1932

Abstract

The microvasculature, a complex network of small blood vessels, connects systemic circulation with local tissues, facilitating the nutrient and oxygen exchange that is critical for homeostasis and organ function. Engineering these structures is paramount for advancing tissue regeneration, disease modeling, and drug testing. However, replicating the intricate architecture of native vascular systems—characterized by diverse vessel diameters, cellular constituents, and dynamic perfusion capabilities—presents significant challenges. This complexity is compounded by the need to precisely integrate biomechanical, biochemical, and cellular cues. Recent breakthroughs in microfabrication, organoids, bioprinting, organ-on-a-chip platforms, and in vivo vascularization techniques have propelled the field toward faithfully replicating vascular complexity. These innovations not only enhance our understanding of vascular biology but also enable the generation of functional, perfusable tissue constructs. Here, we explore state-of-the-art technologies and strategies in microvascular engineering, emphasizing key advancements and addressing the remaining challenges to developing fully functional vascularized tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-103023-115236
2025-05-01
2025-05-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-103023-115236.html?itemId=/content/journals/10.1146/annurev-bioeng-103023-115236&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Monahan-Earley R, Dvorak AM, Aird WC. 2013.. Evolutionary origins of the blood vascular system and endothelium. . J. Thromb. Haemost. 11:(Suppl. 1):4666
    [Crossref] [Google Scholar]
  2. 2.
    Heinke J, Patterson C, Moser M. 2012.. Life is a pattern: vascular assembly within the embryo. . Front. Biosci. 4::226988
    [Crossref] [Google Scholar]
  3. 3.
    Culver JC, Dickinson ME. 2010.. The effects of hemodynamic force on embryonic development. . Microcirculation 17::16478
    [Crossref] [Google Scholar]
  4. 4.
    Cleaver O, Melton DA. 2003.. Endothelial signaling during development. . Nat. Med. 9::66168
    [Crossref] [Google Scholar]
  5. 5.
    Rafii S, Butler JM, Ding BS. 2016.. Angiocrine functions of organ-specific endothelial cells. . Nature 529::31625
    [Crossref] [Google Scholar]
  6. 6.
    Carmeliet P. 2005.. Angiogenesis in life, disease and medicine. . Nature 438::93236
    [Crossref] [Google Scholar]
  7. 7.
    Carmeliet P, Jain RK. 2011.. Molecular mechanisms and clinical applications of angiogenesis. . Nature 473::298307
    [Crossref] [Google Scholar]
  8. 8.
    Trimm E, Red-Horse K. 2023.. Vascular endothelial cell development and diversity. . Nat. Rev. Cardiol. 20::197210
    [Crossref] [Google Scholar]
  9. 9.
    Ryan AR, Cleaver O. 2022.. Plumbing our organs: lessons from vascular development to instruct lab generated tissues. . In Current Topics in Developmental Biology, Vol. 148: Mouse Models of Development and Disease, ed. T Gridley, L Oxburgh , pp. 16594. Cambridge, MA:: Academic
    [Google Scholar]
  10. 10.
    Daniel E, Cleaver O. 2019.. Vascularizing organogenesis: lessons from developmental biology and implications for regenerative medicine. . Curr. Top. Dev. Biol. 132::177220
    [Crossref] [Google Scholar]
  11. 11.
    Jaffe EA, Nachman RL, Becker CG, Minick CR. 1973.. Culture of human endothelial cells derived from umbilical veins—identification by morphologic and immunological criteria. . J. Clin. Investig. 52::274556
    [Crossref] [Google Scholar]
  12. 12.
    Nachman RL, Jaffe EA. 2004.. Endothelial cell culture: beginnings of modern vascular biology. . J. Clin. Investig. 114::103740
    [Crossref] [Google Scholar]
  13. 13.
    O'Connor C, Brady E, Zheng Y, Moore E, Stevens KR. 2022.. Engineering the multiscale complexity of vascular networks. . Nat. Rev. Mater. 7::70216
    [Crossref] [Google Scholar]
  14. 14.
    Mandrycky C, Phong K, Zheng Y. 2017.. Tissue engineering toward organ-specific regeneration and disease modeling. . MRS Commun. 7::33247
    [Crossref] [Google Scholar]
  15. 15.
    Augustin HG, Koh GY. 2017.. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. . Science 357::eaal2379
    [Crossref] [Google Scholar]
  16. 16.
    Aird WC. 2007.. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. . Circ. Res. 100::15873
    [Crossref] [Google Scholar]
  17. 17.
    Aird WC. 2007.. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. . Circ. Res. 100::17490
    [Crossref] [Google Scholar]
  18. 18.
    Jambusaria A, Hong Z, Zhang L, Srivastava S, Jana A, et al. 2020.. Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation. . eLife 9::e51413
    [Crossref] [Google Scholar]
  19. 19.
    Finch NC, Neal CR, Welsh GI, Foster RR, Satchell SC. 2023.. The unique structural and functional characteristics of glomerular endothelial cell fenestrations and their potential as a therapeutic target in kidney disease. . Am. J. Physiol. Renal Physiol. 325::F46578
    [Crossref] [Google Scholar]
  20. 20.
    Aird WC. 2012.. Endothelial cell heterogeneity. Cold Spring Harb. . Perspect. Med. 2::a006429
    [Google Scholar]
  21. 21.
    Cleuren ACA, van der Ent MA, Jiang H, Hunker KL, Yee A, et al. 2019.. The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. . PNAS 116::2361824
    [Crossref] [Google Scholar]
  22. 22.
    Lochhead JJ, Yang J, Ronaldson PT, Davis TP. 2020.. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. . Front. Physiol. 11::914
    [Crossref] [Google Scholar]
  23. 23.
    Schupp JC, Adams TS, Cosme C, Raredon MSB, Yuan Y, et al. 2021.. Integrated single-cell atlas of endothelial cells of the human lung. . Circulation 144:(4):286302
    [Crossref] [Google Scholar]
  24. 24.
    Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E. 2022.. Cardiac fibrosis in the pressure overloaded left and right ventricle as a therapeutic target. . Front. Cardiovasc. Med. 9::886553
    [Crossref] [Google Scholar]
  25. 25.
    Droste P, Wong DWL, Hohl M, von Stillfried S, Klinkhammer BM, Boor P. 2023.. Semiautomated pipeline for quantitative analysis of heart histopathology. . J. Transl. Med. 21:(1):666
    [Crossref] [Google Scholar]
  26. 26.
    Rodriguez PQ, Unnersjö-Jess D, Zambrano SS, Guo J, Möller-Hackbarth K, et al. 2020.. Inactivation of mediator complex protein 22 in podocytes results in intracellular vacuole formation, podocyte loss and premature death. . Sci. Rep. 10:(1):20037
    [Crossref] [Google Scholar]
  27. 27.
    Kumaran GK, Hanukoglu I. 2024.. Mapping the cytoskeletal architecture of renal tubules and surrounding peritubular capillaries in the kidney. . Cytoskeleton 81:(4–5):22737
    [Crossref] [Google Scholar]
  28. 28.
    Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. 2021.. The whole story about fenestrations in LSEC. . Front. Physiol. 12::735573
    [Crossref] [Google Scholar]
  29. 29.
    Hossain MMN, Hu NW, Abdelhamid M, Singh S, Murfee WL, Balogh P. 2023.. Angiogenic microvascular wall shear stress patterns revealed through three-dimensional red blood cell resolved modeling. . Function 4::zqad046
    [Crossref] [Google Scholar]
  30. 30.
    Lorthois S, Lauwers F, Cassot F. 2014.. Tortuosity and other vessel attributes for arterioles and venules of the human cerebral cortex. . Microvasc. Res. 91::99109
    [Crossref] [Google Scholar]
  31. 31.
    Mandrycky C, Hadland B, Zheng Y. 2020.. 3D curvature-instructed endothelial flow response and tissue vascularization. . Sci. Adv. 6::eabb3629
    [Crossref] [Google Scholar]
  32. 32.
    Davis GE, Senger DR. 2005.. Endothelial extracellular matrix. . Circ. Res. 97::1093107
    [Crossref] [Google Scholar]
  33. 33.
    Marchand M, Monnot C, Muller L, Germain S. 2019.. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. . Semin. Cell Dev. Biol. 89::14756
    [Crossref] [Google Scholar]
  34. 34.
    Armulik A, Genové G, Betsholtz C. 2011.. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. . Dev. Cell 21::193215
    [Crossref] [Google Scholar]
  35. 35.
    Sweeney M, Foldes G. 2018.. It takes two: endothelial-perivascular cell cross-talk in vascular development and disease. . Front. Cardiovasc. Med. 5::154
    [Crossref] [Google Scholar]
  36. 36.
    Yu Y, Leng Y, Song X, Mu J, Ma L, et al. 2023.. Extracellular matrix stiffness regulates microvascular stability by controlling endothelial paracrine signaling to determine pericyte fate. . Arterioscler. Thromb. Vasc. Biol. 43::188799
    [Crossref] [Google Scholar]
  37. 37.
    Mammoto T, Ingber DE. 2010.. Mechanical control of tissue and organ development. . Development 137::140720
    [Crossref] [Google Scholar]
  38. 38.
    Udan RS, Culver JC, Dickinson ME. 2013.. Understanding vascular development. . Wiley Interdiscip Rev. Dev. Biol. 2::32746
    [Crossref] [Google Scholar]
  39. 39.
    Ricard N, Bailly S, Guignabert C, Simons M. 2021.. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. . Nat. Rev. Cardiol. 18::56580
    [Crossref] [Google Scholar]
  40. 40.
    Weidemann A, Johnson RS. 2008.. Biology of HIF-1α. . Cell Death Differ. 15::62127
    [Crossref] [Google Scholar]
  41. 41.
    Ribatti D, Crivellato E. 2012.. “ Sprouting angiogenesis,” a reappraisal. . Dev. Biol. 372::15765
    [Crossref] [Google Scholar]
  42. 42.
    Ramasamy SK, Kusumbe AP, Adams RH. 2015.. Regulation of tissue morphogenesis by endothelial cell-derived signals. . Trends Cell Biol. 25::14857
    [Crossref] [Google Scholar]
  43. 43.
    Gemberling M, Karra R, Dickson AL, Poss KD. 2015.. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. . eLife 4::e05871
    [Crossref] [Google Scholar]
  44. 44.
    Edsbagge J, Johansson JK, Esni F, Luo Y, Radice GL, Semb H. 2005.. Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. . Development 132::108592
    [Crossref] [Google Scholar]
  45. 45.
    Lammert E, Cleaver O, Melton D. 2003.. Role of endothelial cells in early pancreas and liver development. . Mech. Dev. 120::5964
    [Crossref] [Google Scholar]
  46. 46.
    Rivron NC, Liu J, Rouwkema J, de Boer J, van Blitterswijk CA. 2008.. Engineering vascularised tissues in vitro. . Eur. Cells Mater. 15::2740
    [Crossref] [Google Scholar]
  47. 47.
    Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, et al. 2005.. Engineering vascularized skeletal muscle tissue. . Nat. Biotechnol. 23::87984
    [Crossref] [Google Scholar]
  48. 48.
    Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, et al. 2020.. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. . Cell 181:(4):90513.e7
    [Crossref] [Google Scholar]
  49. 49.
    Cross VL, Zheng Y, Choi NW, Verbridge SS, Sutermaster BA, et al. 2010.. Dense collagen matrices with microstructure and cellular remodeling for three-dimensional cell culture. . Biomaterials 31::8596607
    [Crossref] [Google Scholar]
  50. 50.
    Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. 2019.. Collagen-based tissue engineering strategies for vascular medicine. . Front. Bioeng. Biotechnol. 7::166
    [Crossref] [Google Scholar]
  51. 51.
    Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM. 2008.. Fibrin: a natural biodegradable scaffold in vascular tissue engineering. . Cells Tissues Organs 188::33346
    [Crossref] [Google Scholar]
  52. 52.
    Lesman A, Koffler J, Atlas R, Blinder YJ, Kam Z, Levenberg S. 2011.. Engineering vessel-like networks within multicellular fibrin-based constructs. . Biomaterials 32::785669
    [Crossref] [Google Scholar]
  53. 53.
    Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M, et al. 2009.. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. . PNAS 106::1656873
    [Crossref] [Google Scholar]
  54. 54.
    Stevens KR, Pabon L, Muskheli V, Murry CE. 2009.. Scaffold-free human cardiac tissue patch created from embryonic stem cells. . Tissue Eng. Part A 15::121122
    [Crossref] [Google Scholar]
  55. 55.
    Cummings CL, Gawlitta D, Nerem RM, Stegemann JP. 2004.. Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. . Biomaterials 25::3699706
    [Crossref] [Google Scholar]
  56. 56.
    Lee JK, Link JM, Hu JCY, Athanasiou KA. 2017.. The self-assembling process and applications in tissue engineering. . Cold Spring Harb. Perspect. Med. 7::a025668
    [Crossref] [Google Scholar]
  57. 57.
    Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, et al. 2011.. Growth of engineered human myocardium with mechanical loading and vascular coculture. . Circ. Res. 109::4795
    [Crossref] [Google Scholar]
  58. 58.
    Coulombe KLK, Murry CE. 2014.. Vascular perfusion of implanted human engineered cardiac tissue. . In 40th Annual Northeast Bioengineering Conference. New York:: IEEE. https://doi.org/10.1109/NEBEC.2014.6972763
    [Google Scholar]
  59. 59.
    Kreutziger KL, Muskheli V, Johnson P, Braun K, Wight TN, Murry CE. 2011.. Developing vasculature and stroma in engineered human myocardium. . Tissue Eng. Part A 17::121928
    [Crossref] [Google Scholar]
  60. 60.
    Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. 2020.. Vascularization of tissue-engineered skeletal muscle constructs. . Biomaterials 235::119708
    [Crossref] [Google Scholar]
  61. 61.
    Gilbert-Honick J, Grayson W. 2020.. Vascularized and innervated skeletal muscle tissue engineering. . Adv. Healthc. Mater. 9::e1900626
    [Crossref] [Google Scholar]
  62. 62.
    Nahmias Y, Schwartz RE, Hu WS, Verfaillie CM, Odde DJ. 2006.. Endothelium-mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro. . Tissue Eng. 12::162738
    [Crossref] [Google Scholar]
  63. 63.
    Nahmias Y, Odde DJ. 2006.. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. . Nat. Protoc. 1::228896
    [Crossref] [Google Scholar]
  64. 64.
    Simunovic F, Finkenzeller G. 2021.. Vascularization strategies in bone tissue engineering. . Cells 10::1749
    [Crossref] [Google Scholar]
  65. 65.
    Rouwkema J, Boer JD, Blitterswijk CAV. 2006.. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. . Tissue Eng. 12::268593
    [Crossref] [Google Scholar]
  66. 66.
    Gibot L, Galbraith T, Huot J, Auger FA. 2010.. A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute. . Tissue Eng. Part A 16::3199206
    [Crossref] [Google Scholar]
  67. 67.
    Attiogbe E, Larochelle S, Chaib Y, Mainzer C, Mauroux A, et al. 2023.. An in vitro autologous, vascularized, and immunocompetent tissue engineered skin model obtained by the self-assembled approach. . Acta Biomater. 168::36171
    [Crossref] [Google Scholar]
  68. 68.
    Freiman A, Shandalov Y, Rosenfeld D, Shor E, Ben-David D, et al. 2018.. Engineering vascularized flaps using adipose-derived microvascular endothelial cells and mesenchymal stem cells. . J. Tissue Eng. Regenerat. Med. 12::e13041
    [Crossref] [Google Scholar]
  69. 69.
    Ben-Shaul S, Landau S, Merdler U, Levenberg S. 2019.. Mature vessel networks in engineered tissue promote graft-host anastomosis and prevent graft thrombosis. . PNAS 116::295560
    [Crossref] [Google Scholar]
  70. 70.
    Shafiee S, Shariatzadeh S, Zafari A, Majd A, Niknejad H. 2021.. Recent advances on cell-based co-culture strategies for prevascularization in tissue engineering. . Front. Bioeng. Biotechnol. 9::745314
    [Crossref] [Google Scholar]
  71. 71.
    Medina-Leyte DJ, Domínguez-Pérez M, Mercado I, Villarreal-Molina MT, Jacobo-Albavera L. 2020.. Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: a review. . Appl. Sci. 10::938
    [Crossref] [Google Scholar]
  72. 72.
    Marcu R, Choi YJ, Xue J, Fortin CL, Wang Y, et al. 2018.. Human organ-specific endothelial cell heterogeneity. . iScience 4::2035
    [Crossref] [Google Scholar]
  73. 73.
    Wang K, Lin RZ, Melero-Martin JM. 2019.. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. . Cell. Mol. Life Sci. 76::42139
    [Crossref] [Google Scholar]
  74. 74.
    Palikuqi B, Nguyen DT, Li G, Schreiner R, Pellegata AF, et al. 2020.. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. . Nature 585::42632
    [Crossref] [Google Scholar]
  75. 75.
    Williams IM, Wu JC. 2019.. Generation of endothelial cells from human pluripotent stem cells. . Arterioscler. Thromb. Vasc. Biol. 39::131729
    [Crossref] [Google Scholar]
  76. 76.
    Wilson HK, Canfield SG, Shusta EV, Palecek SP. 2014.. Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. . Stem Cells 32::303745
    [Crossref] [Google Scholar]
  77. 77.
    Nguyen J, Lin Y-Y, Gerecht S. 2021.. The next generation of endothelial differentiation: tissue-specific ECs. . Cell Stem Cell 28::1188204
    [Crossref] [Google Scholar]
  78. 78.
    Sieminski AL, Hebbel RP, Gooch KJ. 2005.. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. . Tissue Eng. 11::133245
    [Crossref] [Google Scholar]
  79. 79.
    Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, et al. 2008.. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. . Circ. Res. 103::194202
    [Crossref] [Google Scholar]
  80. 80.
    Szöke K, Beckstrøm KJ, Brinchmann JE. 2012.. Human adipose tissue as a source of cells with angiogenic potential. . Cell Transplant 21::23550
    [Crossref] [Google Scholar]
  81. 81.
    Saito N, Shirado T, Funabashi-Eto H, Wu Y, Mori M, et al. 2022.. Purification and characterization of human adipose-resident microvascular endothelial progenitor cells. . Sci. Rep. 12::1775
    [Crossref] [Google Scholar]
  82. 82.
    Maoz BM, Herland A, FitzGerald EA, Grevesse T, Vidoudez C, et al. 2018.. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. . Nat. Biotechnol. 36::86574
    [Crossref] [Google Scholar]
  83. 83.
    Takahashi K, Yamanaka S. 2006.. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. . Cell 126::66376
    [Crossref] [Google Scholar]
  84. 84.
    Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. 2001.. Hematopoietic colony-forming cells derived from human embryonic stem cells. . PNAS 98::1071621
    [Crossref] [Google Scholar]
  85. 85.
    Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. 2002.. Endothelial cells derived from human embryonic stem cells. . PNAS 99::439196
    [Crossref] [Google Scholar]
  86. 86.
    Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, et al. 2008.. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. . Nature 453::52428
    [Crossref] [Google Scholar]
  87. 87.
    Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, et al. 2017.. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. . Nat. Protoc. 12::1531
    [Crossref] [Google Scholar]
  88. 88.
    Lian X, Bao X, Al-Ahmad A, Liu J, Wu Y, et al. 2014.. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. . Stem Cell Rep. 3::80416
    [Crossref] [Google Scholar]
  89. 89.
    Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, et al. 2015.. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. . Nat. Cell Biol. 17::9941003
    [Crossref] [Google Scholar]
  90. 90.
    Palpant NJ, Pabon L, Roberts M, Hadland B, Jones D, et al. 2015.. Inhibition of beta-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. . Development 142::3198209
    [Google Scholar]
  91. 91.
    Gage BK, Liu JC, Innes BT, MacParland SA, McGilvray ID, et al. 2020.. Generation of functional liver sinusoidal endothelial cells from human pluripotent stem-cell-derived venous angioblasts. . Cell Stem Cell 27::25469.e9
    [Crossref] [Google Scholar]
  92. 92.
    Lu TM, Barcia Durán JG, Houghton S, Rafii S, Redmond D, Lis R. 2021.. Human induced pluripotent stem cell-derived brain endothelial cells: current controversies. . Front. Physiol. 12::642812
    [Crossref] [Google Scholar]
  93. 93.
    Helle E, Ampuja M, Dainis A, Antola L, Temmes E, et al. 2021.. HiPS-endothelial cells acquire cardiac endothelial phenotype in co-culture with hiPS-cardiomyocytes. . Front. Cell Dev. Biol. 9::715093
    [Crossref] [Google Scholar]
  94. 94.
    Pill K, Melke J, Mühleder S, Pultar M, Rohringer S, et al. 2018.. Microvascular networks from endothelial cells and mesenchymal stromal cells from adipose tissue and bone marrow: a comparison. . Front. Bioeng. Biotechnol. 6::156
    [Crossref] [Google Scholar]
  95. 95.
    Melchiorri AJ, Nguyen BN, Fisher JP. 2014.. Mesenchymal stem cells: roles and relationships in vascularization. . Tissue Eng. Part B Rev. 20::21828
    [Crossref] [Google Scholar]
  96. 96.
    Tatullo M, Marrelli M, Shakesheff KM, White LJ. 2015.. Dental pulp stem cells: function, isolation and applications in regenerative medicine. . J. Tissue Eng. Regen. Med. 9::120516
    [Crossref] [Google Scholar]
  97. 97.
    Si Z, Wang X, Sun C, Kang Y, Xu J, et al. 2019.. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. . Biomed. Pharmacother. 114::108765
    [Crossref] [Google Scholar]
  98. 98.
    Loibl M, Binder A, Herrmann M, Duttenhoefer F, Richards RG, et al. 2014.. Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. . Biomed. Res. Int. 2014.:395781
    [Google Scholar]
  99. 99.
    Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, et al. 2016.. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. . Stem Cell Res. Ther. 7::163
    [Crossref] [Google Scholar]
  100. 100.
    Tao H, Han Z, Han ZC, Li Z. 2016.. Proangiogenic features of mesenchymal stem cells and their therapeutic applications. . Stem Cells Int. 2016.:1314709
    [Google Scholar]
  101. 101.
    Kosyakova N, Kao DD, Figetakis M, López-Giráldez F, Spindler S, et al. 2020.. Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro. . NPJ Regenerative Med. 5::1
    [Crossref] [Google Scholar]
  102. 102.
    Tsukerman A, Machour M, Shuhmaher M, Fischer EO, Shoyhet H, et al. 2024.. Placenta-derived mesenchymal stromal-like cells promote 3D-engineered muscle tissue differentiation and vessel network maturation. . Small Sci. 4::2400228
    [Crossref] [Google Scholar]
  103. 103.
    Song H-HG, Lammers A, Sundaram S, Rubio L, Chen AX, et al. 2020.. Transient support from fibroblasts is sufficient to drive functional vascularization in engineered tissues. . Adv. Funct. Mater. 30::2003777
    [Crossref] [Google Scholar]
  104. 104.
    Landau S, Zhao Y, Hamidzada H, Kent GM, Okhovatian S, et al. 2024.. Primitive macrophages enable long-term vascularization of human heart-on-a-chip platforms. . Cell Stem Cell 31::122238.e10
    [Crossref] [Google Scholar]
  105. 105.
    Hofer M, Lutolf MP. 2021.. Engineering organoids. . Nat. Rev. Mater. 6::40220
    [Crossref] [Google Scholar]
  106. 106.
    Kim J, Koo B-K, Knoblich JA. 2020.. Human organoids: model systems for human biology and medicine. . Nat. Rev. Mol. Cell Biol. 21::57184
    [Crossref] [Google Scholar]
  107. 107.
    Sheridan MA, Fernando RC, Gardner L, Hollinshead MS, Burton GJ, et al. 2020.. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. . Nat. Protoc. 15::344163
    [Crossref] [Google Scholar]
  108. 108.
    Unbekandt M, Davies JA. 2010.. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. . Kidney Int. 77::40716
    [Crossref] [Google Scholar]
  109. 109.
    Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, et al. 2014.. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. . Nat. Cell Biol. 16::11826
    [Crossref] [Google Scholar]
  110. 110.
    Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A, et al. 2021.. Intestinal organoid cocultures with microbes. . Nat. Protoc. 16::463349
    [Crossref] [Google Scholar]
  111. 111.
    Giandomenico SL, Sutcliffe M, Lancaster MA. 2021.. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. . Nat. Protoc. 16::579602
    [Crossref] [Google Scholar]
  112. 112.
    Broutier L, Andersson-Rolf A, Hindley CJ, Boj SF, Clevers H, et al. 2016.. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. . Nat. Protoc. 11::172443
    [Crossref] [Google Scholar]
  113. 113.
    Koike H, Iwasawa K, Ouchi R, Maezawa M, Kimura M, et al. 2021.. Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells. . Nat. Protoc. 16::91936
    [Crossref] [Google Scholar]
  114. 114.
    Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, et al. 2019.. Generation of lung organoids from human pluripotent stem cells in vitro. . Nat. Protoc. 14::51840
    [Crossref] [Google Scholar]
  115. 115.
    Drakhlis L, Devadas SB, Zweigerdt R. 2021.. Generation of heart-forming organoids from human pluripotent stem cells. . Nat. Protoc. 16::565272
    [Crossref] [Google Scholar]
  116. 116.
    Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, et al. 2019.. Human blood vessel organoids as a model of diabetic vasculopathy. . Nature 565::50510
    [Crossref] [Google Scholar]
  117. 117.
    Sun X-Y, Ju X-C, Li Y, Zeng P-M, Wu J, et al. 2022.. Generation of vascularized brain organoids to study neurovascular interactions. . eLife 11::e76707
    [Crossref] [Google Scholar]
  118. 118.
    Nwokoye PN, Abilez OJ. 2024.. Bioengineering methods for vascularizing organoids. . Cell Rep. Methods 4::100779
    [Crossref] [Google Scholar]
  119. 119.
    Low JH, Li P, Chew EGY, Zhou B, Suzuki K, et al. 2019.. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. . Cell Stem Cell 25::37387.e9
    [Crossref] [Google Scholar]
  120. 120.
    Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, et al. 2019.. Flow-enhanced vascularization and maturation of kidney organoids in vitro. . Nat. Methods 16::25562
    [Crossref] [Google Scholar]
  121. 121.
    Ham O, Jin YB, Kim J, Lee M-O. 2020.. Blood vessel formation in cerebral organoids formed from human embryonic stem cells. . Biochem. Biophys. Res. Commun. 521::8490
    [Crossref] [Google Scholar]
  122. 122.
    Strobel HA, Gerton T, Hoying JB. 2021.. Vascularized adipocyte organoid model using isolated human microvessel fragments. . Biofabrication 13::035022
    [Crossref] [Google Scholar]
  123. 123.
    Takebe T, Sekine K, Enomura M, Koike H, Kimura M, et al. 2013.. Vascularized and functional human liver from an iPSC-derived organ bud transplant. . Nature 499::48184
    [Crossref] [Google Scholar]
  124. 124.
    Yap KK, Gerrand YW, Dingle AM, Yeoh GC, Morrison WA, Mitchell GM. 2020.. Liver sinusoidal endothelial cells promote the differentiation and survival of mouse vascularised hepatobiliary organoids. . Biomaterials 251::120091
    [Crossref] [Google Scholar]
  125. 125.
    Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, et al. 2015.. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. . Cell Stem Cell 16::55665
    [Crossref] [Google Scholar]
  126. 126.
    Ioannidis K, Cohen A, Ghosheh M, Ehrlich A, Fischer A, et al. 2022.. Aminoglycoside-induced lipotoxicity and its reversal in kidney on chip. . Lab Chip 22::446980
    [Crossref] [Google Scholar]
  127. 127.
    Cohen A, Ioannidis K, Ehrlich A, Regenbaum S, Cohen M, et al. 2021.. Mechanism and reversal of drug-induced nephrotoxicity on a chip. . Sci. Transl. Med. 13::eabd6299
    [Crossref] [Google Scholar]
  128. 128.
    Ghosheh M, Ehrlich A, Ioannidis K, Ayyash M, Goldfracht I, et al. 2023.. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids. . Nat. Biomed. Eng. 7::1493513
    [Crossref] [Google Scholar]
  129. 129.
    Miao Y, Tan C, Pek NM, Yu Z, Iwasawa K, et al. 2024.. Deciphering endothelial and mesenchymal organ specification in vascularized lung and intestinal organoids. . bioRxiv 2024.02.06.577460. https://doi.org/10.1101/2024.02.06.577460
  130. 130.
    Abilez OJ, Yang H, Tian L, Wilson KD, Lyall EH, et al. 2022.. Micropatterned organoids enable modeling of the earliest stages of human cardiac vascularization. . bioRxiv 2022.07.08.499233. https://doi.org/10.1101/2022.07.08.499233
  131. 131.
    Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, et al. 2019.. Engineering of human brain organoids with a functional vascular-like system. . Nat. Methods 16::116975
    [Crossref] [Google Scholar]
  132. 132.
    Holloway EM, Wu JH, Czerwinski M, Sweet CW, Wu A, et al. 2020.. Differentiation of human intestinal organoids with endogenous vascular endothelial cells. . Dev. Cell 54:(4):51628.e7
    [Crossref] [Google Scholar]
  133. 133.
    Dailamy A, Parekh U, Katrekar D, Kumar A, McDonald D, et al. 2021.. Programmatic introduction of parenchymal cell types into blood vessel organoids. . Stem Cell Rep. 16::243241
    [Crossref] [Google Scholar]
  134. 134.
    Gerhardt H. 2008.. VEGF and endothelial guidance in angiogenic sprouting. . Organogenesis 4::24146
    [Crossref] [Google Scholar]
  135. 135.
    Tien J. 2014.. Microfluidic approaches for engineering vasculature. . Curr. Opin. Chem. Eng. 3::3641
    [Crossref] [Google Scholar]
  136. 136.
    Kim S, Kim W, Lim S, Jeon JS. 2017.. Vasculature-on-a-chip for in vitro disease models. . Bioengineering 4::8
    [Crossref] [Google Scholar]
  137. 137.
    Nguyen D-HT, Stapleton SC, Yang MT, Cha SS, Choi CK, et al. 2013.. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. . PNAS 110::671217
    [Crossref] [Google Scholar]
  138. 138.
    Song JW, Munn LL. 2011.. Fluid forces control endothelial sprouting. . PNAS 108::1534247
    [Crossref] [Google Scholar]
  139. 139.
    Bai J, Khajavi M, Sui L, Fu H, Tarakkad Krishnaji S, et al. 2021.. Angiogenic responses in a 3D micro-engineered environment of primary endothelial cells and pericytes. . Angiogenesis 24::11127
    [Crossref] [Google Scholar]
  140. 140.
    Debbi L, Zohar B, Shuhmaher M, Shandalov Y, Goldfracht I, Levenberg S. 2022.. Integrating engineered macro vessels with self-assembled capillaries in 3D implantable tissue for promoting vascular integration in-vivo. . Biomaterials 280::121286
    [Crossref] [Google Scholar]
  141. 141.
    Schot M, Becker M, Paggi CA, Gomes F, Koch T, et al. 2024.. Photoannealing of microtissues creates high-density capillary network containing living matter in a volumetric-independent manner. . Adv. Mater. 36::2308949
    [Crossref] [Google Scholar]
  142. 142.
    Zheng Y, Chen J, Craven M, Choi NW, Totorica S, et al. 2012.. In vitro microvessels for the study of angiogenesis and thrombosis. . PNAS 109::934247
    [Crossref] [Google Scholar]
  143. 143.
    Kotha S, Sun S, Adams A, Hayes B, Phong KT, et al. 2018.. Microvasculature-directed thrombopoiesis in a 3D in vitro marrow microenvironment. . PLOS ONE 13::e0195082
    [Crossref] [Google Scholar]
  144. 144.
    Redd MA, Zeinstra N, Qin W, Wei W, Martinson A, et al. 2019.. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. . Nat. Commun. 10::584
    [Crossref] [Google Scholar]
  145. 145.
    Roberts MA, Tran D, Coulombe KLK, Razumova M, Regnier M, et al. 2016.. Stromal cells in dense collagen promote cardiomyocyte and microvascular patterning in engineered human heart tissue. . Tissue Eng. Part A 22::63344
    [Crossref] [Google Scholar]
  146. 146.
    Howard C, Joof F, Hu R, Smith JD, Zheng Y. 2023.. Probing cerebral malaria inflammation in 3D human brain microvessels. . Cell Rep. 42::113253
    [Crossref] [Google Scholar]
  147. 147.
    Shin YJ, Evitts KM, Jin S, Howard C, Sharp-Milgrom M, et al. 2023.. Amyloid beta peptides (Aβ) from Alzheimer's disease neuronal secretome induce endothelial activation in a human cerebral microvessel model. . Neurobiol. Dis. 181::106125
    [Crossref] [Google Scholar]
  148. 148.
    Rayner SG, Phong KT, Xue J, Lih D, Shankland SJ, et al. 2018.. Reconstructing the human renal vascular-tubular unit in vitro. . Adv. Healthc. Mater. 7::e1801120
    [Crossref] [Google Scholar]
  149. 149.
    Zeinstra N, Frey AL, Xie Z, Blakely LP, Wang RK, et al. 2023.. Stacking thick perfusable human microvascular grafts enables dense vascularity and rapid integration into infarcted rat hearts. . Biomaterials 301::122250
    [Crossref] [Google Scholar]
  150. 150.
    Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, et al. 2016.. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. . Nat. Mater. 15::66978
    [Crossref] [Google Scholar]
  151. 151.
    Wu W, DeConinck A, Lewis JA. 2011.. Omnidirectional printing of 3D microvascular networks. . Adv. Mater. 23::H17883
    [Google Scholar]
  152. 152.
    Skylar-Scott MA, Uzel SGM, Nam LL, Ahrens JH, Truby RL, et al. 2019.. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. . Sci. Adv. 5::eaaw2459
    [Crossref] [Google Scholar]
  153. 153.
    Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, et al. 2015.. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. . Sci. Adv. 1::e1500758
    [Crossref] [Google Scholar]
  154. 154.
    Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, et al. 2019.. 3D bioprinting of collagen to rebuild components of the human heart. . Science 365::48287
    [Crossref] [Google Scholar]
  155. 155.
    Zheng F, Derby B, Wong J. 2021.. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing. . Biofabrication 13::035006
    [Crossref] [Google Scholar]
  156. 156.
    Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ. 2005.. Laser-guided direct writing for three-dimensional tissue engineering. . Biotechnol. Bioeng. 92::12936
    [Crossref] [Google Scholar]
  157. 157.
    Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, et al. 2019.. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. . Science 364::45864
    [Crossref] [Google Scholar]
  158. 158.
    Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. 2020.. Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. . Adv. Healthc. Mater. 9::2000156
    [Crossref] [Google Scholar]
  159. 159.
    Duong VT, Lin C-C. 2023.. Digital light processing 3D bioprinting of gelatin-norbornene hydrogel for enhanced vascularization. . Macromol. Biosci. 23::2300213
    [Crossref] [Google Scholar]
  160. 160.
    You S, Xiang Y, Hwang HH, Berry DB, Kiratitanaporn W, et al. 2023.. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. . Sci. Adv. 9::eade7923
    [Crossref] [Google Scholar]
  161. 161.
    Bernal PN, Bouwmeester M, Madrid-Wolff J, Falandt M, Florczak S, et al. 2022.. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. . Adv. Mater. 34::2110054
    [Crossref] [Google Scholar]
  162. 162.
    Bernal PN, Delrot P, Loterie D, Li Y, Malda J, et al. 2019.. Volumetric bioprinting of complex living-tissue constructs within seconds. . Adv. Mater. 31::1904209
    [Crossref] [Google Scholar]
  163. 163.
    Rizzo R, Rütsche D, Liu H, Chansoria P, Wang A, et al. 2023.. Multiscale hybrid fabrication: volumetric printing meets two-photon ablation. . Adv. Mater. Technol. 8::2201871
    [Crossref] [Google Scholar]
  164. 164.
    Kinstlinger IS, Calderon GA, Royse MK, Means AK, Grigoryan B, Miller JS. 2021.. Perfusion and endothelialization of engineered tissues with patterned vascular networks. . Nat. Protoc. 16::3089113
    [Crossref] [Google Scholar]
  165. 165.
    Morgan JP, Delnero PF, Zheng Y, Verbridge SS, Chen J, et al. 2013.. Formation of microvascular networks in vitro. . Nat. Protoc. 8::182036
    [Crossref] [Google Scholar]
  166. 166.
    Arakawa CK, Badeau BA, Zheng Y, DeForest CA. 2017.. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. . Adv. Mater. 29::1703156
    [Crossref] [Google Scholar]
  167. 167.
    Arakawa C, Gunnarsson C, Howard C, Bernabeu M, Phong K, et al. 2020.. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. . Sci. Adv. 6::eaay7243
    [Crossref] [Google Scholar]
  168. 168.
    Rayner SG, Howard CC, Mandrycky CJ, Stamenkovic S, Himmelfarb J, et al. 2021.. Multiphoton-guided creation of complex organ-specific microvasculature. . Adv. Healthc. Mater. 10::e2100031
    [Crossref] [Google Scholar]
  169. 169.
    Margolis EA, Choi LS, Friend NE, Putnam AJ. 2024.. Engineering primitive multiscale chimeric vasculature by combining human microvessels with explanted murine vessels. . Sci. Rep. 14::4036
    [Crossref] [Google Scholar]
  170. 170.
    Orellano I, Thomas A, Herrera A, Brauer E, Wulsten D, et al. 2022.. Engineering vascular self-assembly by controlled 3D-printed cell placement. . Adv. Funct. Mater. 32::2208325
    [Crossref] [Google Scholar]
  171. 171.
    Mazari-Arrighi E, Lépine M, Ayollo D, Faivre L, Larghero J, et al. 2024.. Self-organization of long-lasting human endothelial capillary-like networks guided by DLP bioprinting. . Adv. Healthc. Mater. 13::2302830
    [Crossref] [Google Scholar]
  172. 172.
    Zohar B, Debbi L, Machour M, Nachum N, Redenski I, et al. 2023.. A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. . Acta Biomater. 163::18293
    [Crossref] [Google Scholar]
  173. 173.
    Szklanny AA, Machour M, Redenski I, Chochola V, Goldfracht I, et al. 2021.. 3D bioprinting of engineered tissue flaps with hierarchical vessel networks (VesselNet) for direct host-to-implant perfusion. . Adv. Mater. 33::2102661
    [Crossref] [Google Scholar]
  174. 174.
    Strobel HA, Moss SM, Hoying JB. 2022.. Methods for vascularization and perfusion of tissue organoids. . Mamm. Genome 33::43750
    [Crossref] [Google Scholar]
  175. 175.
    Quintard C, Tubbs E, Jonsson G, Jiao J, Wang J, et al. 2024.. A microfluidic platform integrating functional vascularized organoids-on-chip. . Nat. Commun. 15::1452
    [Crossref] [Google Scholar]
  176. 176.
    Grebenyuk S, Abdel Fattah AR, Kumar M, Toprakhisar B, Rustandi G, et al. 2023.. Large-scale perfused tissues via synthetic 3D soft microfluidics. . Nat. Commun. 14::193
    [Crossref] [Google Scholar]
  177. 177.
    Lovett M, Lee K, Edwards A, Kaplan DL. 2009.. Vascularization strategies for tissue engineering. . Tissue Eng. Part B Rev. 15::35370
    [Crossref] [Google Scholar]
  178. 178.
    Chapla R, West JL. 2021.. Hydrogel biomaterials to support and guide vascularization. . Progress Biomed. Eng. 3::012002
    [Crossref] [Google Scholar]
  179. 179.
    Yeh Y-T, Hur SS, Chang J, Wang K-C, Chiu J-J, et al. 2012.. Matrix stiffness regulates endothelial cell proliferation through septin 9. . PLOS ONE 7::e46889
    [Crossref] [Google Scholar]
  180. 180.
    Ferrari D, Sengupta A, Heo L, Pethö L, Michler J, et al. 2023.. Effects of biomechanical and biochemical stimuli on angio- and vasculogenesis in a complex microvasculature-on-chip. . iScience 26::106198
    [Crossref] [Google Scholar]
  181. 181.
    LaValley DJ, Reinhart-King CA. 2014.. Matrix stiffening in the formation of blood vessels. . Adv. Regen. Biol. 1::25247
    [Google Scholar]
  182. 182.
    Lesman A, Rosenfeld D, Landau S, Levenberg S. 2016.. Mechanical regulation of vascular network formation in engineered matrices. . Adv. Drug Deliv. Rev. 96::17682
    [Crossref] [Google Scholar]
  183. 183.
    Landau S, Moriel A, Livne A, Zheng MH, Bouchbinder E, Levenberg S. 2018.. Tissue-level mechanosensitivity: predicting and controlling the orientation of 3D vascular networks. . Nano Lett. 18::7698708
    [Crossref] [Google Scholar]
  184. 184.
    Rosenfeld D, Landau S, Shandalov Y, Raindel N, Freiman A, et al. 2016.. Morphogenesis of 3D vascular networks is regulated by tensile forces. . PNAS 113::321520
    [Crossref] [Google Scholar]
  185. 185.
    Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ. 2007.. Mechanical strain regulates endothelial cell patterning in vitro. . Tissue Eng. 13::20717
    [Crossref] [Google Scholar]
  186. 186.
    Landau S, Ben-Shaul S, Levenberg S. 2018.. Oscillatory strain promotes vessel stabilization and alignment through fibroblast YAP-mediated mechanosensitivity. . Adv. Sci. 5::1800506
    [Crossref] [Google Scholar]
  187. 187.
    Zeiger AS, Liu FD, Durham JT, Jagielska A, Mahmoodian R, et al. 2016.. Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting. . Phys. Biol. 13::046006
    [Crossref] [Google Scholar]
  188. 188.
    Zeinali S, Thompson EK, Gerhardt H, Geiser T, Guenat OT. 2021.. Remodeling of an in vitro microvessel exposed to cyclic mechanical stretch. . APL Bioeng. 5::026102
    [Crossref] [Google Scholar]
  189. 189.
    Zohar B, Blinder Y, Mooney DJ, Levenberg S. 2018.. Flow-induced vascular network formation and maturation in three dimensional engineered tissue. . ACS Biomater. Sci. Eng. 4::126571
    [Crossref] [Google Scholar]
  190. 190.
    Li YSJ, Haga JH, Chien S. 2005.. Molecular basis of the effects of shear stress on vascular endothelial cells. . J. Biomech. 38::194971
    [Crossref] [Google Scholar]
  191. 191.
    Lee VK, Kim DY, Ngo H, Lee Y, Seo L, et al. 2014.. Creating perfused functional vascular channels using 3D bio-printing technology. . Biomaterials 35::8092102
    [Crossref] [Google Scholar]
  192. 192.
    Galie PA, Nguyen D-HT, Choi CK, Cohen DM, Janmey PA, Chen CS. 2014.. Fluid shear stress threshold regulates angiogenic sprouting. . PNAS 111::796873
    [Crossref] [Google Scholar]
  193. 193.
    Wu P, Asada H, Hakamada M, Mabuchi M. 2023.. Bioengineering of high cell density tissues with hierarchical vascular networks for ex vivo whole organs. . Adv. Mater. 35::2209149
    [Crossref] [Google Scholar]
  194. 194.
    Semenza GL. 2007.. Life with oxygen. . Science 318::6264
    [Crossref] [Google Scholar]
  195. 195.
    Blatchley MR, Abaci HE, Hanjaya-Putra D, Gerecht S. 2018.. Hypoxia and matrix manipulation for vascular engineering. . In Biophysical Regulation of Vascular Differentiation and Assembly, ed. S Gerecht , pp. 73119. Cham, Switz:.: Springer Int. Publ.
    [Google Scholar]
  196. 196.
    Song J, Gerecht S. 2023.. Hydrogels to recapture extracellular matrix cues that regulate vascularization. . Arterioscler. Thromb. Vasc. Biol. 43::e291302
    [Crossref] [Google Scholar]
  197. 197.
    Graney PL, Ben-Shaul S, Landau S, Bajpai A, Singh B, et al. 2020.. Macrophages of diverse phenotypes drive vascularization of engineered tissues. . Sci. Adv. 6::eaay6391
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-103023-115236
Loading
/content/journals/10.1146/annurev-bioeng-103023-115236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error