1932

Abstract

Understanding interaction mechanisms within cells, tissues, and organisms is crucial for driving developments across biology and medicine. Mathematical modeling is an essential tool for simulating such biological systems. Building on experiments, mechanistic models are widely used to describe small-scale intracellular networks. The development of sequencing techniques and computational tools has recently enabled multiscale models. Combining such larger scale network modeling with mechanistic modeling provides us with an opportunity to reveal previously unknown disease mechanisms and pharmacological interventions. Here, we review systems biology models from mechanistic models to multiscale models that integrate multiple layers of cellular networks and discuss how they can be used to shed light on disease states and even wellness-related states. Additionally, we introduce several methods that increase the certainty and accuracy of model predictions. Thus, combining mechanistic models with emerging mathematical and computational techniques can provide us with increasingly powerful tools to understand disease states and inspire drug discoveries.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-102723-065309
2025-05-01
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-102723-065309.html?itemId=/content/journals/10.1146/annurev-bioeng-102723-065309&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ma'ayan A. 2017.. Complex systems biology. . J. R. Soc. Interface 14:(134):20170391
    [Crossref] [Google Scholar]
  2. 2.
    Kitano H. 2002.. Computational systems biology. . Nature 420:(6912):20610
    [Crossref] [Google Scholar]
  3. 3.
    Alon U. 2006.. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL:: Chapman & Hall/CRC/Taylor & Francis
    [Google Scholar]
  4. 4.
    Ji Z, Yan K, Li W, Hu H, Zhu X. 2017.. Mathematical and computational modeling in complex biological systems. . BioMed Res. Int. 2017:(1):5958321
    [Google Scholar]
  5. 5.
    Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, et al. 2020.. Enabling technologies for personalized and precision medicine. . Trends Biotechnol. 38:(5):497518
    [Crossref] [Google Scholar]
  6. 6.
    Alon U. 2023.. Systems Medicine: Physiological Circuits and the Dynamics of Disease. Boca Raton, FL:: CRC Press
    [Google Scholar]
  7. 7.
    Borrego-Yaniz G, Terrón-Camero LC, Kerick M, Andrés-León E, Martin J. 2024.. A holistic approach to understanding immune-mediated inflammatory diseases: bioinformatic tools to integrate omics data. . Comput. Struct. Biotechnol. J. 23::96105
    [Crossref] [Google Scholar]
  8. 8.
    Cisek K, Krochmal M, Klein J, Mischak H. 2015.. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. . Nephrol. Dial. Transplant. 31:(12):200311
    [Crossref] [Google Scholar]
  9. 9.
    Schenone M, Danck V, Wagner BK, Clemons PA. 2013.. Target identification and mechanism of action in chemical biology and drug discovery. . Nat. Chem. Biol. 9:(4):23240
    [Crossref] [Google Scholar]
  10. 10.
    Sung JH, Wang Y, Shuler ML. 2019.. Strategies for using mathematical modeling approaches to design and interpret multi-organ microphysiological systems (MPS). . APL Bioeng. 3:(2):021501
    [Crossref] [Google Scholar]
  11. 11.
    Li XL, Oduola WO, Qian L, Dougherty ER. 2015.. Integrating multiscale modeling with drug effects for cancer treatment. . Cancer Inform. 14:(Suppl. 5):2131
    [Google Scholar]
  12. 12.
    Begoli E, Bhattacharya T, Kusnezov D. 2019.. The need for uncertainty quantification in machine-assisted medical decision making. . Nat. Mach. Intel. 1:(1):2023
    [Crossref] [Google Scholar]
  13. 13.
    Deisboeck TS, Wang Z, Macklin P, Cristini V. 2011.. Multiscale cancer modeling. . Annu. Rev. Biomed. Eng. 13::12755
    [Crossref] [Google Scholar]
  14. 14.
    Sun X, Hu B. 2017.. Mathematical modeling and computational prediction of cancer drug resistance. . Briefings Bioinform. 19:(6):138299
    [Crossref] [Google Scholar]
  15. 15.
    Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. 2010.. Inferring regulatory networks from expression data using tree-based methods. . PLOS ONE 5:(9):e12776
    [Crossref] [Google Scholar]
  16. 16.
    Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. 2007.. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. . PLOS Biol. 5:(1):e8
    [Crossref] [Google Scholar]
  17. 17.
    Khalilimeybodi A, Saucerman JJ, Rangamani P. 2024.. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy. . Comput. Biol. Med. 175::108499
    [Crossref] [Google Scholar]
  18. 18.
    Linden-Santangeli N, Zhang J, Kramer B, Rangamani P. 2024.. Increasing certainty in systems biology models using Bayesian multimodel inference. . bioRxiv 2024.06.16.599231. https://doi.org/10.1101/2024.06.16.599231
  19. 19.
    Vehtari A, Gelman A, Gabry J. 2016.. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. . Stat. Comput. 27:(5):141332
    [Crossref] [Google Scholar]
  20. 20.
    Burnham KP, Anderson DR. 2002.. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York:: Springer. , 2nd ed..
    [Google Scholar]
  21. 21.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. 2007.. Global reconstruction of the human metabolic network based on genomic and bibliomic data. . PNAS 104:(6):177782
    [Crossref] [Google Scholar]
  22. 22.
    Watson E, Yilmaz LS, Walhout AJ. 2015.. Understanding metabolic regulation at a systems level: metabolite sensing, mathematical predictions, and model organisms. . Annu. Rev. Genet. 49::55375
    [Crossref] [Google Scholar]
  23. 23.
    Nielsen J. 2017.. Systems biology of metabolism. . Annu. Rev. Biochem. 86::24575
    [Crossref] [Google Scholar]
  24. 24.
    Robaina Estévez S, Nikoloski Z. 2014.. Generalized framework for context-specific metabolic model extraction methods. . Front. Plant Sci. 5::491
    [Google Scholar]
  25. 25.
    Foguet C, Xu Y, Ritchie SC, Lambert SA, Persyn E, et al. 2022.. Genetically personalised organ-specific metabolic models in health and disease. . Nat. Commun. 13:(1):7356
    [Crossref] [Google Scholar]
  26. 26.
    Orth JD, Thiele I, Palsson BØ. 2010.. What is flux balance analysis?. Nat. Biotechnol. 28:(3):24548
    [Crossref] [Google Scholar]
  27. 27.
    Lewis NE, Nagarajan H, Palsson BO. 2012.. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. . Nat. Rev. Microbiol. 10:(4):291305
    [Crossref] [Google Scholar]
  28. 28.
    Elsemman IE, Rodriguez Prado A, Grigaitis P, Garcia Albornoz M, Harman V, et al. 2022.. Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies. . Nat. Commun. 13:(1):801
    [Crossref] [Google Scholar]
  29. 29.
    Dougherty BV, Rawls KD, Kolling GL, Vinnakota KC, Wallqvist A, Papin JA. 2021.. Identifying functional metabolic shifts in heart failure with the integration of omics data and a heart-specific, genome-scale model. . Cell Rep. 34:(10):108836
    [Crossref] [Google Scholar]
  30. 30.
    Galhardo M, Sinkkonen L, Berninger P, Lin J, Sauter T, Heinäniemi M. 2013.. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network. . Nucleic Acids Res. 42:(3):147496
    [Crossref] [Google Scholar]
  31. 31.
    Blais EM, Rawls KD, Dougherty BV, Li ZI, Kolling GL, et al. 2017.. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. . Nat. Commun. 8:(1):14250
    [Crossref] [Google Scholar]
  32. 32.
    Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, et al. 2014.. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. . Hum. Mol. Genet. 23:(22):586678
    [Crossref] [Google Scholar]
  33. 33.
    Saint-Antoine MM, Singh A. 2020.. Network inference in systems biology: recent developments, challenges, and applications. . Curr. Opin. Biotechnol. 63::8998
    [Crossref] [Google Scholar]
  34. 34.
    Huynh-Thu VA, Sanguinetti G. 2019.. Gene Regulatory Network Inference: An Introductory Survey. New York:: Springer
    [Google Scholar]
  35. 35.
    Emmert-Streib F, Dehmer M, Haibe-Kains B. 2014.. Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. . Front. Cell Dev. Biol. 2::38
    [Crossref] [Google Scholar]
  36. 36.
    Kamimoto K, Stringa B, Hoffmann CM, Jindal K, Solnica-Krezel L, Morris SA. 2023.. Dissecting cell identity via network inference and in silico gene perturbation. . Nature 614:(7949):74251
    [Crossref] [Google Scholar]
  37. 37.
    Gladitz J, Klink B, Seifert M. 2018.. Network-based analysis of oligodendrogliomas predicts novel cancer gene candidates within the region of the 1p/19q co-deletion. . Acta Neuropathol. Commun. 6:(1):49
    [Crossref] [Google Scholar]
  38. 38.
    Mohammadi S, Ravindra V, Gleich DF, Grama A. 2018.. A geometric approach to characterize the functional identity of single cells. . Nat. Commun. 9:(1):1516
    [Crossref] [Google Scholar]
  39. 39.
    Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA. 2012.. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. . Genome Med. 4:(5):41
    [Crossref] [Google Scholar]
  40. 40.
    Vundavilli H, Datta A, Sima C, Hua J, Lopes R, Bittner M. 2019.. Bayesian inference identifies combination therapeutic targets in breast cancer. . IEEE Trans. Biomed. Eng. 66:(9):268492
    [Crossref] [Google Scholar]
  41. 41.
    Rao VS, Srinivas K, Sujini GN, Kumar GNS. 2014.. Protein-protein interaction detection: methods and analysis. . Int. J. Proteom. 2014:(1):147648
    [Google Scholar]
  42. 42.
    Beltrao P, Bork P, Krogan NJ, van Noort V. 2013.. Evolution and functional cross-talk of protein post-translational modifications. . Mol. Syst. Biol. 9:(1):714
    [Crossref] [Google Scholar]
  43. 43.
    Lee JM, Hammarén HM, Savitski MM, Baek SH. 2023.. Control of protein stability by post-translational modifications. . Nat. Commun. 14:(1):201
    [Crossref] [Google Scholar]
  44. 44.
    Covert MW, Xiao N, Chen TJ, Karr JR. 2008.. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. . Bioinformatics 24:(18):204450
    [Crossref] [Google Scholar]
  45. 45.
    Carrera J, Estrela R, Luo J, Rai N, Tsoukalas A, Tagkopoulos I. 2014.. An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. . Mol. Syst. Biol. 10:(7):735
    [Crossref] [Google Scholar]
  46. 46.
    Samaga R, Klamt S. 2013.. Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. . Cell Commun. Signal. 11:(1):43
    [Crossref] [Google Scholar]
  47. 47.
    Ma'ayan A. 2009.. Insights into the organization of biochemical regulatory networks using graph theory analyses. . J. Biol. Chem. 284:(9):545155
    [Crossref] [Google Scholar]
  48. 48.
    Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos GA. 2020.. A guide to conquer the biological network era using graph theory. . Front. Bioeng. Biotechnol. 8::34
    [Crossref] [Google Scholar]
  49. 49.
    Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, et al. 2011.. Using graph theory to analyze biological networks. . BioData Mining 4:(1):10
    [Crossref] [Google Scholar]
  50. 50.
    Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, et al. 2012.. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. . Nat. Med. 18:(4):58088
    [Crossref] [Google Scholar]
  51. 51.
    Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ. 2009.. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. . BMC Syst. Biol. 3:(1):98
    [Crossref] [Google Scholar]
  52. 52.
    Krumsiek J, Pölsterl S, Wittmann DM, Theis FJ. 2010.. Odefy—from discrete to continuous models. . BMC Bioinform. 11:(1):233
    [Crossref] [Google Scholar]
  53. 53.
    Mendoza L, Xenarios I. 2006.. A method for the generation of standardized qualitative dynamical systems of regulatory networks. . Theor. Biol. Med. Model. 3:(1):13
    [Crossref] [Google Scholar]
  54. 54.
    Kraeutler MJ, Soltis AR, Saucerman JJ. 2010.. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. . BMC Syst. Biol. 4:(1):157
    [Crossref] [Google Scholar]
  55. 55.
    Traynard P, Tobalina L, Eduati F, Calzone L, Saez-Rodriguez J. 2017.. Logic modeling in quantitative systems pharmacology. . CPT Pharmacomet. Syst. Pharmacol. 6:(8):499511
    [Crossref] [Google Scholar]
  56. 56.
    Hemedan AA, Niarakis A, Schneider R, Ostaszewski M. 2022.. Boolean modelling as a logic-based dynamic approach in systems medicine. . Comput. Struct. Biotechnol. J. 20::316172
    [Crossref] [Google Scholar]
  57. 57.
    Bloomingdale P, Nguyen VA, Niu J, Mager DE. 2018.. Boolean network modeling in systems pharmacology. . J. Pharmacokinet. Pharmacodyn. 45:(1):15980
    [Crossref] [Google Scholar]
  58. 58.
    Zhang P, Brusic V. 2014.. Mathematical modeling for novel cancer drug discovery and development. . Expert Opin. Drug Discov. 9:(10):113350
    [Crossref] [Google Scholar]
  59. 59.
    Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA. 2010.. Logic-based models for the analysis of cell signaling networks. . Biochemistry 49:(15):321624
    [Crossref] [Google Scholar]
  60. 60.
    Tan PM, Buchholz KS, Omens JH, McCulloch AD, Saucerman JJ. 2017.. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling. . PLOS Comput. Biol. 13:(11):e1005854
    [Crossref] [Google Scholar]
  61. 61.
    Miagoux Q, Singh V, de Mézquita D, Chaudru V, Elati M, et al. 2021.. Inference of an integrative, executable network for rheumatoid arthritis combining data-driven machine learning approaches and a state-of-the-art mechanistic disease map. . J. Personalized Med. 11:(8):785
    [Crossref] [Google Scholar]
  62. 62.
    Flobak Å, Baudot A, Remy E, Thommesen L, Thieffry D, et al. 2015.. Discovery of drug synergies in gastric cancer cells predicted by logical modeling. . PLOS Comput. Biol. 11:(8):e1004426
    [Crossref] [Google Scholar]
  63. 63.
    Niederdorfer B, Touré V, Vazquez M, Thommesen L, Kuiper M, et al. 2020.. Strategies to enhance logic modeling-based cell line-specific drug synergy prediction. . Front. Physiol. 11::862
    [Crossref] [Google Scholar]
  64. 64.
    Zhang R, Shah MV, Yang J, Nyland SB, Liu X, et al. 2008.. Network model of survival signaling in large granular lymphocyte leukemia. . PNAS 105:(42):1630813
    [Crossref] [Google Scholar]
  65. 65.
    Ryall KA, Holland DO, Delaney KA, Kraeutler MJ, Parker AJ, Saucerman JJ. 2012.. Network reconstruction and systems analysis of cardiac myocyte hypertrophy signaling. . J. Biol. Chem. 287:(50):4225968
    [Crossref] [Google Scholar]
  66. 66.
    Khalilimeybodi A, Riaz M, Campbell SG, Omens JH, McCulloch AD, et al. 2023.. Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy. . J. Mol. Cell. Cardiol. 174::114
    [Crossref] [Google Scholar]
  67. 67.
    Béal J, Montagud A, Traynard P, Barillot E, Calzone L. 2019.. Personalization of logical models with multi-omics data allows clinical stratification of patients. . Front. Physiol. 9::1965
    [Crossref] [Google Scholar]
  68. 68.
    Gómez Tejeda Zañudo J, Mao P, Alcon C, Kowalski K, Johnson GN, et al. 2021.. Cell line–specific network models of ER+ breast cancer identify potential PI3K inhibitor resistance mechanisms and drug combinations. . Cancer Res. 81:(17):460317
    [Crossref] [Google Scholar]
  69. 69.
    Gómez Tejeda Zañudo J, Scaltriti M, Albert R. 2017.. A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. . Cancer Convergence 1:(1):5
    [Crossref] [Google Scholar]
  70. 70.
    Geris L, Gomez-Cabrero D, eds. 2016.. Uncertainty in Biology: A Computational Modeling Approach. . Cham, Switz:.: Springer Int. Publ.
    [Google Scholar]
  71. 71.
    Linden NJ, Kramer B, Rangamani P. 2022.. Bayesian parameter estimation for dynamical models in systems biology. . PLOS Comput. Biol. 18:(10):e1010651
    [Crossref] [Google Scholar]
  72. 72.
    Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. 2007.. Universally sloppy parameter sensitivities in systems biology models. . PLOS Comput. Biol. 3:(10):e189
    [Crossref] [Google Scholar]
  73. 73.
    Monsalve-Bravo GM, Lawson BAJ, Drovandi C, Burrage K, Brown KS, et al. 2022.. Analysis of sloppiness in model simulations: unveiling parameter uncertainty when mathematical models are fitted to data. . Sci. Adv. 8:(38):eabm5952
    [Crossref] [Google Scholar]
  74. 74.
    Vittadello ST, Stumpf MP. 2022.. Open problems in mathematical biology. . Math. Biosci. 354::108926
    [Crossref] [Google Scholar]
  75. 75.
    Heijnen JJ, Verheijen PJT. 2013.. Parameter identification of in vivo kinetic models: limitations and challenges. . Biotechnol. J. 8:(7):76875
    [Crossref] [Google Scholar]
  76. 76.
    Qian G, Mahdi A. 2020.. Sensitivity analysis methods in the biomedical sciences. . Math. Biosci. 323::108306
    [Crossref] [Google Scholar]
  77. 77.
    Wieland FG, Hauber AL, Rosenblatt M, Tönsing C, Timmer J. 2021.. On structural and practical identifiability. . Curr. Opin. Syst. Biol. 25::6069
    [Crossref] [Google Scholar]
  78. 78.
    Sher A, Niederer SA, Mirams GR, Kirpichnikova A, Allen R, et al. 2022.. A quantitative systems pharmacology perspective on the importance of parameter identifiability. . Bull. Math. Biol. 84:(3):39
    [Crossref] [Google Scholar]
  79. 79.
    Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, et al. 2007.. Global Sensitivity Analysis. The Primer. Hoboken, NJ:: Wiley. , 1st ed..
    [Google Scholar]
  80. 80.
    Villaverde AF, Barreiro A, Papachristodoulou A. 2016.. Structural identifiability of dynamic systems biology models. . PLOS Comput. Biol. 12:(10):e1005153
    [Crossref] [Google Scholar]
  81. 81.
    Chiş O, Banga JR, Balsa-Canto E. 2011.. GenSSI: a software toolbox for structural identifiability analysis of biological models. . Bioinformatics 27:(18):261011
    [Crossref] [Google Scholar]
  82. 82.
    Hong H, Ovchinnikov A, Pogudin G, Yap C. 2019.. SIAN: Software for structural identifiability analysis of ODE models. . Bioinformatics 35:(16):287374
    [Crossref] [Google Scholar]
  83. 83.
    Hong H, Ovchinnikov A, Pogudin G, Yap C. 2020.. Global identifiability of differential models. . Commun. Pure Appl. Math. 73:(9):183179
    [Crossref] [Google Scholar]
  84. 84.
    Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, et al. 2009.. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. . Bioinformatics 25:(15):192329
    [Crossref] [Google Scholar]
  85. 85.
    Anstett-Collin F, Denis-Vidal L, Millérioux G. 2020.. A priori identifiability: an overview on definitions and approaches. . Annu. Rev. Control 50::13949
    [Crossref] [Google Scholar]
  86. 86.
    Barreiro XR, Villaverde AF. 2023.. Benchmarking tools for a priori identifiability analysis. . Bioinformatics 39:(2):btad065
    [Crossref] [Google Scholar]
  87. 87.
    Dadashova K, Smith RC, Haider MA. 2024.. Local identifiability analysis, parameter subset selection and verification for a minimal brain PBPK model. . Bull. Math. Biol. 86:(2):12
    [Crossref] [Google Scholar]
  88. 88.
    Haus ES, Drengstig T, Thorsen K. 2023.. Structural identifiability of biomolecular controller motifs with and without flow measurements as model output. . PLOS Comput. Biol. 19:(8):e1011398
    [Crossref] [Google Scholar]
  89. 89.
    Browning AP, Lewin TD, Baker RE, Maini PK, Moros EG, et al. 2024.. Predicting radiotherapy patient outcomes with real-time clinical data using mathematical modelling. . Bull. Math. Biol. 86:(2):19
    [Crossref] [Google Scholar]
  90. 90.
    Wentworth MT, Smith RC, Banks HT. 2016.. Parameter selection and verification techniques based on global sensitivity analysis illustrated for an HIV model. . SIAM/ASA J. Uncertain. Quantif. 4:(1):26697
    [Crossref] [Google Scholar]
  91. 91.
    Nguyen LK, Degasperi A, Cotter P, Kholodenko BN. 2015.. DYVIPAC: an integrated analysis and visualisation framework to probe multi-dimensional biological networks. . Sci. Rep. 5:(1):12569
    [Crossref] [Google Scholar]
  92. 92.
    Smith R. 2013.. Uncertainty Quantification: Theory, Implementation, and Applications. Philadelphia:: Soc. Ind. Appl. Math.
    [Google Scholar]
  93. 93.
    Mirams GR, Niederer SA, Clayton RH. 2020.. The fickle heart: uncertainty quantification in cardiac and cardiovascular modelling and simulation. . Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378:(2173):20200119
    [Crossref] [Google Scholar]
  94. 94.
    Simpson MJ, Baker RE. 2024.. Parameter identifiability, parameter estimation and model prediction for differential equation models. . arXiv:2405.08177 [stat.ME]
  95. 95.
    Cao S, Aboelkassem Y, Wang A, Valdez-Jasso D, Saucerman JJ, et al. 2020.. Quantification of model and data uncertainty in a network analysis of cardiac myocyte mechanosignalling. . Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378:(2173):20190336
    [Crossref] [Google Scholar]
  96. 96.
    Wang A, Cao S, Aboelkassem Y, Valdez-Jasso D. 2020.. Quantification of uncertainty in a new network model of pulmonary arterial adventitial fibroblast pro-fibrotic signalling. . Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378:(2173):20190338
    [Crossref] [Google Scholar]
  97. 97.
    Irvin MW, Ramanathan A, Lopez CF. 2023.. Model certainty in cellular network-driven processes with missing data. . PLOS Comput. Biol. 19:(4):e1011004
    [Crossref] [Google Scholar]
  98. 98.
    Kirk P, Thorne T, Stumpf MP. 2013.. Model selection in systems and synthetic biology. . Curr. Opin. Biotechnol. 24:(4):76774
    [Crossref] [Google Scholar]
  99. 99.
    Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W. 2005.. Computational modelling of the receptor-tyrosine-kinase-activated mapk pathway. . Biochem. J. 392:(2):24961
    [Crossref] [Google Scholar]
  100. 100.
    Pollizzi KN, Powell JD. 2014.. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. . Nat. Rev. Immunol. 14:(7):43546
    [Crossref] [Google Scholar]
  101. 101.
    Imam S, Schäuble S, Brooks AN, Baliga NS, Price ND. 2015.. Data-driven integration of genome-scale regulatory and metabolic network models. . Front. Microbiol. 6::409
    [Crossref] [Google Scholar]
  102. 102.
    Österberg L, Domenzain I, Münch J, Nielsen J, Hohmann S, Cvijovic M. 2021.. A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. . PLOS Comput. Biol. 17:(4):e1008891
    [Crossref] [Google Scholar]
  103. 103.
    Rodriguez-Martinez A, Ayala R, Posma JM, Neves AL, Gauguier D, et al. 2016.. MetaboSignal: a network-based approach for topological analysis of metabotype regulation via metabolic and signaling pathways. . Bioinformatics 33:(5):77375
    [Crossref] [Google Scholar]
  104. 104.
    Tenazinha N, Vinga S. 2011.. A survey on methods for modeling and analyzing integrated biological networks. . IEEE/ACM Trans. Comput. Biol. Bioinform. 8:(4):94358
    [Crossref] [Google Scholar]
  105. 105.
    Burke PEP, Campos CBdL, Costa LdF, Quiles MG. 2020.. A biochemical network modeling of a whole-cell. . Sci. Rep. 10:(1):13303
    [Crossref] [Google Scholar]
  106. 106.
    Wu H, von Kamp A, Leoncikas V, Mori W, Sahin N, et al. 2016.. MUFINS: multi-formalism interaction network simulator. . NPJ Syst. Biol. Appl. 2:(1):16032
    [Crossref] [Google Scholar]
  107. 107.
    Benjamini Y, Hochberg Y. 1995.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. . J. R. Stat. Soc. Ser. B Methodol. 57:(1):289300
    [Crossref] [Google Scholar]
  108. 108.
    Maron BJ, Maron MS, Maron BA, Loscalzo J. 2019.. Moving beyond the sarcomere to explain heterogeneity in hypertrophic cardiomyopathy. . J. Am. Coll. Cardiol. 73:(15):197886
    [Crossref] [Google Scholar]
  109. 109.
    Fowler A, Knaus KR, Khuu S, Khalilimeybodi A, Schenk S, et al. 2024.. Network model of skeletal muscle cell signalling predicts differential responses to endurance and resistance exercise training. . Exp. Physiol. 109:(6):93955
    [Crossref] [Google Scholar]
  110. 110.
    Jarrett AM, Lima EABF, Hormuth DA II, McKenna MT, Feng X, et al. 2018.. Mathematical models of tumor cell proliferation: a review of the literature. . Expert Rev. Anticancer Ther. 18:(12):127186
    [Crossref] [Google Scholar]
  111. 111.
    Tabassum S, Rosli NB, Mazalan MSAB. 2019.. Mathematical modeling of cancer growth process: a review. . J. Phys. Conf. Ser. 1366:(1):012018
    [Crossref] [Google Scholar]
  112. 112.
    Adler M, Mayo A, Zhou X, Franklin RA, Jacox JB, et al. 2018.. Endocytosis as a stabilizing mechanism for tissue homeostasis. . PNAS 115:(8):E192635
    [Crossref] [Google Scholar]
  113. 113.
    Zhou X, Franklin RA, Adler M, Jacox JB, Bailis W, et al. 2018.. Circuit design features of a stable two-cell system. . Cell 172:(4):74457.e17
    [Crossref] [Google Scholar]
  114. 114.
    Hart Y, Reich-Zeliger S, Antebi YE, Zaretsky I, Mayo AE, et al. 2014.. Paradoxical signaling by a secreted molecule leads to homeostasis of cell levels. . Cell 158:(5):102232
    [Crossref] [Google Scholar]
  115. 115.
    Lo I, Gupta V, Midde KK, Taupin V, Lopez-Sanchez I, et al. 2015.. Activation of Gαi at the Golgi by GIV/Girdin imposes finiteness in Arf1 signaling. . Dev. Cell 33:(2):189203
    [Crossref] [Google Scholar]
  116. 116.
    Qiao L, Sinha S, Abd El-Hafeez AA, Lo I, Midde KK, et al. 2023.. A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells. . Mol. Syst. Biol. 19:(4):e11127
    [Crossref] [Google Scholar]
  117. 117.
    Qiao L, Ghosh P, Rangamani P. 2023.. Design principles of improving the dose-response alignment in coupled GTPase switches. . NPJ Syst. Biol. Appl. 9:(1):3
    [Crossref] [Google Scholar]
  118. 118.
    Oda K, Matsuoka Y, Funahashi A, Kitano H. 2005.. A comprehensive pathway map of epidermal growth factor receptor signaling. . Mol. Syst. Biol. 1:(1):2005.0010
    [Crossref] [Google Scholar]
  119. 119.
    Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G. 2002.. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. . Nat. Biotechnol. 20:(4):37075
    [Crossref] [Google Scholar]
  120. 120.
    Hasin Y, Seldin M, Lusis A. 2017.. Multi-omics approaches to disease. . Genome Biol. 18:(1):83
    [Crossref] [Google Scholar]
  121. 121.
    Gonzalez CG, Mills RH, Zhu Q, Sauceda C, Knight R, et al. 2022.. Location-specific signatures of Crohn's disease at a multi-omics scale. . Microbiome 10:(1):133
    [Crossref] [Google Scholar]
  122. 122.
    Margara F, Psaras Y, Wang ZJ, Schmid M, Doste R, et al. 2022.. Mechanism based therapies enable personalised treatment of hypertrophic cardiomyopathy. . Sci. Rep. 12:(1):22501
    [Crossref] [Google Scholar]
  123. 123.
    Campbell SG, McCulloch AD. 2011.. Multi-scale computational models of familial hypertrophic cardiomyopathy: genotype to phenotype. . J. R. Soc. Interface 8:(64):155061
    [Crossref] [Google Scholar]
  124. 124.
    Aboelkassem Y, Powers JD, McCabe KJ, McCulloch AD. 2019.. Multiscale models of cardiac muscle biophysics and tissue remodeling in hypertrophic cardiomyopathies. . Curr. Opin. Biomed. Eng. 11::3544
    [Crossref] [Google Scholar]
  125. 125.
    Doh CY, Li J, Mamidi R, Stelzer JE. 2019.. The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure. . Biochim. Biophys. Acta Mol. Basis Dis. 1865:(3):66177
    [Crossref] [Google Scholar]
  126. 126.
    Vera CD, Johnson CA, Walklate J, Adhikari A, Svicevic M, et al. 2019.. Myosin motor domains carrying mutations implicated in early or late onset hypertrophic cardiomyopathy have similar properties. . J. Biol. Chem. 294:(46):1745162
    [Crossref] [Google Scholar]
  127. 127.
    Mijailovich SM, Nedic D, Svicevic M, Stojanovic B, Walklate J, et al. 2017.. Modeling the actin.myosin ATPase cross-bridge cycle for skeletal and cardiac muscle myosin isoforms. . Biophys. J. 112:(5):98496
    [Crossref] [Google Scholar]
  128. 128.
    Zile MA, Trayanova NA. 2017.. Myofilament protein dynamics modulate EAD formation in human hypertrophic cardiomyopathy. . Prog. Biophys. Mol. Biol. 130:(Part B):41828
    [Crossref] [Google Scholar]
  129. 129.
    Davis J, Davis LC, Correll RN, Makarewich CA, Schwanekamp JA, et al. 2016.. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. . Cell 165:(5):114759
    [Crossref] [Google Scholar]
  130. 130.
    Qi Z, Zhai X, Ding S. 2013.. How to explain exercise-induced phenotype from molecular data: rethink and reconstruction based on AMPK and mTOR signaling. . SpringerPlus 2:(1):693
    [Crossref] [Google Scholar]
  131. 131.
    Consitt LA, Dudley C, Saxena G. 2019.. Impact of endurance and resistance training on skeletal muscle glucose metabolism in older adults. . Nutrients 11:(11):2636
    [Crossref] [Google Scholar]
  132. 132.
    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. 2019.. PyTorch: an imperative style, high-performance deep learning library. . In Advances in Neural Information Processing Systems 32 (NeurIPS 2019) Proceedings, ed. H Wallace, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox, R Garnett . Red Hook, NY:: Curran Assoc.
    [Google Scholar]
  133. 133.
    Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, et al. 2018.. JAX: composable transformations of Python+NumPy programs. . https://github.com/google/jax
  134. 134.
    Abril-Pla O, Andreani V, Carroll C, Dong L, Fonnesbeck CJ, et al. 2023.. PyMC: a modern, and comprehensive probabilistic programming framework in Python. . PeerJ Comput. Sci. 9::e1516
    [Crossref] [Google Scholar]
  135. 135.
    Kutz JN. 2013.. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  136. 136.
    Brooks S, Gelman A, Jones G, Meng XL, eds. 2011.. Handbook of Markov Chain Monte Carlo. New York:: Chapman & Hall/CRC
    [Google Scholar]
  137. 137.
    Roesch E, Greener JG, MacLean AL, Nassar H, Rackauckas C, et al. 2023.. Julia for biologists. . Nat. Methods 20::65564. Erratum . 2023.. Nat. Methods 20::771
    [Google Scholar]
  138. 138.
    Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM. 1997.. A general computational framework for modeling cellular structure and function. . Biophys. J. 73:(3):113546
    [Crossref] [Google Scholar]
  139. 139.
    Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM. 2012.. Spatial modeling of cell signaling networks. . In Computational Methods in Cell Biology, , 195221. . Cambridge, MA:: Academic Press
    [Google Scholar]
  140. 140.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. 2006.. COPASI—a COmplex PAthway SImulator. . Bioinformatics 22:(24):306774
    [Crossref] [Google Scholar]
  141. 141.
    Sapoval N, Aghazadeh A, Nute MG, Antunes DA, Balaji A, et al. 2022.. Current progress and open challenges for applying deep learning across the biosciences. . Nat. Commun. 13:(1):1728
    [Crossref] [Google Scholar]
  142. 142.
    Angermueller C, Pärnamaa T, Parts L, Stegle O. 2016.. Deep learning for computational biology. . Mol. Syst. Biol. 12:(7):878
    [Crossref] [Google Scholar]
  143. 143.
    Dasgupta A, De RK. 2023.. Artificial intelligence in systems biology. . In Artificial Intelligence, ed. SG Krantz, AS Srinivasa Rao, C Rao , pp. 153201. . Cambridge, MA:: Academic Press/Elsevier
    [Google Scholar]
  144. 144.
    Gherman IM, Abdallah ZS, Pang W, Gorochowski TE, Grierson CS, Marucci L. 2023.. Bridging the gap between mechanistic biological models and machine learning surrogates. . PLOS Comput. Biol. 19:(4):e1010988
    [Crossref] [Google Scholar]
  145. 145.
    Aghamiri SS, Amin R, Helikar T. 2022.. Recent applications of quantitative systems pharmacology and machine learning models across diseases. . J. Pharmacokinet. Pharmacodyn. 49::1937
    [Crossref] [Google Scholar]
  146. 146.
    Azer K, Kaddi CD, Barrett JS, Bai JP, McQuade ST, et al. 2021.. History and future perspectives on the discipline of quantitative systems pharmacology modeling and its applications. . Front. Physiol. 12::637999
    [Crossref] [Google Scholar]
  147. 147.
    Bradshaw EL, Spilker ME, Zang R, Bansal L, He H, et al. 2019.. Applications of quantitative systems pharmacology in model-informed drug discovery: perspective on impact and opportunities. . CPT Pharmacomet. Syst. Pharmacol. 8:(11):77791
    [Crossref] [Google Scholar]
  148. 148.
    Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, et al. 2018.. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. . Clin. Pharmacol. Ther. 104:(1):88110
    [Crossref] [Google Scholar]
  149. 149.
    Cucurull-Sanchez L. 2024.. An industry perspective on current QSP trends in drug development. . J. Pharmacokinet. Pharmacodyn. 51::51120
    [Crossref] [Google Scholar]
  150. 150.
    Joshi A, Ramanujan S, Jin JY. 2023.. The convergence of pharmacometrics and quantitative systems pharmacology in pharmaceutical research and development. . Eur. J. Pharmaceut. Sci. 182::106380
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-102723-065309
Loading
/content/journals/10.1146/annurev-bioeng-102723-065309
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error