patients. . ASAIO J. 69:(11):101624
    [Crossref] [Google Scholar]
  22. 22.
    Lin WCP, Doyle MG, Roche SL, Honjo O, Forbes TL, Amon CH. 2019.. Computational fluid dynamic simulations of a cavopulmonary assist device for failing Fontan circulation. . J. Thorac. Cardiovasc. Surg. 158:(5):142433.e5
    [Crossref] [Google Scholar]
  23. 23.
    Delorme Y, Anupindi K, Kerlo AE, Shetty D, Rodefeld M, et al. 2013.. Large eddy simulation of powered Fontan hemodynamics. . J. Biomech. 46:(2):40822
    [Crossref] [Google Scholar]
  24. 24.
    Sinha P, Contento J, Kim B, Wang K, Wu Q, et al. 2023.. The convergent cavopulmonary connection: a novel and efficient configuration of Fontan to accommodate mechanical support. . JTCVS Open 13::32029
    [Crossref] [Google Scholar]
  25. 25.
    Yang W, Feinstein JA, Marsden AL. 2010.. Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. . Comput. Methods Appl. Mech. Eng. 199:(33–36):213549
    [Crossref] [Google Scholar]
  26. 26.
    Marsden AL, Bernstein AJ, Reddy VM, Shadden SC, Spilker RL, et al. 2009.. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. . J. Thorac. Cardiovasc. Surg. 137:(2):394403.e2
    [Crossref] [Google Scholar]
  27. 27.
    Frieberg P, Aristokleous N, Sjöberg P, Töger J, Liuba P, Carlsson M. 2022.. Computational fluid dynamics support for Fontan planning in minutes, not hours: the next step in clinical pre-interventional simulations. . J. Cardiovasc. Transl. Res. 15:(4):70820
    [Crossref] [Google Scholar]
  28. 28.
    Hsia TY, Conover T, Figliola R. 2020.. Computational modeling to support surgical decision making in single ventricle physiology. . Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 23::210
    [Crossref] [Google Scholar]
  29. 29.
    Slesnick TC. 2017.. Role of computational modelling in planning and executing interventional procedures for congenital heart disease. . Can. J. Cardiol. 33:(9):115970
    [Crossref] [Google Scholar]
  30. 30.
    Fogel MA, Khiabani RH, Yoganathan A. 2013.. Imaging for preintervention planning pre- and post-Fontan procedures. . Circ. Cardiovasc. Imaging 6:(6):1092101
    [Crossref] [Google Scholar]
  31. 31.
    Marsden AL, Vignon-Clementel IE, Chan FP, Feinstein JA, Taylor CA. 2007.. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. . Ann. Biomed. Eng. 35:(2):25063
    [Crossref] [Google Scholar]
  32. 32.
    Baretta A, Corsini C, Marsden AL, Vignon-Clementel IE, Hsia TY, et al. 2012.. Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions. . Eur. J. Mech. B Fluids 35::6169
    [Crossref] [Google Scholar]
  33. 33.
    Horvath M, van Story D, Rosalia L, Starr B, Jiang M, et al. 2023.. Recapitulation of single ventricle haemodynamics and associated interplay with breathing mechanics using clinically validated multimodal simulators. . Prepr., Research Square. https://doi.org/10.21203/rs.3.rs-3002053/v1
    [Google Scholar]
  34. 34.
    Menon S, Chennapragada M, Ugaki S, Sholler GF, Ayer J, Winlaw DS. 2017.. The lymphatic circulation in adaptations to the Fontan circulation. . Pediatr. Cardiol. 38:(5):88692
    [Crossref] [Google Scholar]
  35. 35.
    Shi Y, Yang H. 2019.. Mock circulatory test rigs for the in vitro testing of artificial cardiovascular organs. . J. Med. Eng. Technol. 43:(4):22334
    [Crossref] [Google Scholar]
  36. 36.
    Biglino G, Giardini A, Baker C, Figliola RS, Hsia TY, et al. 2013.. Implementing the Sano modification in an experimental model of first-stage palliation of hypoplastic left heart syndrome. . ASAIO J. 59:(1):8689
    [Crossref] [Google Scholar]
  37. 37.
    Figliola RS, Giardini A, Conover T, Camp TA, Biglino G, et al. 2010.. In vitro simulation and validation of the circulation with congenital heart defects. . Prog. Pediatr. Cardiol. 30:(1–2):7180
    [Crossref] [Google Scholar]
  38. 38.
    Vukicevic M, Chiulli JA, Conover T, Pennati G, Hsia TY, Figliola RS. 2013.. Mock circulatory system of the Fontan circulation to study respiration effects on venous flow behavior. . ASAIO J. 59:(3):25360
    [Crossref] [Google Scholar]
  39. 39.
    Biglino G, Giardini A, Baker C, Figliola RS, Hsia TY, et al. 2012.. In vitro study of the Norwood palliation: a patient-specific mock circulatory system. . ASAIO J. 58:(1):2531
    [Crossref] [Google Scholar]
  40. 40.
    Biglino G, Giardini A, Hsia TY, Figliola R, Taylor AM, et al. 2013.. Modeling single ventricle physiology: review of engineering tools to study first stage palliation of hypoplastic left heart syndrome. . Front. Pediatr. 1::31
    [Crossref] [Google Scholar]
  41. 41.
    Biglino G, Schievano S, Baker C, Giardini A, Figliola R, et al. 2013.. Designing a patient-specific paediatric mock circulatory system to study the Norwood circulation. . In ASME 2011 Summer Bioengineering Conference, pp. 77172. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  42. 42.
    Vukicevic M, Conover TA, Zhou J, Hsia TY, Figliola RS. 2013.. In vitro study of pulmonary vascular resistance in Fontan circulation with respiration effects. . In ASME 2012 Summer Bioengineering Conference, pp. 98586. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  43. 43.
    Chiulli JA, Conover TA, Figliola RS, Hsia TY. 2013.. Design of an experimental mock circulatory system for the Fontan circulation. . In ASME 2010 Summer Bioengineering Conference, pp. 62122. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  44. 44.
    Chiulli JA, Conover TA, Joshi SS, Figliola RS, Hsia TY. 2013.. Experimentally modeling patient-specific Fontan circulations including respiration effects using a mock circulatory system. . In ASME 2011 Summer Bioengineering Conference, pp. 51718. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  45. 45.
    Vukicevic M, Conover T, Jaeggli M, Zhou J, Pennati G, et al. 2014.. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation. . ASAIO J. 60:(4):39199
    [Crossref] [Google Scholar]
  46. 46.
    Horvath MA, Van Story D, Hochstein J, Alvarez AP, Meboldt M, et al. 2020.. Design and fabrication of a biomimetic circulatory simulator with overlaid flow and respiration mechanism for single ventricle physiology. . In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 7479. New York:: IEEE
    [Google Scholar]
  47. 47.
    Dur O, Lara M, Arnold D, Vandenberghe S, Keller BB, et al. 2009.. Pulsatile in vitro simulation of the pediatric univentricular circulation for evaluation of cardiopulmonary assist scenarios. . Artif. Organs 33::96776
    [Crossref] [Google Scholar]
  48. 48.
    Tree M, Wei ZA, Trusty PM, Raghav V, Fogel M, et al. 2018.. Using a novel in vitro Fontan model and condition-specific real-time MRI data to examine hemodynamic effects of respiration and exercise. . Ann. Biomed. Eng. 46:(1):13547
    [Crossref] [Google Scholar]
  49. 49.
    Das A, Prather R, Divo E, Farias M, Kassab A, Decampli W. 2021.. In-vitro validation of self-powered Fontan circulation for treatment of single ventricle anomaly. . Fluids 6:(11):401
    [Crossref] [Google Scholar]
  50. 50.
    Petrou A, Granegger M, Meboldt M, Daners MS. 2019.. A versatile hybrid mock circulation for hydraulic investigations of active and passive cardiovascular implants. . ASAIO J. 65:(5):495502
    [Crossref] [Google Scholar]
  51. 51.
    Kung E, Farahmand M, Gupta A. 2019.. A hybrid experimental-computational modeling framework for cardiovascular device testing. . J. Biomech. Eng. 141:(5):051012
    [Crossref] [Google Scholar]
  52. 52.
    Mirzaei E, Farahmand M, Kung E. 2020.. An algorithm for coupling multibranch in vitro experiment to numerical physiology simulation for a hybrid cardiovascular model. . Int. J. Numer. Method Biomed. Eng. 36:(3):e3289
    [Crossref] [Google Scholar]
  53. 53.
    Umo A, Kung EO. 2023.. A protocol for coupling volumetrically dynamic in-vitro experiments to numerical physiology simulation for a hybrid cardiovascular model. . IEEE Trans. Biomed. Eng. 70:(4):135158
    [Crossref] [Google Scholar]
  54. 54.
    Kaku K, Matsuda H, Kaneko M, Matsumura R, Shirakura R, et al. 1990.. Experimental complete right heart bypass: proposal of a new model and acute hemodynamic assessment with vasoactive drugs in dogs. . J. Thorac. Cardiovasc. Surg. 99:(1):16166
    [Crossref] [Google Scholar]
  55. 55.
    Wang D, Plunkett M, Gao G, Zhou X, Ballard-Croft C, et al. 2014.. A practical and less invasive total cavopulmonary connection sheep model. . ASAIO J. 60:(2):17882
    [Crossref] [Google Scholar]
  56. 56.
    Wang D, Gao G, Plunkett M, Zhao G, Topaz S, et al. 2014.. A paired membrane umbrella double-lumen cannula ensures consistent cavopulmonary assistance in a Fontan sheep model. . J. Thorac. Cardiovasc. Surg. 148:(3):104147
    [Crossref] [Google Scholar]
  57. 57.
    Wang D, Plunkett M, Lynch J, Zhou X, Ballard-Croft C, Zwischenberger JB. 2011.. Wang-Zwische double-lumen cannula leads to total cavopulmonary support in a failing Fontan sheep model. . Ann. Thorac. Surg. 91:(6):195660
    [Crossref] [Google Scholar]
  58. 58.
    Rodefeld MD, Boyd JH, Myers CD, LaLone BJ, Bezruczko AJ, et al. 2003.. Cavopulmonary assist: circulatory support for the univentricular fontan circulation. . Ann. Thorac. Surg. 76:(6):191116
    [Crossref] [Google Scholar]
  59. 59.
    Szabó G, Buhmann V, Graf A, Melnitschuk S, Bährle S, et al. 2003.. Ventricular energetics after the Fontan operation: contractility-afterload mismatch. . J. Thorac. Cardiovasc. Surg. 125:(5):106169
    [Crossref] [Google Scholar]
  60. 60.
    Szabó G, Buhmann V, Graf A, Melnitchuk S, Hagl S, Vahl CF. 2002.. Perfusion-contractility matching during Fontan circulation. . Biomed. Tech. 47:(s1b):91214
    [Crossref] [Google Scholar]
  61. 61.
    Nawa S, Irie H, Takata K, Sugawara E, Teramoto S. 1989.. Development of a new experimental model for total exclusion of the right heart without the aid of cardiopulmonary bypass. . J. Thorac. Cardiovasc. Surg. 97:(1):13034
    [Crossref] [Google Scholar]
  62. 62.
    Macé L, Dervanian P, Weiss M, Daniel JP, Losay J, Neveux JY. 1995.. Hemodynamics of different degrees of right heart bypass: experimental assessment. . Ann. Thorac. Surg. 60:(5):123037
    [Crossref] [Google Scholar]
  63. 63.
    Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T. 2001.. Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk Fontan candidates. . Circulation 103:(17):217680
    [Crossref] [Google Scholar]
  64. 64.
    Wei X, Sanchez PG, Liu Y, Li T, Watkins AC, et al. 2015.. Mechanical circulatory support of a univentricular Fontan circulation with a continuous axial-flow pump in a piglet model. . ASAIO J. 61:(2):196201
    [Crossref] [Google Scholar]
  65. 65.
    Sinha P, Deutsch N, Ratnayaka K, Lederman R, He D, et al. 2014.. Effect of mechanical assistance of the systemic ventricle in single ventricle circulation with cavopulmonary connection. . J. Thorac. Cardiovasc. Surg. 147:(4):127175
    [Crossref] [Google Scholar]
  66. 66.
    Macé L, Dervanian P, Bourriez A, Mazmanian GM, Lambert V, et al. 2000.. Changes in venous return parameters associated with univentricular Fontan circulations. . Am. J. Physiol. Heart Circ. Physiol. 279:(5):H233543
    [Crossref] [Google Scholar]
  67. 67.
    Klautz RJM, Van Rijk-Zwikker GL, Steendijk P, Wilde J, Teitel DF, Baan J. 1997.. Acute elevation of coronary venous pressure does not affect left ventricular contractility in the normal and stressed swine heart: implications for the Fontan operation. . J. Thorac. Cardiovasc. Surg. 114:(4):56067
    [Crossref] [Google Scholar]
  68. 68.
    Kanakis MA, Mitropoulos FA, Katsimpoulas M, Dimitriou C, Peroulis M, et al. 2011.. Experimentally modified Fontan circulation in an adolescent pig model without the use of cardiopulmonary bypass. . Med. Sci. Monit. 17:(1):BR1015
    [Crossref] [Google Scholar]
  69. 69.
    Derk G, Laks H, Biniwale R, Patel S, De Lacruz K, et al. 2014.. Novel techniques of mechanical circulatory support for the right heart and Fontan circulation. . Int. J. Cardiol. 176:(3):82832
    [Crossref] [Google Scholar]
  70. 70.
    Tsuda S, Sasaki T, Maeda K, Riemer RK, Reichenbach SH, Reinhartz O. 2009.. Recovery during mid-term mechanical support of Fontan circulation in sheep. . ASAIO J. 55:(4):40611
    [Crossref] [Google Scholar]
  71. 71.
    Swartz MF, DiVincenti L, Smith K, Westcott R, Belmont K, et al. 2017.. A modified LVAD technique to augment caval and pulmonary arterial blood flow in the “failing Fontan” circulation. . J. Card. Surg. 32:(2):12632
    [Crossref] [Google Scholar]
  72. 72.
    Rodefeld MD, Boyd JH, Myers CD, Presson RG, Wagner WW, Brown JW. 2004.. Cavopulmonary assist in the neonate: an alternative strategy for single-ventricle palliation. . J. Thorac. Cardiovasc. Surg. 127:(3):70511
    [Crossref] [Google Scholar]
  73. 73.
    Riemer RK, Amir G, Reichenbach SH, Reinhartz O. 2005.. Mechanical support of total cavopulmonary connection with an axial flow pump. . J. Thorac. Cardiovasc. Surg. 130:(2):35154
    [Crossref] [Google Scholar]
  74. 74.
    Myers CD, Boyd JH, Presson RG, Vijay P, Coats AC, et al. 2006.. Neonatal cavopulmonary assist: pulsatile versus steady-flow pulmonary perfusion. . Ann. Thorac. Surg. 81:(1):25763
    [Crossref] [Google Scholar]
  75. 75.
    Koçyıldırım E, Dur O, Soran Ö, Tüzün E, Miller MW, et al. 2012.. Pulsatile venous waveform quality in Fontan circulation-clinical implications, venous assists options and the future. . Anadolu Kardiyol. Derg. 12:(5):42026
    [Google Scholar]
  76. 76.
    Gandolfo F, Brancaccio G, Donatiello S, Filippelli S, Perri G, et al. 2016.. Mechanically assisted total cavopulmonary connection with an axial flow pump: computational and in vivo study. . Artif. Organs 40:(1):4349
    [Crossref] [Google Scholar]
  77. 77.
    Granegger M, Escher A, Karner B, Kainz M, Schlöglhofer T, et al. 2023.. Feasibility of an animal model for cavopulmonary support with a double-outflow pump. . ASAIO J. 69:(7):67380
    [Crossref] [Google Scholar]
  78. 78.
    Cysyk J, Clark JB, Newswanger R, Jhun CS, Izer J, et al. 2019.. Chronic in vivo test of a right heart replacement blood pump for failed Fontan circulation. . ASAIO J. 65:(6):593600
    [Crossref] [Google Scholar]
  79. 79.
    Cysyk JP, Lukic B, Brian CJ, Newswanger R, Jhun CS, et al. 2021.. Miniaturized Fontan circulation assist device: chronic in vivo evaluation. . ASAIO J. 67:(11):124049
    [Crossref] [Google Scholar]
  80. 80.
    Van Puyvelde J, Rega F, Minami T, Claus P, Cools B, et al. 2019.. Creation of the Fontan circulation in sheep: a survival model. . Interact. Cardiovasc. Thorac. Surg. 29:(1):1521
    [Crossref] [Google Scholar]
  81. 81.
    Kelly JM, Hu Z, Takaesu F, Watanabe T, Storrs J, et al. 2024.. Investigation of a chronic single-stage sheep Fontan model. . JTCVS Open 21::26878
    [Crossref] [Google Scholar]
  82. 82.
    Gregory SD, Stevens M, Timms D, Pearcy M. 2011.. Replication of the Frank-Starling response in a mock circulation loop. . In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 682528. New York:: IEEE
    [Google Scholar]
  83. 83.
    Schwarz EL, Pegolotti L, Pfaller MR, Marsden AL. 2023.. Beyond CFD: emerging methodologies for predictive simulation in cardiovascular health and disease. . Biophys. Rev. 4:(1):11301
    [Crossref] [Google Scholar]
  84. 84.
    Figueroa CA, Baek S, Taylor CA, Humphrey JD. 2009.. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. . Comput. Methods Appl. Mech. Eng. 198:(45–46):3583602
    [Crossref] [Google Scholar]
  85. 85.
    Ramachandra AB, Humphrey JD, Marsden AL. 2017.. Gradual loading ameliorates maladaptation in computational simulations of vein graft growth and remodelling. . J. R. Soc. Interface 14:(130):20160995
    [Crossref] [Google Scholar]
  86. 86.
    Restrepo M, Tang E, Haggerty CM, Khiabani RH, Mirabella L, et al. 2015.. Energetic implications of vessel growth and flow changes over time in Fontan patients. . Ann. Thorac. Surg. 99:(1):16370
    [Crossref] [Google Scholar]
  87. 87.
    Ho H, Means S, Safaei S, Hunter PJ. 2023.. In silico modeling for the hepatic circulation and transport: from the liver organ to lobules. . WIREs Mech. Dis. 15:(2):e1586
    [Crossref] [Google Scholar]
  88. 88.
    Margaris KN, Black RA. 2012.. Modelling the lymphatic system: challenges and opportunities. . J. R. Soc. Interface 9:(69):60112
    [Crossref] [Google Scholar]
  89. 89.
    Neelakantan S, Xin Y, Gaver DP, Cereda M, Rizi R, et al. 2022.. Computational lung modelling in respiratory medicine. . J. R. Soc. Interface 19:(191):20220062
    [Crossref] [Google Scholar]
  90. 90.
    Gill S, Brandas M, Ghand RM. 2024.. Novel approaches in respiratory physiology research: insights into lung function and disease mechanisms. . Adv. Hum. Physiol. Res. 5:(2):15930
    [Google Scholar]
  91. 91.
    Ben-Tal A. 2012.. Computational models for the study of heart-lung interactions in mammals. . Wiley Interdiscip. Rev. Syst. Biol. Med. 4:(2):16370
    [Crossref] [Google Scholar]
  92. 92.
    Fresiello L, Meyns B, Di Molfetta A, Ferrari G. 2016.. A model of the cardiorespiratory response to aerobic exercise in healthy and heart failure conditions. . Front. Physiol. 7::171448
    [Crossref] [Google Scholar]
  93. 93.
    Peskin CS. 1972.. Flow patterns around heart valves: a numerical method. . J. Comput. Phys. 10:(2):25271
    [Crossref] [Google Scholar]
  94. 94.
    Tafuni A, De Giorgi MG, De Rosis A. 2021.. Smoothed particle hydrodynamics versus lattice Boltzmann for the solution of steady and unsteady fluid flows. . Comput. Particle Mech. 9:(5):104971
    [Crossref] [Google Scholar]
  95. 95.
    Qin Y, Wu J, Hu Q, Ghista DN, Wong KKL. 2017.. Computational evaluation of smoothed particle hydrodynamics for implementing blood flow modelling through CT reconstructed arteries. . J. Xray Sci. Technol. 25:(2):21332
    [Google Scholar]
  96. 96.
    Laha S, Fourtakas G, Das PK, Keshmiri A. 2024.. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model. . Sci. Rep. 14::6762
    [Crossref] [Google Scholar]
  97. 97.
    Monteleone A, Viola A, Napoli E, Burriesci G. 2023.. Modelling of thrombus formation using smoothed particle hydrodynamics method. . PLOS ONE 18:(2):e0281424
    [Crossref] [Google Scholar]
  98. 98.
    Liu L, Liu W, Bai J, Qu L. 2023.. Hemodynamic simulation in the aortic arch with the lattice Boltzmann method. . AIP Adv. 13:(5):55027
    [Crossref] [Google Scholar]
  99. 99.
    Sadeghi R, Gasner N, Khodaei S, Garcia J, Keshavarz-Motamed Z. 2022.. Impact of mixed valvular disease on coarctation hemodynamics using patient-specific lumped parameter and lattice Boltzmann modeling. . Int. J. Mech. Sci. 217::107038
    [Crossref] [Google Scholar]
  100. 100.
    Wei H, Amlani F, Pahlevan NM. 2023.. Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations. . Int. J. Numer. Method Biomed. Eng. 39:(5):e3683
    [Crossref] [Google Scholar]
  101. 101.
    Ozturk C, Pak DH, Rosalia L, Goswami D, Robakowski ME, et al. 2024.. AI-powered multimodal modeling of personalized hemodynamics in aortic stenosis. . arXiv:2407.00535 [cs.CE]
  102. 102.
    Rosalia L, Ozturk C, Coll-Font J, Fan Y, Nagata Y, et al. 2022.. A soft robotic sleeve mimicking the haemodynamics and biomechanics of left ventricular pressure overload and aortic stenosis. . Nat. Biomed. Eng. 6:(10):113447
    [Crossref] [Google Scholar]
  103. 103.
    Singh M, Roubertie F, Ozturk C, Borchiellini P, Rames A, et al. 2024.. Hemodynamic evaluation of biomaterial-based surgery for Tetralogy of Fallot using a biorobotic heart, in silico, and ovine models. . Sci. Transl. Med. 16:(755):eadk2936
    [Crossref] [Google Scholar]
  104. 104.
    Runchal AK, Rao MM. 2020.. CFD of the future: year 2025 and beyond. . In 50 Years of CFD in Engineering Sciences, A Runchal, ed., pp. 77995. Singapore:: Springer
    [Google Scholar]
  105. 105.
    Santhanakrishnan A, Taebi A. 2022.. Deep learning for computational hemodynamics: a brief review of recent advances. . Fluids 7:(6):197
    [Crossref] [Google Scholar]
  106. 106.
    Feiger B, Gounley J, Adler D, Leopold JA, Draeger EW, et al. 2020.. Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks. . Sci. Rep. 10::9508
    [Crossref] [Google Scholar]
  107. 107.
    Raissi M, Perdikaris P, Karniadakis GE. 2019.. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. . J. Comput. Phys. 378::686707
    [Crossref] [Google Scholar]
  108. 108.
    Isaev A, Dobroserdova T, Danilov A, Simakov S. 2024.. Physically informed deep learning technique for estimating blood flow parameters in four-vessel junction after the Fontan procedure. . Computation 12:(3):41
    [Crossref] [Google Scholar]
  109. 109.
    Jalali A, Lonsdale H, Do N, Peck J, Gupta M, et al. 2020.. Deep learning for improved risk prediction in surgical outcomes. . Sci. Rep. 10::9289
    [Crossref] [Google Scholar]
  110. 110.
    Park C, Singh M, Saeed MY, Nguyen CT, Roche ET. 2024.. Biorobotic hybrid heart as a benchtop cardiac mitral valve simulator. . Device 2::100217
    [Crossref] [Google Scholar]
  111. 111.
    Singh M, Bonnemain J, Ozturk C, Ayers B, Saeed MY, et al. 2023.. Robotic right ventricle is a biohybrid platform that simulates right ventricular function in (patho)physiological conditions and intervention. . Nat. Cardiovasc. Res. 2:(12):131026
    [Crossref] [Google Scholar]
  112. 112.
    Cappon F, Wu T, Papaioannou T, Du X, Hsu PL, Khir AW. 2021.. Mock circulatory loops used for testing cardiac assist devices: a review of computational and experimental models. . Int. J. Artif. Organs 44:(11):793806
    [Crossref] [Google Scholar]
  113. 113.
    Yang W, Conover TA, Figliola RS, Giridharan GA, Marsden AL, Rodefeld MD. 2023.. Passive performance evaluation and validation of a viscous impeller pump for subpulmonary fontan circulatory support. . Sci. Rep. 13::12668
    [Crossref] [Google Scholar]
  114. 114.
    Trusty PM, Tree M, Vincent D, Naber JP, Maher K, et al. 2019.. In vitro examination of the VentriFlo True Pulse Pump for failing Fontan support. . Artif. Organs 43:(2):18188
    [Crossref] [Google Scholar]
  115. 115.
    Trusty PM, Tree M, Maher K, Slesnick TC, Kanter KR, et al. 2019.. An in vitro analysis of the PediMag and CentriMag for right-sided failing Fontan support. . J. Thorac. Cardiovasc. Surg. 158:(5):141321
    [Crossref] [Google Scholar]
  116. 116.
    Pekkan K, Aka IB, Tutsak E, Ermek E, Balim H, et al. 2018.. In vitro validation of a self-driving aortic-turbine venous-assist device for Fontan patients. . J. Thorac. Cardiovasc. Surg. 156:(1):292301.e7
    [Crossref] [Google Scholar]
  117. 117.
    Şişli E, Yıldırım C, Aka İB, Tuncer ON, Atay Y, et al. 2023.. Switching the left and the right hearts: a novel bi-ventricle mechanical support strategy with spared native single-ventricle. . Ann. Biomed. Eng. 51:(12):285372
    [Crossref] [Google Scholar]
  118. 118.
    Ensley AE, Lynch P, Chatzimavroudis GP, Lucas C, Sharma S, Yoganathan AP. 1999.. Toward designing the optimal total cavopulmonary connection: an in vitro study. . Ann. Thorac. Surg. 68:(4):138490
    [Crossref] [Google Scholar]
  119. 119.
    Soerensen DD, Pekkan K, de Zélicourt D, Sharma S, Kanter K, et al. 2007.. Introduction of a new optimized total cavopulmonary connection. . Ann. Thorac. Surg. 83:(6):218290
    [Crossref] [Google Scholar]
  120. 120.
    Escher A, Strauch C, Hubmann EJ, Hübler M, Bortis D, et al. 2022.. A cavopulmonary assist device for long-term therapy of Fontan patients. . Semin. Thorac. Cardiovasc. Surg. 34:(1):23848
    [Crossref] [Google Scholar]
  121. 121.
    Yamada A, Shiraishi Y, Miura H, Yambe T, Omran MH, et al. 2013.. Peristaltic hemodynamics of a new pediatric circulatory assist system for Fontan circulation using shape memory alloy fibers. . In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 68386. New York:: IEEE
    [Google Scholar]
  122. 122.
    Chopski SG, Rangus OM, Downs EA, Moskowitz WB, Throckmorton AL. 2015.. Three-dimensional laser flow measurements of a patient-specific Fontan physiology with mechanical circulatory assistance. . Artif. Organs 39:(6):E6778
    [Crossref] [Google Scholar]
  123. 123.
    Lacour-Gayet FG, Lanning CJ, Stoica S, Wang R, Rech BA, et al. 2009.. An artificial right ventricle for failing Fontan: in vitro and computational study. . Ann. Thorac. Surg. 88:(1):17076
    [Crossref] [Google Scholar]
  124. 124.
    Granegger M, Thamsen B, Hubmann EJ, Choi Y, Beck D, et al. 2019.. A long-term mechanical cavopulmonary support device for patients with Fontan circulation. . Med. Eng. Phys. 70::918
    [Crossref] [Google Scholar]
  125. 125.
    Santhanakrishnan A, Maher KO, Tang E, Khiabani RH, Johnson J, Yoganathan AP. 2013.. Hemodynamic effects of implanting a unidirectional valve in the inferior vena cava of the Fontan circulation pathway: an in vitro investigation. . Am. J. Physiol. Heart Circ. Physiol. 305:(10):153847
    [Crossref] [Google Scholar]
  126. 126.
    Sankaran S, Marsden AL. 2011.. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. . J. Biomech. Eng. 133:(3):031001
    [Crossref] [Google Scholar]
  127. [Google Scholar]
  128. 128.
    Kung E, Baker C, Corsini C, Baretta A, Biglino G, et al. 2021.. Hemodynamics after Fontan procedure are determined by patient characteristics and anastomosis placement not graft selection: a patient-specific multiscale computational study. . medRxiv 2021.10.03.21264033. https://doi.org/10.1101/2021.10.03.21264033
  129. 129.
    Migliavacca F, Dubini G, Bove EL, De Leval MR. 2003.. Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. . J. Biomech. Eng. 125:(6):80513
    [Crossref] [Google Scholar]
  130. 130.
    De Leval MR, Dubini G, Migliavacca F, Jalali H, Camporini G, Redington A, et al. 1996.. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavopulmonary connections. . J. Thorac. Cardiovasc. Surg. 111:(3):50213
    [Crossref] [Google Scholar]
  131. 131.
    Dubini G, De Leval MR, Pietrabissa R, Montevecchi FM, Fumero R. 1996.. A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. . J. Biomech. 29:(1):11121
    [Crossref] [Google Scholar]
  132. 132.
    Haggerty CM, Whitehead KK, Bethel J, Fogel MA, Yoganathan AP. 2015.. Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics. . Ann. Thorac. Surg. 99:(3):91117
    [Crossref] [Google Scholar]
  133. 133.
    Khiabani RH, Whitehead KK, Han D, Restrepo M, Tang E, et al. 2015.. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. . Heart 101:(2):13943
    [Crossref] [Google Scholar]
  134. 134.
    Sundareswaran KS, de Zélicourt D, Sharma S, Kanter KR, Spray TL, et al. 2009.. Correction of pulmonary arteriovenous malformation using image-based surgical planning. . JACC Cardiovasc. Imaging 2:(8):102430
    [Crossref] [Google Scholar]
  135. 135.
    Marsden AL, Reddy VM, Shadden SC, Chan FP, Taylor CA, Feinstein JA. 2010.. A new multiparameter approach to computational simulation for Fontan assessment and redesign. . Congenit. Heart Dis. 5:(2):10417
    [Crossref] [Google Scholar]
  136. 136.
    Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. 2007.. Nonlinear power loss during exercise in single-ventricle patients after the Fontan. . Circulation 116:(11):I16571
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-102723-013709
Loading
/content/journals/10.1146/annurev-bioeng-102723-013709
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error