1932

Abstract

Questions in cancer have engaged systems biologists for decades. During that time, the quantity of molecular data has exploded, but the need for abstractions, formal models, and simplifying insights has remained the same. This review brings together classic breakthroughs and recent findings in the field of cancer systems biology, focusing on cancer cell pathways for tumorigenesis and therapeutic response. Cancer cells mutate and transduce information from their environment to alter gene expression, metabolism, and phenotypic states. Understanding the molecular architectures that make each of these steps possible is a long-term goal of cancer systems biology pursued by iterating between quantitative models and experiments. We argue that such iteration is the best path to deploying targeted therapies intelligently so that each patient receives the maximum benefit for their cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-103122-030552
2025-05-01
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-103122-030552.html?itemId=/content/journals/10.1146/annurev-bioeng-103122-030552&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Janes KA, Chandran PL, Ford RM, Lazzara MJ, Papin JA, et al. 2017.. An engineering design approach to systems biology. . Integr. Biol. 9::57483
    [Crossref] [Google Scholar]
  2. 2.
    Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, et al. 2001.. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. . Science 292::92934
    [Crossref] [Google Scholar]
  3. 3.
    Hanahan D, Weinberg RA. 2000.. The hallmarks of cancer. . Cell 100::5770
    [Crossref] [Google Scholar]
  4. 4.
    Lazebnik Y. 2002.. Can a biologist fix a radio?—Or, what I learned while studying apoptosis. . Cancer Cell 2::17982
    [Crossref] [Google Scholar]
  5. 5.
    Creixell P, Schoof EM, Simpson CD, Longden J, Miller CJ, et al. 2015.. Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. . Cell 163::20217
    [Crossref] [Google Scholar]
  6. 6.
    Kim M, Park J, Bouhaddou M, Kim K, Rojc A, et al. 2021.. A protein interaction landscape of breast cancer. . Science 374::eabf3066
    [Crossref] [Google Scholar]
  7. 7.
    Zheng F, Kelly MR, Ramms DJ, Heintschel ML, Tao K, et al. 2021.. Interpretation of cancer mutations using a multiscale map of protein systems. . Science 374::eabf3067
    [Crossref] [Google Scholar]
  8. 8.
    Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, et al. 2016.. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. . Nat. Genet. 48::83847
    [Crossref] [Google Scholar]
  9. 9.
    Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. 2006.. Physicochemical modelling of cell signalling pathways. . Nat. Cell Biol. 8::1195203
    [Crossref] [Google Scholar]
  10. 10.
    Janes KA, Yaffe MB. 2006.. Data-driven modelling of signal-transduction networks. . Nat. Rev. Mol. Cell Biol. 7::82028
    [Crossref] [Google Scholar]
  11. 11.
    Garrido-Rodriguez M, Zirngibl K, Ivanova O, Lobentanzer S, Saez-Rodriguez J. 2022.. Integrating knowledge and omics to decipher mechanisms via large-scale models of signaling networks. . Mol. Syst. Biol. 18::e11036
    [Crossref] [Google Scholar]
  12. 12.
    Metzcar J, Wang Y, Heiland R, Macklin P. 2019.. A review of cell-based computational modeling in cancer biology. . JCO Clin. Cancer Inform. 3::113
    [Crossref] [Google Scholar]
  13. 13.
    Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, et al. 2019.. Systems biology of cancer metastasis. . Cell Syst. 9::10927
    [Crossref] [Google Scholar]
  14. 14.
    Longden J, Robin X, Engel M, Ferkinghoff-Borg J, Kjaer I, et al. 2021.. Deep neural networks identify signaling mechanisms of ErbB-family drug resistance from a continuous cell morphology space. . Cell Rep. 34::108657
    [Crossref] [Google Scholar]
  15. 15.
    Kuenzi BM, Park J, Fong SH, Sanchez KS, Lee J, et al. 2020.. Predicting drug response and synergy using a deep learning model of human cancer cells. . Cancer Cell 38::67284.e6
    [Crossref] [Google Scholar]
  16. 16.
    Nilsson A, Peters JM, Meimetis N, Bryson B, Lauffenburger DA. 2022.. Artificial neural networks enable genome-scale simulations of intracellular signaling. . Nat. Commun. 13::3069
    [Crossref] [Google Scholar]
  17. 17.
    Yang D, Jones MG, Naranjo S, Rideout WM 3rd, Min KHJ, et al. 2022.. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. . Cell 185::190523.e25
    [Crossref] [Google Scholar]
  18. 18.
    Adler FR, Anderson ARA, Bhushan A, Bogdan P, Bravo-Cordero JJ, et al. 2023.. Modeling collective cell behavior in cancer: perspectives from an interdisciplinary conversation. . Cell Syst. 14::25257
    [Crossref] [Google Scholar]
  19. 19.
    Yaffe MB. 2019.. Why geneticists stole cancer research even though cancer is primarily a signaling disease. . Sci. Signal. 12::eaaw3483
    [Crossref] [Google Scholar]
  20. 20.
    Monast CS, Furcht CM, Lazzara MJ. 2012.. Computational analysis of the regulation of EGFR by protein tyrosine phosphatases. . Biophys. J. 102::201221
    [Crossref] [Google Scholar]
  21. 21.
    Lyashenko E, Niepel M, Dixit PD, Lim SK, Sorger PK, Vitkup D. 2020.. Receptor-based mechanism of relative sensing and cell memory in mammalian signaling networks. . eLife 9::e50342
    [Crossref] [Google Scholar]
  22. 22.
    Furcht CM, Buonato JM, Lazzara MJ. 2015.. EGFR-activated Src family kinases maintain GAB1-SHP2 complexes distal from EGFR. . Sci. Signal. 8::ra46
    [Crossref] [Google Scholar]
  23. 23.
    Clegg LW, Mac Gabhann F. 2015.. Site-specific phosphorylation of VEGFR2 is mediated by receptor trafficking: insights from a computational model. . PLOS Comput. Biol. 11::e1004158
    [Crossref] [Google Scholar]
  24. 24.
    Song M, Finley SD. 2018.. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. . BMC Syst. Biol. 12::145
    [Crossref] [Google Scholar]
  25. 25.
    Song M, Finley SD. 2020.. ERK and Akt exhibit distinct signaling responses following stimulation by pro-angiogenic factors. . Cell Commun. Signal. 18::114
    [Crossref] [Google Scholar]
  26. 26.
    Wang CC, Cirit M, Haugh JM. 2009.. PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. . Mol. Syst. Biol. 5::246
    [Crossref] [Google Scholar]
  27. 27.
    D'Alessandro LA, Samaga R, Maiwald T, Rho SH, Bonefas S, et al. 2015.. Disentangling the complexity of HGF signaling by combining qualitative and quantitative modeling. . PLOS Comput. Biol. 11::e1004192
    [Crossref] [Google Scholar]
  28. 28.
    Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, et al. 2009.. Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. . Mol. Syst. Biol. 5::239
    [Crossref] [Google Scholar]
  29. 29.
    Jafarnejad M, Sove RJ, Danilova L, Mirando AC, Zhang Y, et al. 2019.. Mechanistically detailed systems biology modeling of the HGF/Met pathway in hepatocellular carcinoma. . NPJ Syst. Biol. Appl. 5::29
    [Crossref] [Google Scholar]
  30. 30.
    Hendriks BS, Griffiths GJ, Benson R, Kenyon D, Lazzara M, et al. 2006.. Decreased internalisation of ErbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib. . Syst. Biol. 153::45766
    [Crossref] [Google Scholar]
  31. 31.
    Meyer AS, Zweemer AJ, Lauffenburger DA. 2015.. The AXL receptor is a sensor of ligand spatial heterogeneity. . Cell Syst. 1::2536
    [Crossref] [Google Scholar]
  32. 32.
    Asthagiri AR, Lauffenburger DA. 2001.. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. . Biotechnol. Prog. 17::22739
    [Crossref] [Google Scholar]
  33. 33.
    Fritsche-Guenther R, Witzel F, Sieber A, Herr R, Schmidt N, et al. 2011.. Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. . Mol. Syst. Biol. 7::489
    [Crossref] [Google Scholar]
  34. 34.
    Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V, et al. 2010.. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. . Sci. Signal. 3::ra90
    [Crossref] [Google Scholar]
  35. 35.
    Shin SY, Rath O, Choo SM, Fee F, McFerran B, et al. 2009.. Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. . J. Cell Sci. 122::42535
    [Crossref] [Google Scholar]
  36. 36.
    Jensen KJ, Moyer CB, Janes KA. 2016.. Network architecture predisposes an enzyme to either pharmacologic or genetic targeting. . Cell Syst. 2::11221
    [Crossref] [Google Scholar]
  37. 37.
    Stites EC, Trampont PC, Ma Z, Ravichandran KS. 2007.. Network analysis of oncogenic Ras activation in cancer. . Science 318::46367
    [Crossref] [Google Scholar]
  38. 38.
    McFall T, Diedrich JK, Mengistu M, Littlechild SL, Paskvan KV, et al. 2019.. A systems mechanism for KRAS mutant allele-specific responses to targeted therapy. . Sci. Signal. 12::eaaw8288
    [Crossref] [Google Scholar]
  39. 39.
    Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A. 2007.. Irreversible cell-cycle transitions are due to systems-level feedback. . Nat. Cell Biol. 9::72428
    [Crossref] [Google Scholar]
  40. 40.
    Yao G, Lee TJ, Mori S, Nevins JR, You L. 2008.. A bistable Rb-E2F switch underlies the restriction point. . Nat. Cell Biol. 10::47682
    [Crossref] [Google Scholar]
  41. 41.
    Yao G, Tan C, West M, Nevins JR, You L. 2011.. Origin of bistability underlying mammalian cell cycle entry. . Mol. Syst. Biol. 7::485
    [Crossref] [Google Scholar]
  42. 42.
    Dong P, Maddali MV, Srimani JK, Thelot F, Nevins JR, et al. 2014.. Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control. . Nat. Commun. 5::4750
    [Crossref] [Google Scholar]
  43. 43.
    Ryl T, Kuchen EE, Bell E, Shao C, Florez AF, et al. 2017.. Cell-cycle position of single MYC-driven cancer cells dictates their susceptibility to a chemotherapeutic drug. . Cell Syst. 5::23750.e8
    [Crossref] [Google Scholar]
  44. 44.
    Janes KA, Reinhardt HC, Yaffe MB. 2008.. Cytokine-induced signaling networks prioritize dynamic range over signal strength. . Cell 135::34354
    [Crossref] [Google Scholar]
  45. 45.
    Ildefonso GV, Oliver Metzig M, Hoffmann A, Harris LA, Lopez CF. 2023.. A biochemical necroptosis model explains cell-type-specific responses to cell death cues. . Biophys. J. 122::81734
    [Crossref] [Google Scholar]
  46. 46.
    Aldridge BB, Gaudet S, Lauffenburger DA, Sorger PK. 2011.. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis. . Mol. Syst. Biol. 7::553
    [Crossref] [Google Scholar]
  47. 47.
    Oliver Metzig M, Tang Y, Mitchell S, Taylor B, Foreman R, et al. 2020.. An incoherent feedforward loop interprets NFκB/RelA dynamics to determine TNF-induced necroptosis decisions. . Mol. Syst. Biol. 16::e9677
    [Crossref] [Google Scholar]
  48. 48.
    Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, et al. 2018.. Comprehensive characterization of cancer driver genes and mutations. . Cell 173::37185.e18
    [Crossref] [Google Scholar]
  49. 49.
    Adimora NJ, Jones DP, Kemp ML. 2010.. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. . Antioxid. Redox Signal. 13::73143
    [Crossref] [Google Scholar]
  50. 50.
    Lim JB, Langford TF, Huang BK, Deen WM, Sikes HD. 2016.. A reaction-diffusion model of cytosolic hydrogen peroxide. . Free Radic. Biol. Med. 90::8590
    [Crossref] [Google Scholar]
  51. 51.
    Raddatz AD, Furdui CM, Bey EA, Kemp ML. 2023.. Single-cell kinetic modeling of β-lapachone metabolism in head and neck squamous cell carcinoma. . Antioxidants 12::741
    [Crossref] [Google Scholar]
  52. 52.
    Lewis JE, Costantini F, Mims J, Chen X, Furdui CM, et al. 2018.. Genome-scale modeling of NADPH-driven β-lapachone sensitization in head and neck squamous cell carcinoma. . Antioxid. Redox Signal. 29::93752
    [Crossref] [Google Scholar]
  53. 53.
    Paudel BB, Lewis JE, Hardeman KN, Hayford CE, Robbins CJ, et al. 2020.. An integrative gene expression and mathematical flux balance analysis identifies targetable redox vulnerabilities in melanoma cells. . Cancer Res. 80::456577
    [Crossref] [Google Scholar]
  54. 54.
    Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, et al. 2006.. Oscillations and variability in the p53 system. . Mol. Syst. Biol. 2::2006.0033
    [Crossref] [Google Scholar]
  55. 55.
    Geva-Zatorsky N, Dekel E, Batchelor E, Lahav G, Alon U. 2010.. Fourier analysis and systems identification of the p53 feedback loop. . PNAS 107::1355055
    [Crossref] [Google Scholar]
  56. 56.
    Friedrich D, Friedel L, Finzel A, Herrmann A, Preibisch S, Loewer A. 2019.. Stochastic transcription in the p53-mediated response to DNA damage is modulated by burst frequency. . Mol. Syst. Biol. 15::e9068
    [Crossref] [Google Scholar]
  57. 57.
    Batchelor E, Mock CS, Bhan I, Loewer A, Lahav G. 2008.. Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. . Mol. Cell 30::27789
    [Crossref] [Google Scholar]
  58. 58.
    Toettcher JE, Mock C, Batchelor E, Loewer A, Lahav G. 2010.. A synthetic-natural hybrid oscillator in human cells. . PNAS 107::1704752
    [Crossref] [Google Scholar]
  59. 59.
    Batchelor E, Loewer A, Mock C, Lahav G. 2011.. Stimulus-dependent dynamics of p53 in single cells. . Mol. Syst. Biol. 7::488
    [Crossref] [Google Scholar]
  60. 60.
    Stewart-Ornstein J, Cheng HWJ, Lahav G. 2017.. Conservation and divergence of p53 oscillation dynamics across species. . Cell Syst. 5::41017.e4
    [Crossref] [Google Scholar]
  61. 61.
    Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G. 2012.. p53 dynamics control cell fate. . Science 336::144044
    [Crossref] [Google Scholar]
  62. 62.
    Porter JR, Fisher BE, Batchelor E. 2016.. p53 pulses diversify target gene expression dynamics in an mRNA half-life-dependent manner and delineate co-regulated target gene subnetworks. . Cell Syst. 2::27282
    [Crossref] [Google Scholar]
  63. 63.
    Hanson RL, Porter JR, Batchelor E. 2019.. Protein stability of p53 targets determines their temporal expression dynamics in response to p53 pulsing. . J. Cell Biol. 218::128297
    [Crossref] [Google Scholar]
  64. 64.
    Jimenez A, Lu D, Kalocsay M, Berberich MJ, Balbi P, et al. 2022.. Time-series transcriptomics and proteomics reveal alternative modes to decode p53 oscillations. . Mol. Syst. Biol. 18::e10588
    [Crossref] [Google Scholar]
  65. 65.
    Yang R, Huang B, Zhu Y, Li Y, Liu F, Shi J. 2018.. Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance. . Sci. Adv. 4::eaat5077
    [Crossref] [Google Scholar]
  66. 66.
    Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, et al. 2004.. Dynamics of the p53-Mdm2 feedback loop in individual cells. . Nat. Genet. 36::14750
    [Crossref] [Google Scholar]
  67. 67.
    Toettcher JE, Loewer A, Ostheimer GJ, Yaffe MB, Tidor B, Lahav G. 2009.. Distinct mechanisms act in concert to mediate cell cycle arrest. . PNAS 106::78590
    [Crossref] [Google Scholar]
  68. 68.
    Passos JF, Nelson G, Wang C, Richter T, Simillion C, et al. 2010.. Feedback between p21 and reactive oxygen production is necessary for cell senescence. . Mol. Syst. Biol. 6::347
    [Crossref] [Google Scholar]
  69. 69.
    Sheng C, Mendler IH, Rieke S, Snyder P, Jentsch M, et al. 2019.. PCNA-mediated degradation of p21 coordinates the DNA damage response and cell cycle regulation in individual cells. . Cell Rep. 27::4858.e7
    [Crossref] [Google Scholar]
  70. 70.
    Pereira EJ, Burns JS, Lee CY, Marohl T, Calderon D, et al. 2020.. Sporadic activation of an oxidative stress-dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies. . Sci. Signal. 13::eaba4200
    [Crossref] [Google Scholar]
  71. 71.
    Comandante-Lou N, Baumann DG, Fallahi-Sichani M. 2022.. AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells. . Cell Rep. 40::111147
    [Crossref] [Google Scholar]
  72. 72.
    Califano A, Alvarez MJ. 2017.. The recurrent architecture of tumour initiation, progression and drug sensitivity. . Nat. Rev. Cancer 17::11630
    [Crossref] [Google Scholar]
  73. 73.
    Ding H, Douglass EF Jr., Sonabend AM, Mela A, Bose S, et al. 2018.. Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm. . Nat. Commun. 9::1471
    [Crossref] [Google Scholar]
  74. 74.
    Vasciaveo A, Arriaga JM, de Almeida FN, Zou M, Douglass EF, et al. 2023.. OncoLoop: a network-based precision cancer medicine framework. . Cancer Discov. 13::386409
    [Crossref] [Google Scholar]
  75. 75.
    Mundi PS, Dela Cruz FS, Grunn A, Diolaiti D, Mauguen A, et al. 2023.. A transcriptome-based precision oncology platform for patient-therapy alignment in a diverse set of treatment-resistant malignancies. . Cancer Discov. 13::1386407
    [Crossref] [Google Scholar]
  76. 76.
    Chitforoushzadeh Z, Ye Z, Sheng Z, LaRue S, Fry RC, et al. 2016.. TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors. . Sci. Signal. 9::ra59
    [Crossref] [Google Scholar]
  77. 77.
    Tsuji S, Kawasaki Y, Furukawa S, Taniue K, Hayashi T, et al. 2014.. The miR-363-GATA6-Lgr5 pathway is critical for colorectal tumourigenesis. . Nat. Commun. 5::3150
    [Crossref] [Google Scholar]
  78. 78.
    Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. 2014.. Quantitative flux analysis reveals folate-dependent NADPH production. . Nature 510::298302
    [Crossref] [Google Scholar]
  79. 79.
    Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, et al. 2014.. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. . Nat. Commun. 5::3128
    [Crossref] [Google Scholar]
  80. 80.
    Reid MA, Allen AE, Liu S, Liberti MV, Liu P, et al. 2018.. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. . Nat. Commun. 9::5442
    [Crossref] [Google Scholar]
  81. 81.
    Janes KA. 2016.. Single-cell states versus single-cell atlases—two classes of heterogeneity that differ in meaning and method. . Curr. Opin. Biotechnol. 39::12025
    [Crossref] [Google Scholar]
  82. 82.
    Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E. 2013.. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. . PNAS 110::1814449
    [Crossref] [Google Scholar]
  83. 83.
    Tian XJ, Zhang H, Xing J. 2013.. Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. . Biophys. J. 105::107989
    [Crossref] [Google Scholar]
  84. 84.
    Zhang J, Tian XJ, Zhang H, Teng Y, Li R, et al. 2014.. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. . Sci. Signal. 7::ra91
    [Google Scholar]
  85. 85.
    Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, et al. 2019.. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. . Integr. Biol. 11::25163
    [Crossref] [Google Scholar]
  86. 86.
    Shin SY, Rath O, Zebisch A, Choo SM, Kolch W, Cho KH. 2010.. Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition. . Cancer Res. 70::671524
    [Crossref] [Google Scholar]
  87. 87.
    Steinway SN, Zanudo JG, Ding W, Rountree CB, Feith DJ, et al. 2014.. Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint Sonic hedgehog and Wnt pathway activation. . Cancer Res. 74::596377
    [Crossref] [Google Scholar]
  88. 88.
    Steinway SN, Zanudo JGT, Michel PJ, Feith DJ, Loughran TP, Albert R. 2015.. Combinatorial interventions inhibit TGFβ-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. . NPJ Syst. Biol. Appl. 1::15014
    [Crossref] [Google Scholar]
  89. 89.
    Brown BA, Myers PJ, Adair SJ, Pitarresi JR, Sah-Teli SK, et al. 2024.. A histone methylation-MAPK signaling axis drives durable epithelial-mesenchymal transition in hypoxic pancreatic cancer. . Cancer Res. 84::176480
    [Crossref] [Google Scholar]
  90. 90.
    Brown BA, Lazzara MJ. 2023.. Single-cell RNA sequencing reveals microenvironment context-specific routes for epithelial-mesenchymal transition in pancreas cancer cells. . bioRxiv 2023.05.30.542969. https://doi.org/10.1101/2023.05.30.542969
  91. 91.
    Cassidy T, Nichol D, Robertson-Tessi M, Craig M, Anderson ARA. 2021.. The role of memory in non-genetic inheritance and its impact on cancer treatment resistance. . PLOS Comput. Biol. 17::e1009348
    [Crossref] [Google Scholar]
  92. 92.
    Gatenby RA, Silva AS, Gillies RJ, Frieden BR. 2009.. Adaptive therapy. . Cancer Res. 69::4894903
    [Crossref] [Google Scholar]
  93. 93.
    Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, et al. 2021.. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. . Cell 184::22642.e21
    [Crossref] [Google Scholar]
  94. 94.
    Russo M, Pompei S, Sogari A, Corigliano M, Crisafulli G, et al. 2022.. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. . Nat. Genet. 54::97684
    [Crossref] [Google Scholar]
  95. 95.
    Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, et al. 2017.. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. . Nature 546::43135
    [Crossref] [Google Scholar]
  96. 96.
    Schuh L, Saint-Antoine M, Sanford EM, Emert BL, Singh A, et al. 2020.. Gene networks with transcriptional bursting recapitulate rare transient coordinated high expression states in cancer. . Cell Syst. 10::36378.e12
    [Crossref] [Google Scholar]
  97. 97.
    Hanahan D. 2022.. Hallmarks of cancer: new dimensions. . Cancer Discov. 12::3146
    [Crossref] [Google Scholar]
  98. 98.
    Myers PJ, Lee SH, Lazzara MJ. 2021.. Mechanistic and data-driven models of cell signaling: tools for fundamental discovery and rational design of therapy. . Curr. Opin. Syst. Biol. 28::100349
    [Crossref] [Google Scholar]
  99. 99.
    Johnson KE, Howard G, Mo W, Strasser MK, Lima E, et al. 2019.. Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. . PLOS Biol. 17::e3000399
    [Crossref] [Google Scholar]
  100. 100.
    Liotta LA, Saidel MG, Kleinerman J. 1976.. The significance of hematogenous tumor cell clumps in the metastatic process. . Cancer Res. 36::88994
    [Google Scholar]
  101. 101.
    Tentner AR, Lee MJ, Ostheimer GJ, Samson LD, Lauffenburger DA, Yaffe MB. 2012.. Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. . Mol. Syst. Biol. 8::568
    [Crossref] [Google Scholar]
  102. 102.
    Netterfield TS, Ostheimer GJ, Tentner AR, Joughin BA, Dakoyannis AM, et al. 2023.. Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition. . Cell Syst. 14::582604.e10
    [Crossref] [Google Scholar]
  103. 103.
    Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, et al. 2014.. A community effort to assess and improve drug sensitivity prediction algorithms. . Nat. Biotechnol. 32::120212
    [Crossref] [Google Scholar]
  104. 104.
    Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, et al. 2018.. Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling. . Cell Syst. 7::16179.e14
    [Crossref] [Google Scholar]
  105. 105.
    Niepel M, Hafner M, Pace EA, Chung M, Chai DH, et al. 2013.. Profiles of basal and stimulated receptor signaling networks predict drug response in breast cancer lines. . Sci. Signal. 6::ra84
    [Crossref] [Google Scholar]
  106. 106.
    Day EK, Zhong Q, Purow B, Lazzara MJ. 2021.. Data-driven computational modeling identifies determinants of glioblastoma response to SHP2 inhibition. . Cancer Res. 81::205670
    [Crossref] [Google Scholar]
  107. 107.
    Hafner M, Niepel M, Chung M, Sorger PK. 2016.. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. . Nat. Methods 13::52127
    [Crossref] [Google Scholar]
  108. 108.
    Harris LA, Frick PL, Garbett SP, Hardeman KN, Paudel BB, et al. 2016.. An unbiased metric of antiproliferative drug effect in vitro. . Nat. Methods 13::497500
    [Crossref] [Google Scholar]
  109. 109.
    Tyson DR, Garbett SP, Frick PL, Quaranta V. 2012.. Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. . Nat. Methods 9::92328
    [Crossref] [Google Scholar]
  110. 110.
    Behar M, Barken D, Werner SL, Hoffmann A. 2013.. The dynamics of signaling as a pharmacological target. . Cell 155::44861
    [Crossref] [Google Scholar]
  111. 111.
    Werner SL, Barken D, Hoffmann A. 2005.. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. . Science 309::185761
    [Crossref] [Google Scholar]
  112. 112.
    Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, et al. 2012.. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. . Cell 149::78094
    [Crossref] [Google Scholar]
  113. 113.
    Morton SW, Lee MJ, Deng ZJ, Dreaden EC, Siouve E, et al. 2014.. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. . Sci. Signal. 7::ra44
    [Crossref] [Google Scholar]
  114. 114.
    Koplev S, Longden J, Ferkinghoff-Borg J, Blicher Bjerregard M, Cox TR, et al. 2017.. Dynamic rearrangement of cell states detected by systematic screening of sequential anticancer treatments. . Cell Rep. 20::278491
    [Crossref] [Google Scholar]
  115. 115.
    Saez-Rodriguez J, Alexopoulos LG, Zhang M, Morris MK, Lauffenburger DA, Sorger PK. 2011.. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. . Cancer Res. 71::540011
    [Crossref] [Google Scholar]
  116. 116.
    Tejeda Zañudo JG, Mao P, Alcon C, Kowalski K, Johnson GN, et al. 2021.. Cell line-specific network models of ER+ breast cancer identify potential PI3Kα inhibitor resistance mechanisms and drug combinations. . Cancer Res. 81::460317
    [Crossref] [Google Scholar]
  117. 117.
    Montagud A, Beal J, Tobalina L, Traynard P, Subramanian V, et al. 2022.. Patient-specific Boolean models of signalling networks guide personalised treatments. . eLife 11::e72626
    [Crossref] [Google Scholar]
  118. 118.
    Kirouac DC, Schaefer G, Chan J, Merchant M, Orr C, et al. 2017.. Clinical responses to ERK inhibition in BRAFV600E-mutant colorectal cancer predicted using a computational model. . NPJ Syst. Biol. Appl. 3::14
    [Crossref] [Google Scholar]
  119. 119.
    Tognetti M, Gabor A, Yang M, Cappelletti V, Windhager J, et al. 2021.. Deciphering the signaling network of breast cancer improves drug sensitivity prediction. . Cell Syst. 12::40118.e12
    [Crossref] [Google Scholar]
  120. 120.
    Eduati F, Jaaks P, Wappler J, Cramer T, Merten CA, et al. 2020.. Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. . Mol. Syst. Biol. 16::e8664
    [Crossref] [Google Scholar]
  121. 121.
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. 2013.. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. . Nature 503::54851
    [Crossref] [Google Scholar]
  122. 122.
    Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, et al. 2016.. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. . Nature 535::14852
    [Crossref] [Google Scholar]
  123. 123.
    Myers PJ, Lee SH, Lazzara MJ. 2023.. An integrated mechanistic and data-driven computational model predicts cell responses to high- and low-affinity EGFR ligands. . bioRxiv 2023.06.25.543329. https://doi.org/10.1101/2023.06.25.543329
  124. 124.
    Park DS, Luddy KA, Robertson-Tessi M, O'Farrelly C, Gatenby RA, Anderson ARA. 2020.. Searching for Goldilocks: how evolution and ecology can help uncover more effective patient-specific chemotherapies. . Cancer Res. 80::514754
    [Crossref] [Google Scholar]
  125. 125.
    Fiore VF, Krajnc M, Quiroz FG, Levorse J, Pasolli HA, et al. 2020.. Mechanics of a multilayer epithelium instruct tumour architecture and function. . Nature 585::43339
    [Crossref] [Google Scholar]
  126. 126.
    Sero JE, Bakal C. 2017.. Multiparametric analysis of cell shape demonstrates that β-PIX directly couples YAP activation to extracellular matrix adhesion. . Cell Syst. 4::8496.e6
    [Crossref] [Google Scholar]
  127. 127.
    Park J, Kim DH, Shah SR, Kim HN, Kshitiz, et al. 2019.. Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases. . Nat. Commun. 10::2797
    [Crossref] [Google Scholar]
  128. 128.
    Linghu C, Johnson SL, Valdes PA, Shemesh OA, Park WM, et al. 2020.. Spatial multiplexing of fluorescent reporters for imaging signaling network dynamics. . Cell 183::168298.e24
    [Crossref] [Google Scholar]
  129. 129.
    Qian Y, Celiker OT, Wang Z, Guner-Ataman B, Boyden ES. 2023.. Temporally multiplexed imaging of dynamic signaling networks in living cells. . Cell 186::565672.e21
    [Crossref] [Google Scholar]
  130. 130.
    Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. 2005.. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. . Science 310::164653
    [Crossref] [Google Scholar]
  131. 131.
    Santos SD, Verveer PJ, Bastiaens PI. 2007.. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. . Nat. Cell Biol. 9::32430
    [Crossref] [Google Scholar]
  132. 132.
    Surve SV, Myers PJ, Clayton SA, Watkins SC, Lazzara MJ, Sorkin A. 2018.. Localization dynamics of endogenous fluorescently-labeled RAF1 in EGF-stimulated cells. . Mol. Biol. Cell 30::50623
    [Crossref] [Google Scholar]
  133. 133.
    Cirit M, Krajcovic M, Choi CK, Welf ES, Horwitz AF, Haugh JM. 2010.. Stochastic model of integrin-mediated signaling and adhesion dynamics at the leading edges of migrating cells. . PLOS Comput. Biol. 6::e1000688
    [Crossref] [Google Scholar]
  134. 134.
    Rangamani P, Fardin MA, Xiong Y, Lipshtat A, Rossier O, et al. 2011.. Signaling network triggers and membrane physical properties control the actin cytoskeleton-driven isotropic phase of cell spreading. . Biophys. J. 100::84557
    [Crossref] [Google Scholar]
  135. 135.
    Kearns JD, Basak S, Werner SL, Huang CS, Hoffmann A. 2006.. IκBε provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression. . J. Cell Biol. 173::65964
    [Crossref] [Google Scholar]
  136. 136.
    Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, et al. 2004.. Oscillations in NF-κB signaling control the dynamics of gene expression. . Science 306::7048
    [Crossref] [Google Scholar]
  137. 137.
    Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. 2011.. Information transduction capacity of noisy biochemical signaling networks. . Science 334::35458
    [Crossref] [Google Scholar]
  138. 138.
    Jerby L, Wolf L, Denkert C, Stein GY, Hilvo M, et al. 2012.. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. . Cancer Res. 72::571220
    [Crossref] [Google Scholar]
  139. 139.
    Yizhak K, Gaude E, Le Devedec S, Waldman YY, Stein GY, et al. 2014.. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. . eLife 3::e03641
    [Crossref] [Google Scholar]
  140. 140.
    Bintu L, Yong J, Antebi YE, McCue K, Kazuki Y, et al. 2016.. Dynamics of epigenetic regulation at the single-cell level. . Science 351::72024
    [Crossref] [Google Scholar]
  141. 141.
    Pisco AO, Brock A, Zhou J, Moor A, Mojtahedi M, et al. 2013.. Non-Darwinian dynamics in therapy-induced cancer drug resistance. . Nat. Commun. 4::2467
    [Crossref] [Google Scholar]
  142. 142.
    Huang CY, Ferrell JE Jr. 1996.. Ultrasensitivity in the mitogen-activated protein kinase cascade. . PNAS 93::1007883
    [Crossref] [Google Scholar]
  143. 143.
    Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY. 2007.. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. . PLOS Comput. Biol. 3::181926
    [Crossref] [Google Scholar]
  144. 144.
    Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M, et al. 2017.. Combinatorial signal perception in the BMP pathway. . Cell 170::118496.e24
    [Crossref] [Google Scholar]
  145. 145.
    Lucarelli P, Schilling M, Kreutz C, Vlasov A, Boehm ME, et al. 2018.. Resolving the combinatorial complexity of Smad protein complex formation and its link to gene expression. . Cell Syst. 6::7589.e11
    [Crossref] [Google Scholar]
  146. 146.
    Strasen J, Sarma U, Jentsch M, Bohn S, Sheng C, et al. 2018.. Cell-specific responses to the cytokine TGFβ are determined by variability in protein levels. . Mol. Syst. Biol. 14::e7733
    [Crossref] [Google Scholar]
  147. 147.
    Wooten DJ, Groves SM, Tyson DR, Liu Q, Lim JS, et al. 2019.. Systems-level network modeling of small cell lung cancer subtypes identifies master regulators and destabilizers. . PLOS Comput. Biol. 15::e1007343
    [Crossref] [Google Scholar]
  148. 148.
    Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, et al. 2011.. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. . Nature 477::22528
    [Crossref] [Google Scholar]
  149. 149.
    Auslander N, Cunningham CE, Toosi BM, McEwen EJ, Yizhak K, et al. 2017.. An integrated computational and experimental study uncovers FUT9 as a metabolic driver of colorectal cancer. . Mol. Syst. Biol. 13::956
    [Crossref] [Google Scholar]
  150. 150.
    Vanaja KG, Timp W, Feinberg AP, Levchenko A. 2018.. A loss of epigenetic control can promote cell death through reversing the balance of pathways in a signaling network. . Mol. Cell 72::6070.e3
    [Crossref] [Google Scholar]
  151. 151.
    Khaliq M, Manikkam M, Martinez ED, Fallahi-Sichani M. 2021.. Epigenetic modulation reveals differentiation state specificity of oncogene addiction. . Nat. Commun. 12::1536
    [Crossref] [Google Scholar]
  152. 152.
    Dalle Pezze P, Sonntag AG, Thien A, Prentzell MT, Godel M, et al. 2012.. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. . Sci. Signal. 5::ra25
    [Google Scholar]
  153. 153.
    Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK. 2008.. Modeling a snap-action, variable-delay switch controlling extrinsic cell death. . PLOS Biol. 6::283152
    [Crossref] [Google Scholar]
  154. 154.
    Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, et al. 2014.. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. . eLife 3::e03342
    [Crossref] [Google Scholar]
  155. 155.
    Persi E, Duran-Frigola M, Damaghi M, Roush WR, Aloy P, et al. 2018.. Systems analysis of intracellular pH vulnerabilities for cancer therapy. . Nat. Commun. 9::2997
    [Crossref] [Google Scholar]
  156. 156.
    Morinishi L, Kochanowski K, Levine RL, Wu LF, Altschuler SJ. 2020.. Loss of TET2 affects proliferation and drug sensitivity through altered dynamics of cell-state transitions. . Cell Syst. 11::8694.e5
    [Crossref] [Google Scholar]
  157. 157.
    Paudel BB, Harris LA, Hardeman KN, Abugable AA, Hayford CE, et al. 2018.. A nonquiescent “idling” population state in drug-treated, BRAF-mutated melanoma. . Biophys. J. 114::1499511
    [Crossref] [Google Scholar]
  158. 158.
    Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, et al. 2022.. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. . Cell Syst. 13::690710.e17
    [Crossref] [Google Scholar]
  159. 159.
    Hernandez AR, Klein AM, Kirschner MW. 2012.. Kinetic responses of β-catenin specify the sites of Wnt control. . Science 338::133740
    [Crossref] [Google Scholar]
  160. 160.
    Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. 2003.. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. . PLOS Biol. 1::E10
    [Crossref] [Google Scholar]
  161. 161.
    Nguyen LK, Cavadas MA, Scholz CC, Fitzpatrick SF, Bruning U, et al. 2013.. A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. . J. Cell Sci. 126::145463
    [Google Scholar]
  162. 162.
    Qutub AA, Popel AS. 2006.. A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α. . J. Cell Sci. 119::346780
    [Crossref] [Google Scholar]
  163. 163.
    Gerosa L, Chidley C, Frohlich F, Sanchez G, Lim SK, et al. 2020.. Receptor-driven ERK pulses reconfigure MAPK signaling and enable persistence of drug-adapted BRAF-mutant melanoma cells. . Cell Syst. 11::47894.e9
    [Crossref] [Google Scholar]
  164. 164.
    Barr AR, Heldt FS, Zhang T, Bakal C, Novak B. 2016.. A dynamical framework for the all-or-none G1/S transition. . Cell Syst. 2::2737
    [Crossref] [Google Scholar]
  165. 165.
    Heldt FS, Barr AR, Cooper S, Bakal C, Novak B. 2018.. A comprehensive model for the proliferation-quiescence decision in response to endogenous DNA damage in human cells. . PNAS 115::253237
    [Crossref] [Google Scholar]
  166. 166.
    Heijink AM, Everts M, Honeywell ME, Richards R, Kok YP, et al. 2019.. Modeling of cisplatin-induced signaling dynamics in triple-negative breast cancer cells reveals mediators of sensitivity. . Cell Rep. 28::234557.e5
    [Crossref] [Google Scholar]
  167. 167.
    Kholodenko BN, Rauch N, Kolch W, Rukhlenko OS. 2021.. A systematic analysis of signaling reactivation and drug resistance. . Cell Rep. 35::109157
    [Crossref] [Google Scholar]
  168. 168.
    Frohlich F, Gerosa L, Muhlich J, Sorger PK. 2023.. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. . Mol. Syst. Biol. 19::e10988
    [Crossref] [Google Scholar]
  169. 169.
    Creixell M, Taylor SD, Gerritsen J, Bae SY, Jiang M, et al. 2023.. Dissecting signaling regulators driving AXL-mediated bypass resistance and associated phenotypes by phosphosite perturbations. . bioRxiv 2023.10.20.563266. https://doi.org/10.1101/2023.10.20.563266
  170. 170.
    Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. 2021.. Personalized genome-scale metabolic models identify targets of redox metabolism in radiation-resistant tumors. . Cell Syst. 12::6881.e11
    [Crossref] [Google Scholar]
  171. 171.
    Gustafsson J, Anton M, Roshanzamir F, Jornsten R, Kerkhoven EJ, et al. 2023.. Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. . PNAS 120::e2217868120
    [Crossref] [Google Scholar]
  172. 172.
    Abecunas C, Kidd AD, Jiang Y, Zong H, Fallahi-Sichani M. 2024.. Multivariate analysis of metabolic state vulnerabilities across diverse cancer contexts reveals synthetically lethal associations. . Cell Rep. 43:(10):114775
    [Crossref] [Google Scholar]
  173. 173.
    Bangasser BL, Shamsan GA, Chan CE, Opoku KN, Tuzel E, et al. 2017.. Shifting the optimal stiffness for cell migration. . Nat. Commun. 8::15313
    [Crossref] [Google Scholar]
  174. 174.
    Park J, Holmes WR, Lee SH, Kim HN, Kim DH, et al. 2017.. Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. . PNAS 114::E5750E59
    [Google Scholar]
  175. 175.
    Shin SY, Nguyen LK. 2023.. SynDISCO: a mechanistic modeling-based framework for predictive prioritization of synergistic drug combinations targeting cell signalling networks. . Methods Mol. Biol. 2634::35781
    [Crossref] [Google Scholar]
  176. 176.
    Wooten DJ, Meyer CT, Lubbock ALR, Quaranta V, Lopez CF. 2021.. MuSyC is a consensus framework that unifies multi-drug synergy metrics for combinatorial drug discovery. . Nat. Commun. 12::4607
    [Crossref] [Google Scholar]
  177. 177.
    Palmer AC, Sorger PK. 2017.. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. . Cell 171::167891.e13
    [Crossref] [Google Scholar]
  178. 178.
    Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, et al. 2009.. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. . Sci. Signal. 2::ra31
    [Crossref] [Google Scholar]
  179. 179.
    Schoeberl B, Kudla A, Masson K, Kalra A, Curley M, et al. 2017.. Systems biology driving drug development: from design to the clinical testing of the anti-ErbB3 antibody seribantumab (MM-121). . NPJ Syst. Biol. Appl. 3::16034
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-103122-030552
Loading
/content/journals/10.1146/annurev-bioeng-103122-030552
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error