1932

Abstract

Cancer remains a leading cause of mortality worldwide, and the demand for improved efficacy, precision, and safety of management options has never been greater. Focused ultrasound (FUS) is a rapidly emerging strategy for nonionizing, noninvasive intervention that holds promise for the multimodal treatment of solid cancers. Owing to its versatile array of bioeffects, this technology is now being evaluated across preclinical and clinical oncology trials for tumor ablation, therapeutic delivery, radiosensitization, sonodynamic therapy, and enhancement of tumor-specific immune responses. Given the breadth of this burgeoning domain, this review places a spotlight on recent advancements in breast cancer care to exemplify the multifaceted role of FUS technology for oncology indications—outlining physical principles of FUS-mediated thermal and mechanical bioeffects, giving an overview of results from recent preclinical and clinical studies investigating FUS with and without adjunct therapeutics in primary or disseminated breast cancer settings, and offering perspectives on the future of the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-103023-111151
2025-05-01
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-103023-111151.html?itemId=/content/journals/10.1146/annurev-bioeng-103023-111151&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kuksis M, Gao Y, Tran W, Hoey C, Kiss A, et al. 2021.. The incidence of brain metastases among patients with metastatic breast cancer: a systematic review and meta-analysis. . Neuro Oncol. 23:(6):894904
    [Crossref] [Google Scholar]
  2. 2.
    Yedjou CG, Sims JN, Miele L, Noubissi F, Lowe L, et al. 2019.. Health and racial disparity in breast cancer. . Adv. Exp. Med. Biol. 1152::3149
    [Crossref] [Google Scholar]
  3. 3.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. 2011.. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. . Ann. Oncol. 22:(8):173647
    [Crossref] [Google Scholar]
  4. 4.
    Yang J, Ju J, Guo L, Ji B, Shi S, et al. 2022.. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. . Comput. Struct. Biotechnol. J. 20::33342
    [Crossref] [Google Scholar]
  5. 5.
    Figueroa-Magalhães MC, Jelovac D, Connolly RM, Wolff AC. 2014.. Treatment of HER2-positive breast cancer. . Breast 23:(2):12836
    [Crossref] [Google Scholar]
  6. 6.
    Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, et al. 2019.. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. . J. Hematol. Oncol. 12:(111):111
    [Crossref] [Google Scholar]
  7. 7.
    Alluri P, Newman LA. 2014.. Basal-like and triple-negative breast cancers. . Surg. Oncol. Clin. 23:(3):56777
    [Crossref] [Google Scholar]
  8. 8.
    Pommier RM, Sanlaville A, Tonon L, Kielbassa J, Thomas E, et al. 2020.. Comprehensive characterization of claudin-low breast tumors reflects the impact of the cell-of-origin on cancer evolution. . Nat. Commun. 11:(1):3431
    [Crossref] [Google Scholar]
  9. 9.
    Tain H, Ma D, Tan X, Yan W, Wu X, et al. 2021.. Platinum and taxane based adjuvant and neoadjuvant chemotherapy in early triple-negative breast cancer: a narrative review. . Front. Pharmacol. 12::770663
    [Crossref] [Google Scholar]
  10. 10.
    Wahba H, El-Hadaad H. 2015.. Current approaches in treatment of triple-negative breast cancer. . Cancer Biol. Med. 12:(2):10616
    [Google Scholar]
  11. 11.
    Retecki K, Seweryn M, Graczyk-Jarzynka A, Bajor M. 2021.. The immune landscape of breast cancer: strategies for overcoming immunotherapy resistance. . Cancers 13:(23):6012
    [Crossref] [Google Scholar]
  12. 12.
    Oka M. 1964.. Application of intense focused ultrasound in brainsurgery and other fields. . Clinica All-Round 13::151423
    [Google Scholar]
  13. 13.
    van den Bijgaart RJE, Eikelenboom DC, Hoogenboom M, Fütterer JJ, den Brok MH, Adema GJ. 2017.. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. . Cancer Immunol. Immunother. 66:(2):24758
    [Crossref] [Google Scholar]
  14. 14.
    Joiner JB, Pylayeva-Gupta Y, Dayton PA. 2020.. Focused ultrasound for immunomodulation of the tumor microenvironment. . J. Immunol. 205:(9):232741
    [Crossref] [Google Scholar]
  15. 15.
    Centelles MN, Wright M, Gedroyc W, Thanou M. 2016.. Focused ultrasound induced hyperthermia accelerates and increases the uptake of anti-HER-2 antibodies in a xenograft model. . Pharmacol. Res. 114::14451
    [Crossref] [Google Scholar]
  16. 16.
    Curley CT, Sheybani ND, Bullock TN, Price RJ. 2017.. Focused ultrasound immunotherapy for central nervous system pathologies: challenges and opportunities. . Theranostics 7:(15):360823
    [Crossref] [Google Scholar]
  17. 17.
    Sharma D, Cartar H, Quiaoit K, Law N, Giles A, Czarnota GJ. 2022.. Effect of ultrasound-stimulated microbubbles and hyperthermia on tumor vasculature of breast cancer xenograft. . J. Ultrasound Med. 41:(11):265971
    [Crossref] [Google Scholar]
  18. 18.
    Sharma D, Cartar H, Law N, Giles A, Farhat G, et al. 2020.. Optimization of microbubble enhancement of hyperthermia for cancer therapy in an in vivo breast tumour model. . PLOS ONE 15:(8):e0237372
    [Crossref] [Google Scholar]
  19. 19.
    Zhu L, Zhao H, Zhou Z, Xia Y, Wang Z, et al. 2018.. Peptide-functionalized phase-transformation nanoparticles for low intensity focused ultrasound-assisted tumor imaging and therapy. . Nano Lett. 18:(3):183141
    [Crossref] [Google Scholar]
  20. 20.
    Zhou Y-F. 2011.. High intensity focused ultrasound in clinical tumor ablation. . World J. Clin. Oncol. 2:(1):827
    [Crossref] [Google Scholar]
  21. 21.
    Sheybani ND, Price RJ. 2019.. Perspectives on recent progress in focused ultrasound immunotherapy. . Theranostics 9:(25):774958
    [Crossref] [Google Scholar]
  22. 22.
    Izadifar Z, Izadifar Z, Chapman D, Babyn P. 2020.. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. . J. Clin. Med. 9:(2):460
    [Crossref] [Google Scholar]
  23. 23.
    Kovatcheva R, Guglielmina JN, Abehsera M, Boulanger L, Laurent N, Poncelet E. 2015.. Ultrasound-guided high-intensity focused ultrasound treatment of breast fibroadenoma—a multicenter experience. . J. Ther. Ultrasound 3::1
    [Crossref] [Google Scholar]
  24. 24.
    Kuo L-W, Dong G-C, Pan C-C, Chen S-F, Chen G-S. 2020.. An MRI-guided ring high-intensity focused ultrasound system for noninvasive breast ablation. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67:(9):183947
    [Crossref] [Google Scholar]
  25. 25.
    Huber PE, Jenne JW, Rastert R, Simiantonakis I, Sinn H-P, et al. 2001.. A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. . Cancer Res. 61:(23):844147
    [Google Scholar]
  26. 26.
    Fite BZ, Wang J, Kare AJ, Ilovitsh A, Chavez M, et al. 2021.. Immune modulation resulting from MR-guided high intensity focused ultrasound in a model of murine breast cancer. . Sci. Rep. 11:(1):927
    [Crossref] [Google Scholar]
  27. 27.
    Furusawa H, Namba K, Nakahara H, Tanaka C, Yasuda Y, et al. 2007.. The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). . Breast Cancer 14:(1):5558
    [Crossref] [Google Scholar]
  28. 28.
    Furusawa H, Namba K, Thomsen S, Akiyama F, Bendet A, et al. 2006.. Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. . J. Am. Coll. Surg. 203:(1):5463
    [Crossref] [Google Scholar]
  29. 29.
    Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y. 2003.. MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness—initial experience. . Radiology 227:(3):84955
    [Crossref] [Google Scholar]
  30. 30.
    Payne A, Merrill R, Minalga E, Hadley JR, Odeen H, et al. 2021.. A breast-specific MR guided focused ultrasound platform and treatment protocol: first-in-human technical evaluation. . IEEE Trans. Biomed. Eng. 68:(3):893904
    [Crossref] [Google Scholar]
  31. 31.
    Khiat A, Gianfelice D, Amara M, Boulanger Y. 2006.. Influence of post-treatment delay on the evaluation of the response to focused ultrasound surgery of breast cancer by dynamic contrast enhanced MRI. . Br. J. Radiol. 79:(940):30814
    [Crossref] [Google Scholar]
  32. 32.
    Kim SH, Jung SE, Kim HL, Hahn ST, Park GS, Park WC. 2010.. The potential role of dynamic MRI in assessing the effectiveness of high-intensity focused ultrasound ablation of breast cancer. . Int. J. Hyperthermia 26:(6):594603
    [Crossref] [Google Scholar]
  33. 33.
    Sanchez M, Barrere V, Treilleux I, Chopin N, Melodelima D. 2021.. Development of a noninvasive HIFU treatment for breast adenocarcinomas using a toroidal transducer based on preliminary attenuation measurements. . Ultrasonics 115::106459
    [Crossref] [Google Scholar]
  34. 34.
    Sheybani ND, Witter AR, Thim EA, Yagita H, Bullock TNJ, Price RJ. 2020.. Combination of thermally ablative focused ultrasound with gemcitabine controls breast cancer via adaptive immunity. . J. Immunother. Cancer 8:(2):e001008
    [Crossref] [Google Scholar]
  35. 35.
    Wu F, Wang ZB, Zhu H, Chen WZ, Zou JZ, et al. 2005.. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. . Breast Cancer Res. Treat. 92:(1):5160
    [Crossref] [Google Scholar]
  36. 36.
    Saharkhiz N, Ha R, Taback B, Li XJ, Weber R, et al. 2020.. Harmonic motion imaging of human breast masses: an in vivo clinical feasibility. . Sci. Rep. 10:(1):15254
    [Crossref] [Google Scholar]
  37. 37.
    Saharkhiz N, Kamimura HAS, Konofagou EE. 2023.. An efficient and multi-focal focused ultrasound technique for harmonic motion imaging. . IEEE Trans. Biomed. Eng. 70::115061
    [Crossref] [Google Scholar]
  38. 38.
    Hossain MM, Saharkhiz N, Konofagou EE. 2021.. Feasibility of harmonic motion imaging using a single transducer: in vivo imaging of breast cancer in a mouse model and human subjects. . IEEE Trans. Med. Imaging 40:(5):1390404
    [Crossref] [Google Scholar]
  39. 39.
    Han Y, Wang S, Hibshoosh H, Taback B, Konofagou E. 2016.. Tumor characterization and treatment monitoring of postsurgical human breast specimens using harmonic motion imaging (HMI). . Breast Cancer Res. 18:(1):46
    [Crossref] [Google Scholar]
  40. 40.
    Maleke C, Konofagou EE. 2010.. In vivo feasibility of real-time monitoring of focused ultrasound surgery (FUS) using harmonic motion imaging (HMI). . IEEE Trans. Biomed. Eng. 57:(1):711
    [Crossref] [Google Scholar]
  41. 41.
    Hossain MM, Konofagou EE. 2022.. Imaging of single transducer-harmonic motion imaging-derived displacements at several oscillation frequencies simultaneously. . IEEE Trans. Med. Imaging 41:(11):3099115
    [Crossref] [Google Scholar]
  42. 42.
    Silvestrini MT, Ingham ES, Mahakian LM, Kheirolomoom A, Liu Y, et al. 2017.. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. . JCI Insight 2:(6):e90521
    [Crossref] [Google Scholar]
  43. 43.
    Antoniou A, Spanoudes K, Damianou C. 2023.. Treatment of mammary cancer with focused ultrasound: a pilot study in canine and feline patients. . Ultrasonics 132::106974
    [Crossref] [Google Scholar]
  44. 44.
    Hurwitz MD, Ghanouni P, Kanaev SV, Iozeffi D, Gianfelice D, et al. 2014.. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. . J. Natl. Cancer Inst. 106:(5):dju082
    [Crossref] [Google Scholar]
  45. 45.
    Bertrand AS, Iannessi A, Natale R, Beaumont H, Patriti S, et al. 2018.. Focused ultrasound for the treatment of bone metastases: effectiveness and feasibility. . J. Ther. Ultrasound 6::8
    [Crossref] [Google Scholar]
  46. 46.
    Napoli A, Anzidei M, Cavallo Marincola B, Brachetti G, Ciolina F, et al. 2013.. Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. . Investig. Radiol. 48:(6):35158
    [Crossref] [Google Scholar]
  47. 47.
    Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, et al. 2007.. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases—preliminary clinical experience. . Ann. Oncol. 18:(1):16367
    [Crossref] [Google Scholar]
  48. 48.
    Bongiovanni A, Foca F, Oboldi D, Diano D, Bazzocchi A, et al. 2022.. 3-T magnetic resonance–guided high-intensity focused ultrasound (3 T-MR-HIFU) for the treatment of pain from bone metastases of solid tumors. . Support. Care Cancer 30:(7):573745
    [Crossref] [Google Scholar]
  49. 49.
    Lee HL, Kuo CC, Tsai JT, Chen CY, Wu MH, Chiou JF. 2017.. Magnetic resonance-guided focused ultrasound versus conventional radiation therapy for painful bone metastasis: a matched-pair study. . J. Bone Joint Surg. Am. 99:(18):157278
    [Crossref] [Google Scholar]
  50. 50.
    Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, et al. 2009.. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. . Ann. Surg. Oncol. 16:(1):14046
    [Crossref] [Google Scholar]
  51. 51.
    Hsu FC, Lee HL, Chen YJ, Shen YA, Tsai YC, et al. 2022.. A few-shot learning approach assists in the prognosis prediction of magnetic resonance-guided focused ultrasound for the local control of bone metastatic lesions. . Cancers 14:(2):445
    [Crossref] [Google Scholar]
  52. 52.
    Gu J, Wang H, Tang N, Hua Y, Yang H, et al. 2015.. Magnetic resonance guided focused ultrasound surgery for pain palliation of bone metastases: early experience of clinical application in China. . Zhonghua Yi Xue Za Zh. 95:(41):332832
    [Google Scholar]
  53. 53.
    Xu Z, Hall TL, Vlaisavljevich E, Lee FT. 2021.. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. . Int. J. Hyperthermia 38:(1):56175
    [Crossref] [Google Scholar]
  54. 54.
    Vlaisavljevich E, Maxwell A, Mancia L, Johnsen E, Cain C, Xu Z. 2016.. Visualizing the histotripsy process: bubble cloud-cancer cell interactions in a tissue-mimicking environment. . Ultrasound Med. Biol. 42:(10):246677
    [Crossref] [Google Scholar]
  55. 55.
    Xu Z, Khokhlova TD, Cho CS, Khokhlova VA. 2024.. Histotripsy: a method for mechanical tissue ablation with ultrasound. . Annu. Rev. Biomed. Eng. 26::14167
    [Crossref] [Google Scholar]
  56. 56.
    Vidal-Jove J, Serres X, Vlaisavljevich E, Cannata J, Duryea A, et al. 2022.. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. . Int. J. Hyperthermia 39:(1):111523
    [Crossref] [Google Scholar]
  57. 57.
    Nam GH, Pahk KJ, Jeon S, Park HJ, Kim GB, et al. 2020.. Investigation of the potential immunological effects of boiling histotripsy for cancer treatment. . Adv. Ther. 3:(8):1900214
    [Crossref] [Google Scholar]
  58. 58.
    Qi T, Jing Y, Deng J, Chang J, Sun W, et al. 2023.. Boiling histotripsy using dual-frequency protocol on murine breast tumor model and promotes immune activation. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 70:(12):177385
    [Crossref] [Google Scholar]
  59. 59.
    Pahk KJ, Shin CH, Bae IY, Yang Y, Kim SH, et al. 2019.. Boiling histotripsy-induced partial mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers. . Sci. Rep. 9:(1):9050
    [Crossref] [Google Scholar]
  60. 60.
    Ponomarchuk EM, Tsysar SA, Chupova DD, Pestova PA, Kvashennikova AV, et al. 2024.. Pilot experiment on non-invasive non-thermal disintegration of human mucinous breast carcinoma ex vivo using boiling histotripsy. . Bull. Exp. Biol. Med. 177:(1):13336
    [Crossref] [Google Scholar]
  61. 61.
    Joiner JB, Pylayeva-Gupta Y, Dayton PA. 2020.. Focused ultrasound for immunomodulation of the tumor microenvironment. . J. Immunol. 205:(9):232741
    [Crossref] [Google Scholar]
  62. 62.
    Meng Y, Reilly RM, Pezo RC, Trudeau M, Sahgal A, et al. 2021.. MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. . Sci. Transl. Med. 13:(615):eabj4011
    [Crossref] [Google Scholar]
  63. 63.
    Arvanitis CD, Askoxylakis V, Guo Y, Datta M, Kloepper J, et al. 2018.. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. . PNAS 115:(37):E871726
    [Crossref] [Google Scholar]
  64. 64.
    Park EJ, Zhang YZ, Vykhodtseva N, McDannold N. 2012.. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. . J. Control. Release 163:(3):27784
    [Crossref] [Google Scholar]
  65. 65.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K. 2006.. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. . PNAS 103:(31):1171923
    [Crossref] [Google Scholar]
  66. 66.
    Kobus T, Zervantonakis IK, Zhang Y, McDannold NJ. 2016.. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. . J. Control. Release 238::28188
    [Crossref] [Google Scholar]
  67. 67.
    Grainger SJ, Serna JV, Sunny S, Zhou Y, Deng CX, El-Sayed MEH. 2010.. Pulsed ultrasound enhances nanoparticle penetration into breast cancer spheroids. . Mol. Pharm. 7:(6):200619
    [Crossref] [Google Scholar]
  68. 68.
    Cohen G, Chandran P, Lorsung RM, Tomlinson LE, Sundby M, et al. 2020.. The impact of focused ultrasound in two tumor models: temporal alterations in the natural history on tumor microenvironment and immune cell response. . Cancers 12:(2):350
    [Crossref] [Google Scholar]
  69. 69.
    Hancock H, Dreher MR, Crawford N, Pollock CB, Shih J, et al. 2009.. Evaluation of pulsed high intensity focused ultrasound exposures on metastasis in a murine model. . Clin. Exp. Metastasis 26:(7):72938
    [Crossref] [Google Scholar]
  70. 70.
    Aydin O, Chandran P, Lorsung RR, Cohen G, Burks SR, Frank JA. 2019.. The proteomic effects of pulsed focused ultrasound on tumor microenvironments of murine melanoma and breast cancer models. . Ultrasound Med. Biol. 45:(12):323245
    [Crossref] [Google Scholar]
  71. 71.
    Frenkel V, Etherington A, Greene M, Quijano J, Xie J, et al. 2006.. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. . Acad. Radiol. 13:(4):46979
    [Crossref] [Google Scholar]
  72. 72.
    Cohen G, Chandran P, Lorsung RM, Aydin O, Tomlinson LE, et al. 2021.. Pulsed-focused ultrasound slows B16 melanoma and 4T1 breast tumor growth through differential tumor microenvironmental changes. . Cancers 13:(7):1546
    [Crossref] [Google Scholar]
  73. 73.
    Zhou HY, Chen Y, Li P, He X, Zhong J, et al. 2022.. Sonodynamic therapy for breast cancer: a literature review. . Open Chem. 20:(1):104556
    [Crossref] [Google Scholar]
  74. 74.
    Wang P, Li C, Wang X, Xiong W, Feng X, et al. 2015.. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. . Ultrason. Sonochem. 23::11627
    [Crossref] [Google Scholar]
  75. 75.
    Kim YS, Rubio V, Qi J, Xia R, Shi ZZ, et al. 2011.. Cancer treatment using an optically inert Rose Bengal derivative combined with pulsed focused ultrasound. . J. Control. Release 156:(3):31522
    [Crossref] [Google Scholar]
  76. 76.
    Uto Y, Shimamura Y, Tamatani D, Kuniyasu S, Mizuki Y, et al. 2016.. 5-Aminolevulinic acid enhances ultrasound-mediated antitumor activity via mitochondrial oxidative damage in breast cancer. . Anticancer Res. 36::360712
    [Google Scholar]
  77. 77.
    Liu Y, Wang P, Liu Q, Wang X. 2016.. Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo. . Ultrason. Sonochem. 31::43748
    [Crossref] [Google Scholar]
  78. 78.
    Li Y, Zhou Q, Deng Z, Pan M, Liu X, et al. 2016.. IR-780 dye as a sonosensitizer for sonodynamic therapy of breast tumor. . Sci. Rep. 6::25968
    [Crossref] [Google Scholar]
  79. 79.
    Jia Y, Wang X, Liu Q, Leung AW, Wang P, Xu C. 2017.. Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway. . Ultrasonics 73::15461
    [Crossref] [Google Scholar]
  80. 80.
    Tung CH, Han MS, Kim Y, Qi J, O'Neill BE. 2017.. Tumor ablation using low-intensity ultrasound and sound excitable drug. . J. Control. Release 258::6772
    [Crossref] [Google Scholar]
  81. 81.
    Xu P, Yao J, Li Z, Wang M, Zhou L, et al. 2020.. Therapeutic effect of doxorubicin-chlorin e6-loaded mesoporous silica nanoparticles combined with ultrasound on triple-negative breast cancer. . Int. J. Nanomed. 15::265968
    [Crossref] [Google Scholar]
  82. 82.
    Zhang Q, Wang W, Shen H, Tao H, Wu Y, et al. 2021.. Low-intensity focused ultrasound-augmented multifunctional nanoparticles for integrating ultrasound imaging and synergistic therapy of metastatic breast cancer. . Nanoscale Res. Lett. 16:(1):73
    [Crossref] [Google Scholar]
  83. 83.
    Liu Y, Bai L, Guo K, Jia Y, Zhang K, et al. 2019.. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. . Theranostics 9:(18):526181
    [Crossref] [Google Scholar]
  84. 84.
    Si Y, Yue J, Liu Z, Li M, Du F, et al. 2021.. Phase-transformation nanoparticle-mediated sonodynamic therapy: an effective modality to enhance anti-tumor immune response by inducing immunogenic cell death in breast cancer. . Int. J. Nanomed. 16::191326
    [Crossref] [Google Scholar]
  85. 85.
    Gong F, Cheng L, Yang N, Betzer O, Feng L, et al. 2019.. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. . Adv. Mater. 31:(23):e1900730
    [Crossref] [Google Scholar]
  86. 86.
    Feng Q, Yang X, Hao Y, Wang N, Feng X, et al. 2019.. Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy. . ACS Appl. Mater. Interfaces 11:(36):3272938
    [Crossref] [Google Scholar]
  87. 87.
    Yang CC, Wang CX, Kuan CY, Chi CY, Chen CY, et al. 2020.. Using C-doped TiO2 nanoparticles as a novel sonosensitizer for cancer treatment. . Antioxidants 9:(9):880
    [Crossref] [Google Scholar]
  88. 88.
    Inui T, Makita K, Miura H, Matsuda A, Kuchiike D, et al. 2014.. Case report: a breast cancer patient treated with GcMAF, sonodynamic therapy and hormone therapy. . Anticancer Res. 34:(8):458993
    [Google Scholar]
  89. 89.
    Sharma D, Hussein F, Law N, Farhat G, Tarapacki C, et al. 2022.. Focused ultrasound stimulation of microbubbles in combination with radiotherapy for acute damage of breast cancer xenograft model. . Technol. Cancer Res. Treat. 21::15330338221132925
    [Crossref] [Google Scholar]
  90. 90.
    Dasgupta A, Saifuddin M, McNabb E, Ho L, Lu L, et al. 2023.. Novel MRI-guided focussed ultrasound stimulated microbubble radiation enhancement treatment for breast cancer. . Sci. Rep. 13:(1):13566
    [Crossref] [Google Scholar]
  91. 91.
    Palhares DM, Dasgupta A, Saifuddin M, Ho L, Lu L, et al. 2023.. A novel strategy to enhance radiotherapy efficacy: results from the prospective phase I clinical trial of MR-guided focused ultrasound-stimulated microbubbles (MRgFUS+MB) treatment for breast cancer. . Int. J. Radiat. Oncol. 117:(2):e197
    [Crossref] [Google Scholar]
  92. 92.
    Moore-Palhares D, Dasgupta A, Saifuddin M, Anzola Pena ML, Prasla S, et al. 2024.. Radiation enhancement using focussed ultrasound-stimulated microbubbles for breast cancer: a phase 1 clinical trial. . PLOS Med. 21:(5):e1004408
    [Crossref] [Google Scholar]
  93. 93.
    Skalina KA, Singh S, Chavez CG, Macian F, Guha C. 2019.. Low intensity focused ultrasound (LOFU)-mediated acoustic immune priming and ablative radiation therapy for in situ tumor vaccines. . Sci. Rep. 9:(1):15516
    [Crossref] [Google Scholar]
  94. 94.
    Kheirolomoom A, Silvestrini MT, Ingham ES, Mahakian LM, Tam SM, et al. 2019.. Combining activatable nanodelivery with immunotherapy in a murine breast cancer model. . J. Control. Release 303::4254
    [Crossref] [Google Scholar]
  95. 95.
    Ektate K, Munteanu MC, Ashar H, Malayer J, Ranjan A. 2018.. Chemo-immunotherapy of colon cancer with focused ultrasound and Salmonella-laden temperature sensitive liposomes (thermobots). . Sci. Rep. 8:(1):13062
    [Crossref] [Google Scholar]
  96. 96.
    Suzuki R, Oda Y, Omata D, Nishiie N, Koshima R, et al. 2016.. Tumor growth suppression by the combination of nanobubbles and ultrasound. . Cancer Sci. 107:(3):21723
    [Crossref] [Google Scholar]
  97. 97.
    Rosberger DF, Coleman DJ, Silverman R, Woods S, Rondeau M, Cunningham-Rundles S. 1994.. Immunomodulation in choroidal melanoma: reversal of inverted CD4/CD8 ratios following treatment with ultrasonic hyperthermia. . Biotechnol. Ther. 5:(1–2):5968
    [Google Scholar]
  98. 98.
    Zhu XQ, Lu P, Xu ZL, Zhou Q, Zhang J, et al. 2021.. Alterations in immune response profile of tumor-draining lymph nodes after high-intensity focused ultrasound ablation of breast cancer patients. . Cells 10:(12):3346
    [Crossref] [Google Scholar]
  99. 99.
    Wu F, Wang Z-B, Cao Y-D, Zhou Q, Zhang Y, et al. 2007.. Expression of tumor antigens and heat-shock protein 70 in breast cancer cells after high-intensity focused ultrasound ablation. . Ann. Surg. Oncol. 14:(3):123742
    [Crossref] [Google Scholar]
  100. 100.
    Lu P, Zhu X-Q, Xu Z-L, Zhou Q, Zhang J, Wu F. 2009.. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. . Surgery 145:(3):28693
    [Crossref] [Google Scholar]
  101. 101.
    Xu Z-L, Zhu X-Q, Lu P, Zhou Q, Zhang J, Wu F. 2009.. Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer. . Ultrasound Med. Biol. 35:(1):5057
    [Crossref] [Google Scholar]
  102. 102.
    Deleted in proof
  103. 103.
    Deleted in proof
  104. 104.
    Abe S, Nagata H, Crosby EJ, Inoue Y, Kaneko K, et al. 2022.. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity. . J. Immunother. Cancer 10:(1):e003717
    [Crossref] [Google Scholar]
  105. 105.
    Deleted in proof
  106. 106.
    Deleted in proof
  107. 107.
    Chen Z, Liu W, Yang Z, Luo Y, Qiao C, et al. 2023.. Sonodynamic-immunomodulatory nanostimulators activate pyroptosis and remodel tumor microenvironment for enhanced tumor immunotherapy. . Theranostics 13:(5):157183
    [Crossref] [Google Scholar]
  108. 108.
    Tang R, He H, Lin X, Wu N, Wan L, et al. 2023.. Novel combination strategy of high intensity focused ultrasound (HIFU) and checkpoint blockade boosted by bioinspired and oxygen-supplied nanoprobe for multimodal imaging-guided cancer therapy. . J. Immunother. Cancer 11:(1):e006226
    [Crossref] [Google Scholar]
  109. 109.
    Xiong J, Jiang B, Luo Y, Zou J, Gao X, et al. 2020.. Multifunctional nanoparticles encapsulating astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. . Int. J. Nanomed. 15::415169
    [Crossref] [Google Scholar]
  110. 110.
    Elamir A, Ajith S, Sawaftah N Al, Abuwatfa W, Mukhopadhyay D, et al. 2021.. Ultrasound-triggered herceptin liposomes for breast cancer therapy. . Sci. Rep. 11:(1):7545
    [Crossref] [Google Scholar]
  111. 111.
    Li X, Khorsandi S, Wang Y, Santelli J, Huntoon K, et al. 2022.. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. . Nat. Nanotechnol. 17::89199
    [Crossref] [Google Scholar]
  112. 112.
    Yue W, Chen L, Yu L, Zhou B, Yin H, et al. 2019.. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. . Nat. Commun. 10:(1):2025
    [Crossref] [Google Scholar]
  113. 113.
    Zhang H, Tang WL, Kheirolomoom A, Fite BZ, Wu B, et al. 2021.. Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. . J. Control. Release 330::108094
    [Crossref] [Google Scholar]
  114. 114.
    Steeg PS. 2021.. The blood-tumour barrier in cancer biology and therapy. . Nat. Rev. Clin. Oncol. 18:(11):696714
    [Crossref] [Google Scholar]
  115. 115.
    Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. 2012.. Treatment of HER2-positive breast cancer: current status and future perspectives. . Nat. Rev. Clin. Oncol. 9:(1):1632
    [Crossref] [Google Scholar]
  116. 116.
    Park EJ, Zhang YZ, Vykhodtseva N, McDannold N. 2012.. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. . J. Control. Release 163:(3):27784
    [Crossref] [Google Scholar]
  117. 117.
    O'Reilly MA, Chinnery T, Yee ML, Wu SK, Hynynen K, et al. 2018.. Preliminary investigation of focused ultrasound-facilitated drug delivery for the treatment of leptomeningeal metastases. . Sci. Rep. 8:(1):9013
    [Crossref] [Google Scholar]
  118. 118.
    Alkins R, Burgess A, Ganguly M, Francia G, Kerbel R, et al. 2013.. Focused ultrasound delivers targeted immune cells to metastatic brain tumors. . Cancer Res. 73:(6):189299
    [Crossref] [Google Scholar]
  119. 119.
    Alkins R, Burgess A, Kerbel R, Wels WS, Hynynen K. 2016.. Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival. . Neuro Oncol. 18:(7):97481
    [Crossref] [Google Scholar]
  120. 120.
    Wu SK, Chiang CF, Hsu YH, Liou HC, Fu WM, Lin WL. 2017.. Pulsed-wave low-dose ultrasound hyperthermia selectively enhances nanodrug delivery and improves antitumor efficacy for brain metastasis of breast cancer. . Ultrason. Sonochem. 36::198205
    [Crossref] [Google Scholar]
  121. 121.
    Wu SK, Chiang CF, Hsu YH, Lin TH, Liou HC, et al. 2014.. Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer. . Int. J. Nanomed. 9::448594
    [Google Scholar]
  122. 122.
    Etame AB, Diaz RJ, O'Reilly MA, Smith CA, Mainprize TG, et al. 2012.. Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. . Nanomedicine 8:(7):113342
    [Crossref] [Google Scholar]
  123. 123.
    Liu T, Choi MH, Zhu J, Zhu T, Yang J, et al. 2022.. Sonogenetics: recent advances and future directions. . Brain Stimul. 15:(5):130817
    [Crossref] [Google Scholar]
  124. 124.
    Wu F, Wang ZB, Cao YD, Chen WZ, Bai J, et al. 2003.. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. . Br. J. Cancer 89:(12):222733
    [Crossref] [Google Scholar]
  125. 125.
    Gianfelice D, Khiat A, Boulanger Y, Amara M, Belblidia A. 2003.. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. . J. Vasc. Interv. Radiol. 14:(10):127582
    [Crossref] [Google Scholar]
  126. 126.
    Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y. 2003.. MR imaging-guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings. . Breast Cancer Res. Treat. 82::93101
    [Crossref] [Google Scholar]
  127. 127.
    Zippel DB, Papa MZ. 2005.. The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. . Breast Cancer 12::3238
    [Crossref] [Google Scholar]
  128. 128.
    Wu F, Wang ZB, Cao YD, Zhu XQ, Zhu H, et al. 2007.. “ Wide local ablation” of localized breast cancer using high intensity focused ultrasound. . J. Surg. Oncol. 96:(2):13036
    [Crossref] [Google Scholar]
  129. 129.
    Cavallo Marincola B, Napoli A, Pediconi F, Di Mare L, Palla C, et al. 2014.. Initial clinical experience of non-invasive treatment of magnetic resonance guided high intensity focused ultrasound (MRgFUS) for focal breast cancer. . J. Ther. Ultrasound 2:(Suppl. 1):A16
    [Crossref] [Google Scholar]
  130. 130.
    Guan L, Xu G. 2016.. Damage effect of high-intensity focused ultrasound on breast cancer tissues and their vascularities. . World J. Surg. Oncol. 14:(1):153
    [Crossref] [Google Scholar]
  131. 131.
    Merckel LG, Knuttel FM, Deckers R, van Dalen T, Schubert G, et al. 2016.. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation. . Eur. Radiol. 26:(11):403746
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-103023-111151
Loading
/content/journals/10.1146/annurev-bioeng-103023-111151
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error