1932

Abstract

Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110122-014306
2024-07-03
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110122-014306.html?itemId=/content/journals/10.1146/annurev-bioeng-110122-014306&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Koncz T, Pentek M, Brodszky V, Ersek K, Orlewska E, Gulacsi L. 2010.. Adherence to biologic DMARD therapies in rheumatoid arthritis. . Expert Opin. Biol. Ther. 10:(9):136778
    [Crossref] [Google Scholar]
  2. 2.
    FDA (US Food Drug Adm.). 2022.. Finding and learning about side effects (adverse reactions). Fact Sheet, FDA, Washington, DC:. https://www.fda.gov/drugs/information-consumers-and-patients-drugs/finding-and-learning-about-side-effects-adverse-reactions
    [Google Scholar]
  3. 3.
    Vial T, Descotes J. 2003.. Immunosuppressive drugs and cancer. . Toxicology 185:(3):22940
    [Crossref] [Google Scholar]
  4. 4.
    Bascones-Martinez A, Mattila R, Gomez-Font R, Meurman JH. 2014.. Immunomodulatory drugs: oral and systemic adverse effects. . Med. Oral. Patol. Oral. Cir. Bucal. 19:(1):e24
    [Crossref] [Google Scholar]
  5. 5.
    Grabbe S, Beissert S, Enk A. 2020.. Systemic immunosuppression in times of COVID-19: Do we need to rethink our standards?. J. Dtsch. Dermatol. Ges. 18:(8):81013
    [Google Scholar]
  6. 6.
    Askanase AD, Khalili L, Buyon JP. 2020.. Thoughts on COVID-19 and autoimmune diseases. . Lupus Sci. Med. 7:(1):1921
    [Google Scholar]
  7. 7.
    Knight JS, Caricchio R, Casanova JL, Combes AJ, Diamond B, et al. 2021.. The intersection of COVID-19 and autoimmunity. . J. Clin. Investig. 131:(24):e154886
    [Crossref] [Google Scholar]
  8. 8.
    Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, et al. 2023.. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. . Lancet 401:(10391):187890
    [Crossref] [Google Scholar]
  9. 9.
    Vos T, Abajobir AA, Abbafati C, Abbas KM, Abate KH, et al. 2017.. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. . Lancet 390:(10100):121159
    [Crossref] [Google Scholar]
  10. 10.
    Hsieh PH, Wu O, Geue C, Mcintosh E, Mcinnes IB, Siebert S. 2020.. Economic burden of rheumatoid arthritis : a systematic review of literature in biologic era. . Ann. Rheum. Dis. 79:(6):77177
    [Crossref] [Google Scholar]
  11. 11.
    Matcham F, Rayner L, Steer S, Hotopf M. 2013.. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. . Rheumatology 52:(12):213648
    [Crossref] [Google Scholar]
  12. 12.
    Nerurkar L, Siebert S, McInnes IB, Cavanagh J. 2019.. Rheumatoid arthritis and depression: an inflammatory perspective. . Lancet Psychiatry 6:(2):16473
    [Crossref] [Google Scholar]
  13. 13.
    Bluestone JA. 2011.. Mechanisms of tolerance. . Immunol. Rev. 241:(1):519
    [Crossref] [Google Scholar]
  14. 14.
    Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. 2017.. Genetic and environmental risk factors for rheumatoid arthritis. . Best Pract. Res. Clin. Rheumatol. 31:(1):318
    [Crossref] [Google Scholar]
  15. 15.
    Gillespie KM. 2023.. Type 1 diabetes: pathogenesis and prevention. . CMAJ 175:(2):16570
    [Crossref] [Google Scholar]
  16. 16.
    Nemazee D. 2017.. Mechanisms of central tolerance for B cells. . Nat. Rev. Immunol. 17:(5):28194
    [Crossref] [Google Scholar]
  17. 17.
    Xing Y, Hogquist KA. 2012.. T-cell tolerance: central and peripheral. . Cold Spring Harb. Perspect. Biol. 4:(6):a006957
    [Crossref] [Google Scholar]
  18. 18.
    Parker DC. 1993.. T cell–dependent B cell activation. . Annu. Rev. Immunol. 11::33160
    [Crossref] [Google Scholar]
  19. 19.
    Lu DR, McDavid AN, Kongpachith S, Lingampalli N, Glanville J, et al. 2018.. T cell–dependent affinity maturation and innate immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. . Arthritis Rheumatol. 70:(11):173244
    [Crossref] [Google Scholar]
  20. 20.
    Ganguly D, Haak S, Sisirak V, Reizis B. 2013.. The role of dendritic cells in autoimmunity. . Nat. Rev. Immunol. 13::56677
    [Crossref] [Google Scholar]
  21. 21.
    Rosenblum MD, Remedios KA, Abbas AK. 2015.. Mechanisms of human autoimmunity. . J. Clin. Investig. 125:(6):222833
    [Crossref] [Google Scholar]
  22. 22.
    Tu AB, Lewis JS. 2021.. Biomaterial-based immunotherapeutic strategies for rheumatoid arthritis. . Drug. Deliv. Transl. Res. 11:(6):237193
    [Crossref] [Google Scholar]
  23. 23.
    Theofilopoulos AN, Kono DH, Baccala R. 2017.. The multiple pathways to autoimmunity. . Nat. Immunol. 18:(7):71624
    [Crossref] [Google Scholar]
  24. 24.
    Cain DW, Cidlowski JA. 2017.. Immune regulation by glucocorticoids. . Nat. Rev. Immunol. 17:(4):23347
    [Crossref] [Google Scholar]
  25. 25.
    Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, et al. 2018.. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. . Mult. Scler. 24:(2):96120
    [Crossref] [Google Scholar]
  26. 26.
    Furst DE. 2010.. The risk of infections with biologic therapies for rheumatoid arthritis. . Semin. Arthritis Rheum. 39::32746
    [Crossref] [Google Scholar]
  27. 27.
    Wang W, Zhou H, Liu L. 2018.. Side effects of methotrexate therapy for rheumatoid arthritis: a systematic review. . Eur. J. Med. Chem. 158::50216
    [Crossref] [Google Scholar]
  28. 28.
    Roongta R, Ghosh A. 2020.. Managing rheumatoid arthritis during COVID-19. . Clin. Rheumatol. 39::323744
    [Crossref] [Google Scholar]
  29. 29.
    Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, et al. 2020.. Covid-19 and autoimmunity. . Autoimmun. Rev. 19:(8):102597
    [Crossref] [Google Scholar]
  30. 30.
    Takeuchi O, Akira S. 2010.. Pattern recognition receptors and inflammation. . Cell 140:(6):80520
    [Crossref] [Google Scholar]
  31. 31.
    Lundbäck B, Backman H, Lötvall J, Rönmark E. 2015.. Is asthma prevalence still increasing?. Expert Rev. Respir. Med. 10:(1):3951
    [Crossref] [Google Scholar]
  32. 32.
    Cheng L, Chen J, Fu Q, He S, Li H, et al. 2018.. Chinese Society of Allergy guidelines for diagnosis and treatment of allergic rhinitis. . Allergy Asthma Immunol. Res. 10:(4):30053
    [Crossref] [Google Scholar]
  33. 33.
    Gupta RS, Springston EE, Warrier MR, Smith B, Kumar R, et al. 2011.. The prevalence, severity, and distribution of childhood food allergy in the United States. . Pediatrics 128:(1):e917
    [Crossref] [Google Scholar]
  34. 34.
    Simons FER, Ardusso LRF, Bilò MB, El-Gamal YM, Ledford DK, et al. 2011.. World Allergy Organization guidelines for the assessment and management of anaphylaxis. . World Allergy Organ. J. 4:(2):1337
    [Crossref] [Google Scholar]
  35. 35.
    Neurath MF, Finotto S, Glimcher LH. 2002.. The role of Th1/Th2 polarization in mucosal immunity. . Nat. Med. 8:(6):56773
    [Crossref] [Google Scholar]
  36. 36.
    Licona-Limón P, Kim LK, Palm NW, Flavell RA. 2013.. TH2, allergy and group 2 innate lymphoid cells. . Nat. Immunol. 14:(6):53642
    [Crossref] [Google Scholar]
  37. 37.
    Lieberman P, Garvey LH. 2016.. Mast cells and anaphylaxis. . Curr. Allergy Asthma Rep. 16::20
    [Crossref] [Google Scholar]
  38. 38.
    Metcalfe DD, Peavy RD, Gilfillan AM. 2009.. Mechanisms of mast cell signaling in anaphylaxis. . J. Allergy Clin. Immunol. 124:(4):63946
    [Crossref] [Google Scholar]
  39. 39.
    Portelli MA, Hodge E, Sayers I. 2015.. Genetic risk factors for the development of allergic disease identified by genome-wide association. . Clin. Exp. Allergy 45:(1):2131
    [Crossref] [Google Scholar]
  40. 40.
    Okada H, Kuhn C, Feillet H, Bach JF. 2010.. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. . Clin. Exp. Immunol. 160:(1):19
    [Crossref] [Google Scholar]
  41. 41.
    Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, et al. 2014.. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). . J. Allergy Clin. Immunol. 133:(2):50010.e11
    [Crossref] [Google Scholar]
  42. 42.
    Geha RS. 2003.. Allergy and hypersensitivity: nature versus nurture in allergy and hypersensitivity. . Curr. Opin. Immunol. 15:(6):6038
    [Crossref] [Google Scholar]
  43. 43.
    Spergel JM, Paller AS. 2003.. Atopic dermatitis and the atopic march. . J. Allergy Clin. Immunol. 112:(6):S11827
    [Crossref] [Google Scholar]
  44. 44.
    Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. 1998.. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. . J. Clin. Investig. 101:(8):161422
    [Crossref] [Google Scholar]
  45. 45.
    Harriman R, Lewis JS. 2021.. Bioderived materials that disarm the gut mucosal immune system: potential lessons from commensal microbiota. . Acta Biomater. 133::187207
    [Crossref] [Google Scholar]
  46. 46.
    Chinthrajah RS, Purington N, Andorf S, Long A, O'Laughlin KL, et al. 2019.. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study. . Lancet 394:(10207):143749
    [Crossref] [Google Scholar]
  47. 47.
    Du Toit G, Katz Y, Sasieni P, Mesher D, Maleki SJ, et al. 2008.. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. . J. Allergy Clin. Immunol. 122:(5):98491
    [Crossref] [Google Scholar]
  48. 48.
    Black CK, Termanini KM, Aguirre O, Hawksworth JS, Sosin M. 2018.. Solid organ transplantation in the 21st century. . Ann. Transl. Med. 6:(20):409
    [Crossref] [Google Scholar]
  49. 49.
    Wood KJ, Goto R. 2012.. Mechanisms of rejection: current perspectives. . Transplantation 93:(1):110
    [Crossref] [Google Scholar]
  50. 50.
    Kosieradzki M, Rowiński W. 2008.. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. . Transplant. Proc. 40:(10):327988
    [Crossref] [Google Scholar]
  51. 51.
    Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW, et al. 2012.. Ischaemia-reperfusion injury in liver transplantation—from bench to bedside. . Nat. Rev. Gastroenterol. Hepatol. 10:(2):7989
    [Crossref] [Google Scholar]
  52. 52.
    Pasupneti S, Nicolls MR. 2019.. Airway hypoxia in lung transplantation. . Curr. Opin. Physiol. 7::2126
    [Crossref] [Google Scholar]
  53. 53.
    Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. 2018.. T cell allorecognition pathways in solid organ transplantation. . Front. Immunol. 9::2548
    [Crossref] [Google Scholar]
  54. 54.
    Schinstock CA, Mannon RB, Budde K, Chong AS, Haas M, et al. 2020.. Recommended treatment for antibody-mediated rejection after kidney transplantation: the 2019 expert consensus from the Transplantation Society Working Group. . Transplantation 104:(5):91122
    [Crossref] [Google Scholar]
  55. 55.
    Ball LM, Egeler RM. 2008.. Acute GvHD: pathogenesis and classification. . Bone Marrow Transplant. 41:(2):S5864
    [Crossref] [Google Scholar]
  56. 56.
    Health Resour. Serv. Adm. 2022.. Transplant activity report. Rep. , Health Resour. Serv. Adm., Rockville, MD:. https://bloodstemcell.hrsa.gov/data/donation-and-transplantation-statistics/transplant-activity-report#year
    [Google Scholar]
  57. 57.
    Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. 2017.. Pathophysiology of GvHD and other HSCT-related major complications. . Front. Immunol. 8::224274
    [Crossref] [Google Scholar]
  58. 58.
    Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, et al. 2010.. The International Society of Heart and Lung Transplantation guidelines for the care of heart transplant recipients. . J. Heart Lung Transplant. 29:(8):91456
    [Crossref] [Google Scholar]
  59. 59.
    Jung K, Corrigan N, Wong EHH, Boyer C. 2022.. Bioactive synthetic polymers. . Adv. Mater. 34::e2105063
    [Crossref] [Google Scholar]
  60. 60.
    Shakya AK, Nandakumar KS. 2013.. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. . J. R. Soc. Interface 10:(79):20120536
    [Crossref] [Google Scholar]
  61. 61.
    Ben-Akiva E, Est Witte S, Meyer RA, Rhodes KR, Green JJ. 2019.. Polymeric micro- and nanoparticles for immune modulation. . Biomater. Sci. R. Soc. Chem. 7::1430
    [Crossref] [Google Scholar]
  62. 62.
    Su T, Feng X, Yang J, Xu W, Liu T, et al. 2022.. Polymer nanotherapeutics to correct autoimmunity. . J. Control. Release 343::15274
    [Crossref] [Google Scholar]
  63. 63.
    Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-Adefeso O. 2022.. Polymeric particle–based therapies for acute inflammatory diseases. . Nat. Rev. Mater. 7::796813
    [Crossref] [Google Scholar]
  64. 64.
    Blasi P. 2019.. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview. . J. Pharm. Investig. 49::33746
    [Crossref] [Google Scholar]
  65. 65.
    Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, et al. 2012.. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. . Nat. Biotechnol. 30:(12):121724
    [Crossref] [Google Scholar]
  66. 66.
    Smarr CB, Yap WT, Neef TP, Pearson RM, Hunter ZN, et al. 2016.. Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. . PNAS 113:(18):505964
    [Crossref] [Google Scholar]
  67. 67.
    Hlavaty KA, McCarthy DP, Saito E, Yap WT, Miller SD, Shea LD. 2016.. Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. . Biomaterials 76::110
    [Crossref] [Google Scholar]
  68. 68.
    Gammon JM, Tostanoski LH, Adapa AR, Chiu YC, Jewell CM. 2015.. Controlled delivery of a metabolic modulator promotes regulatory T cells and restrains autoimmunity. . J. Control. Release 210::16978
    [Crossref] [Google Scholar]
  69. 69.
    Tostanoski LH, Chiu YC, Gammon JM, Simon T, Andorko JI, et al. 2016.. Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. . Cell Rep. 16:(11):294052
    [Crossref] [Google Scholar]
  70. 70.
    Yang L, Bracho-Sanchez E, Fernando LP, Lewis JS, Carstens MR, et al. 2017.. Poly(2-propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles as a targeted antigen delivery system to direct either CD4+ or CD8+ T cell activation. . Bioeng. Transl. Med. 2:(2):20211
    [Crossref] [Google Scholar]
  71. 71.
    Fernando LP, Lewis JS, Evans BC, Duvall CL, Keselowsky BG. 2018.. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery. . J. Biomed. Mater. Res. A 106:(4):102233
    [Crossref] [Google Scholar]
  72. 72.
    Lewis JS, Stewart JM, Marshall GP, Carstens MR, Zhang Y, et al. 2019.. Dual-sized microparticle system for generating suppressive dendritic cells prevents and reverses type 1 diabetes in the nonobese diabetic mouse model. . ACS Biomater. Sci. Eng. 5:(5):263146
    [Crossref] [Google Scholar]
  73. 73.
    Lewis JS, Roche C, Zhang Y, Brusko TM, Wasserfall CH, et al. Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres. . J. Mater. Chem. B 2:(17):256274
    [Crossref] [Google Scholar]
  74. 74.
    Acharya AP, Lewis JS, Keselowsky BG. 2013.. Combinatorial co-encapsulation of hydrophobic molecules in poly(lactide-co-glycolide) microparticles. . Biomaterials 34:(13):342230
    [Crossref] [Google Scholar]
  75. 75.
    Allen RP, Bolandparvaz A, Ma JA, Manickam VA, Lewis JS. 2018.. Latent, immunosuppressive nature of poly(lactic-co-glycolic acid) microparticles. . ACS Biomater. Sci. Eng. 4:(3):90018
    [Crossref] [Google Scholar]
  76. 76.
    Demuth PC, Min Y, Huang B, Kramer JA, Miller AD, et al. 2013.. Polymer multilayer tattooing for enhanced DNA vaccination. . Nat. Mater. 12:(4):36776
    [Crossref] [Google Scholar]
  77. 77.
    Akinc A, Anderson DG, Lynn DM, Langer R. 2003.. Synthesis of poly(β-amino ester)s optimized for highly effective gene delivery. . Bioconjug. Chem. 14:(5):97988
    [Crossref] [Google Scholar]
  78. 78.
    Rathmell JC. 2012.. Metabolism and autophagy in the immune system: Immunometabolism comes of age. . Immunol. Rev. 249:(1):513
    [Crossref] [Google Scholar]
  79. 79.
    Lynn DM, Langer R. 2000.. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. . J. Am. Chem. Soc. 122:(44):1076168
    [Crossref] [Google Scholar]
  80. 80.
    Sunshine JC, Peng DY, Green JJ. 2012.. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. . Mol. Pharm. 9:(11):337583
    [Crossref] [Google Scholar]
  81. 81.
    Andorko JI, Hess KL, Pineault KG, Jewell CM. 2016.. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. . Acta Biomater. 32::2434
    [Crossref] [Google Scholar]
  82. 82.
    Truong THA, Mothe SR, Min JL, Tan HM, Jackson AW, et al. 2022.. Immuno-modulatory effects of microparticles formulated from degradable polystyrene analogue. . Macromol. Biosci. 22:(7):e2100472
    [Crossref] [Google Scholar]
  83. 83.
    Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, et al. 2012.. Administration, distribution, metabolism and elimination of polymer therapeutics. . J. Control. Release 161::44660
    [Crossref] [Google Scholar]
  84. 84.
    Lee J, Sohn JW, Zhang Y, Leong KW, Pisetsky D, Sullenger BA. 2011.. Nucleic acid–binding polymers as anti-inflammatory agents. . PNAS 108::1405560
    [Crossref] [Google Scholar]
  85. 85.
    Jung JP, Nagaraj AK, Fox EK, Rudra JS, Devgun JM, Collier JH. 2009.. Co-assembling peptides as defined matrices for endothelial cells. . Biomaterials 30:(12):240010
    [Crossref] [Google Scholar]
  86. 86.
    Rudra JS, Tian YF, Jung JP, Collier JH. 2010.. A self-assembling peptide acting as an immune adjuvant. . PNAS 107:(2):62227
    [Crossref] [Google Scholar]
  87. 87.
    Wilson DS, Damo M, Hirosue S, Raczy MM, Brünggel K, et al. 2019.. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. . Nat. Biomed. Eng. 3:(10):81729
    [Crossref] [Google Scholar]
  88. 88.
    Ishida T, Nagao M, Oh T, Mori T, Hoshino Y, Miura Y. 2022.. Synthesis of glycopolymers carrying 3′-sialyllactose for suppressing inflammatory reaction via Siglec-E. . Chem. Lett. 51:(3):30811
    [Crossref] [Google Scholar]
  89. 89.
    Li J, Qiu D, Liu Y, Xiong J, Wang Y, et al. 2018.. Cytomembrane infused polymer accelerating delivery of myelin antigen peptide to treat experimental autoimmune encephalomyelitis. . ACS Nano 12:(11):1157990
    [Crossref] [Google Scholar]
  90. 90.
    Liang H, Peng B, Dong C, Liu L, Mao J, et al. 2018.. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. . Nat. Commun. 9::4291
    [Crossref] [Google Scholar]
  91. 91.
    Kumaran SK, Chopra M, Oh E, Choi HJ. 2020.. Biopolymers and natural polymers. . In Polymer Science and Nanotechnology: Fundamentals and Applications, ed. R Narain , pp. 24556. Amsterdam:: Elsevier
    [Google Scholar]
  92. 92.
    Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, et al. 2023.. Polysaccharides—naturally occurring immune modulators. . Polymers 15:(10):2373
    [Crossref] [Google Scholar]
  93. 93.
    Moudgil KD, Venkatesha SH. 2023.. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. . Int. J. Mol. Sci. 24::95
    [Crossref] [Google Scholar]
  94. 94.
    Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM. 2019.. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. . Nat. Commun. 10::2153
    [Crossref] [Google Scholar]
  95. 95.
    Kakwere H, Harriman R, Pirir M, Avila C, Chan K, Lewis JS. 2022.. Engineering immunomodulatory nanoplatforms from commensal bacteria–derived polysaccharide A. . J. Mater. Chem. B 10:(8):121025
    [Crossref] [Google Scholar]
  96. 96.
    Lin K, Kasko AM. 2014.. Carbohydrate-based polymers for immune modulation. . ACS Macro Lett. 3:(7):65257
    [Crossref] [Google Scholar]
  97. 97.
    Han B, Baruah K, Cox E, Vanrompay D, Bossier P. 2020.. Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: a mini-review. . Front. Immunol. 11::658
    [Crossref] [Google Scholar]
  98. 98.
    Lee BM, Park SJ, Noh I, Kim CH. 2021.. The effects of the molecular weights of hyaluronic acid on the immune responses. . Biomater. Res. 25::27
    [Crossref] [Google Scholar]
  99. 99.
    Adams EL, Rice PJ, Graves B, Ensley HE, Yu H, et al. 2008.. Differential high-affinity interaction of Dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. . J. Pharmacol. Exp. Ther. 325:(1):11523
    [Crossref] [Google Scholar]
  100. 100.
    Arnida, Malugin A, Ghandehari H. 2010.. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. . J. Appl. Toxicol. 30:(3):21217
    [Crossref] [Google Scholar]
  101. 101.
    Li Z, Sun L, Zhang Y, Dove AP, O'Reilly RK, Chen G. 2016.. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. . ACS Macro Lett. 5:(9):105964
    [Crossref] [Google Scholar]
  102. 102.
    Egorova EA, Lamers GEM, Monikh FA, Boyle AL, Slütter B, Kros A. 2022.. Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses. . RSC Adv. 12:(31):1970316
    [Crossref] [Google Scholar]
  103. 103.
    Chen X, Yan Y, Müllner M, Ping Y, Cui J, et al. 2016.. Shape-dependent activation of cytokine secretion by polymer capsules in human monocyte-derived macrophages. . Biomacromolecules 17:(3):120512
    [Crossref] [Google Scholar]
  104. 104.
    Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. 2015.. Shape and size-dependent immune response to antigen-carrying nanoparticles. . J. Control. Release 220::14148
    [Crossref] [Google Scholar]
  105. 105.
    Wang Y, Wang J, Zhu D, Wang Y, Qing G, et al. 2021.. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. . Acta Pharm. Sin. B 11::886902
    [Crossref] [Google Scholar]
  106. 106.
    Owens DE, Peppas NA. 2006.. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. . Int. J. Pharm. 307::93102
    [Crossref] [Google Scholar]
  107. 107.
    Casey LM, Hughes KR, Saunders MN, Miller SD, Pearson RM, Shea LD. 2022.. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. . Biomaterials 283::121457
    [Crossref] [Google Scholar]
  108. 108.
    Martínez Gómez JM, Csaba N, Fischer S, Sichelstiel A, Kündig TM, et al. 2008.. Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. . J. Control. Release 130:(2):16167
    [Crossref] [Google Scholar]
  109. 109.
    Miura R, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. 2020.. Antigen delivery to antigen-presenting cells for adaptive immune response by self-assembled anionic polysaccharide nanogel vaccines. . Biomacromolecules 21:(2):62129
    [Crossref] [Google Scholar]
  110. 110.
    Vigderman L, Manna P, Zubarev ER. 2012.. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. . Angew. Chem. Int. Ed. 124:(3):66065
    [Crossref] [Google Scholar]
  111. 111.
    Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, et al. 2015.. Cationic polymer modified mesoporous silica nanoparticles for targeted siRNA delivery to HER2+ breast cancer. . Adv. Funct. Mater. 25:(18):264659
    [Crossref] [Google Scholar]
  112. 112.
    Jiang Y, Huo S, Mizuhara T, Das R, Lee YW, et al. 2015.. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. . ACS Nano 9:(10):998693
    [Crossref] [Google Scholar]
  113. 113.
    Fytianos K, Chortarea S, Rodriguez-Lorenzo L, Blank F, Von Garnier C, et al. 2017.. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. . ACS Nano 11:(1):37583
    [Crossref] [Google Scholar]
  114. 114.
    Xu Y, Sherwood JA, Lackey KH, Qin Y, Bao Y. 2016.. The responses of immune cells to iron oxide nanoparticles. . J. Appl. Toxicol. 36:(4):54353
    [Crossref] [Google Scholar]
  115. 115.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM. 2004.. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. . Bioconjug. Chem. 15:(4):897900
    [Crossref] [Google Scholar]
  116. 116.
    Piloni A, Wong CK, Chen F, Lord M, Walther A, Stenzel MH. 2019.. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. . Nanoscale 11:(48):2325967
    [Crossref] [Google Scholar]
  117. 117.
    Segan S, Jakobi M, Khokhani P, Klimosch S, Billing F, et al. 2020.. Systematic investigation of polyurethane biomaterial surface roughness on human immune responses in vitro. . Biomed. Res. Int. 2020::3481549
    [Crossref] [Google Scholar]
  118. 118.
    Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, et al. 2021.. High-throughput methods in the discovery and study of biomaterials and materiobiology. . Chem. Rev. 121::4561677
    [Crossref] [Google Scholar]
  119. 119.
    Allen R, Chizari S, Ma JA, Raychaudhuri S, Lewis JS. 2019.. Combinatorial, microparticle-based delivery of immune modulators reprograms the dendritic cell phenotype and promotes remission of collagen-induced arthritis in mice. . ACS Appl. Biol. Mater. 2:(6):2388404
    [Crossref] [Google Scholar]
  120. 120.
    Manicassamy S, Pulendran B. 2011.. Dendritic cell control of tolerogenic responses. . Immunol. Rev. 241::20627
    [Crossref] [Google Scholar]
  121. 121.
    Mueller SN, Germain RN. 2009.. Stromal cell contributions to the homeostasis and functionality of the immune system. . Nat. Rev. Immunol. 9::61829
    [Crossref] [Google Scholar]
  122. 122.
    Tostanoski LH, Chiu YC, Gammon JM, Simon T, Andorko JI, et al. 2016.. Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. . Cell Rep. 16:(11):294052
    [Crossref] [Google Scholar]
  123. 123.
    McCall M, Shapiro AMJ. 2012.. Update on islet transplantation. Cold Spring Harb. . Perspect. Med. 2:(7):a007823
    [Google Scholar]
  124. 124.
    Rickels MR, Robertson PR. 2019.. Pancreatic islet transplantation in humans: recent progress and future directions. . Endocr. Rev. 40:(2):63168
    [Crossref] [Google Scholar]
  125. 125.
    Stabler CL, Li Y, Stewart JM, Keselowsky BG. 2019.. Engineering immunomodulatory biomaterials for type 1 diabetes. . Nat. Rev. Mater. 4:(6):42950
    [Crossref] [Google Scholar]
  126. 126.
    Samojlik MM, Stabler CL. 2021.. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in type 1 diabetes. . Acta Biomater. 133::87101
    [Crossref] [Google Scholar]
  127. 127.
    Headen DM, Woodward KB, Coronel MM, Shrestha P, Weaver JD, et al. 2018.. Local immunomodulation with Fas ligand–engineered biomaterials achieves allogeneic islet graft acceptance. . Nat. Mater. 17:(8):73239
    [Crossref] [Google Scholar]
  128. 128.
    Chivers CE, Koner AL, Lowe ED, Howarth M. 2011.. How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. . Biochem. J. 435:(1):5563
    [Crossref] [Google Scholar]
  129. 129.
    Duvivier-Kali VF, Omer A, Parent RJ, O'Neil JJ, Weir GC. 2001.. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. . Diabetes 50:(8):1698705
    [Crossref] [Google Scholar]
  130. 130.
    Patterson J, Martino MM, Hubbell JA. 2010.. Biomimetic materials in tissue engineering. . Mater. Today 13::1422
    [Crossref] [Google Scholar]
  131. 131.
    Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali AA, et al. 2022.. Scaffolds in the microbial resistant era: fabrication, materials, properties and tissue engineering applications. . Mater. Today Biol. 16::100412
    [Crossref] [Google Scholar]
  132. 132.
    Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, et al. 2017.. 3D bioprinting for tissue and organ fabrication. . Ann. Biomed. Eng. 45:(1):14863
    [Crossref] [Google Scholar]
  133. 133.
    Harff C, Panoskaltsis-Mortari A. 2021.. Tissue engineering of the lymphoid organs. . J. Immunol. Regen. Med. 13::100049
    [Google Scholar]
  134. 134.
    Purwada A, Jaiswal MK, Ahn H, Nojima T, Kitamura D, et al. 2015.. Ex vivo engineered immune organoids for controlled germinal center reactions. . Biomaterials 63::2434
    [Crossref] [Google Scholar]
  135. 135.
    Okamoto N, Chihara R, Shimizu C, Nishimoto S, Watanabe T. 2007.. Artificial lymph nodes induce potent secondary immune responses in naive and immunodeficient mice. . J. Clin. Investig. 117:(4):9971007
    [Crossref] [Google Scholar]
  136. 136.
    Rezk SA, Nathwani BN, Zhao X, Weiss LM. 2013.. Follicular dendritic cells: origin, function, and different disease-associated patterns. . Hum. Pathol. 44:(6):93750
    [Crossref] [Google Scholar]
  137. 137.
    Yu W, Freeland DMH, Nadeau KC. 2016.. Food allergy: immune mechanisms, diagnosis and immunotherapy. . Nat. Rev. Immunol. 16::75165
    [Crossref] [Google Scholar]
  138. 138.
    Cait A, Cardenas E, Dimitriu PA, Amenyogbe N, Dai D, et al. 2019.. Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. . J. Allergy Clin. Immunol. 144:(6):163847.e3
    [Crossref] [Google Scholar]
  139. 139.
    Wang R, Cao S, Bashir MEH, Hesser LA, Su Y, et al. 2023.. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. . Nat. Biomed. Eng. 7:(1):3855
    [Crossref] [Google Scholar]
  140. 140.
    Yoon YM, Lewis JS, Carstens MR, Campbell-Thompson M, Wasserfall CH, et al. 2015.. A combination hydrogel microparticle–based vaccine prevents type 1 diabetes in non-obese diabetic mice. . Sci. Rep. 5::13155
    [Crossref] [Google Scholar]
  141. 141.
    Sokka T, Hetland ML, Mäkinen H, Kautiainen H, Hørslev-Petersen K, et al. 2008.. Remission and rheumatoid arthritis data on patients receiving usual care in twenty-four countries. . Arthritis Rheum. 58:(9):264251
    [Crossref] [Google Scholar]
  142. 142.
    Cent. Dis. Control Prev., Infect. Dis. Soc. Am., Am. Soc. Blood Marrow Transplant. 2000.. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. . Biol. Blood Marrow Transplant. 6:(6):783
    [Crossref] [Google Scholar]
  143. 143.
    Fishman JA. 2007.. Infection in solid-organ transplant recipients. . N. Engl. J. Med. 357:(25):260114
    [Crossref] [Google Scholar]
  144. 144.
    Lewis JS, Roche C, Zhang Y, Brusko TM, Wasserfall CH, et al. 2014.. Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres. . J. Mater. Chem. B 2::256274
    [Crossref] [Google Scholar]
  145. 145.
    Lewis JS, Stewart JM, Marshall GP, Carstens MR, Zhang Y, et al. 2019.. Dual-sized microparticle system for generating suppressive dendritic cells prevents and reverses type 1 diabetes in the nonobese diabetic mouse model. . ACS Biomater. Sci. Eng. 5:(5):263146
    [Crossref] [Google Scholar]
  146. 146.
    Cho JJ, Stewart JM, Drashansky TT, Brusko MA, Zuniga AN, et al. 2017.. An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune encephalomyelitis. . Biomaterials 143::7992
    [Crossref] [Google Scholar]
  147. 147.
    Allen R, Chizari S, Ma JA, Raychaudhuri S, Lewis JS. 2019.. Combinatorial, microparticle-based delivery of immune modulators reprograms the dendritic cell phenotype and promotes remission of collagen-induced arthritis in mice. . ACS Appl. Biol. Mater. 2:(6):2388404
    [Crossref] [Google Scholar]
  148. 148.
    Kong J, Chalcraft K, Mandur TS, Jimenez-Saiz R, Walker TD, et al. 2015.. Comprehensive metabolomics identifies the alarmin uric acid as a critical signal for the induction of peanut allergy. . Allergy 70:(5):495505
    [Crossref] [Google Scholar]
  149. 149.
    Weyand CM, Goronzy JJ. 2003.. Ectopic germinal center formation in rheumatoid synovitis. . Ann. N. Y. Acad. Sci. 987:(1):14049
    [Crossref] [Google Scholar]
  150. 150.
    Corsiero E, Delvecchio FR, Bombardieri M, Pitzalis C. 2019.. B cells in the formation of tertiary lymphoid organs in autoimmunity, transplantation and tumorigenesis. . Curr. Opin. Immunol. 57::4652
    [Crossref] [Google Scholar]
  151. 151.
    Vickovic S, Schapiro D, Carlberg K, Lötstedt B, Larsson L, et al. 2022.. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. . Commun. Biol. 5::129
    [Crossref] [Google Scholar]
  152. 152.
    Havenar-Daughton C, Lindqvist M, Heit A, Wu JE, Reiss SM, et al. 2016.. CXCL13 is a plasma biomarker of germinal center activity. . PNAS 113:(10):27027
    [Crossref] [Google Scholar]
  153. 153.
    Carlberg K, Korotkova M, Larsson L, Catrina AI, Ståhl PL, Malmström V. 2019.. Exploring inflammatory signatures in arthritic joint biopsies with spatial transcriptomics. . Sci. Rep. 9::18975
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110122-014306
Loading
/content/journals/10.1146/annurev-bioeng-110122-014306
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error