1932

Abstract

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility. In this review, we discuss the diversity of biomedical applications that have benefited from the unique features of TPP. We also present the state of the art in approaches for patterning and reading 3D TPP-fabricated structures. The reading process influences the fidelity for both in situ and ex situ characterization methods. We also review efforts to leverage machine learning to facilitate process control for TPP. Finally, we conclude with a discussion of both the current challenges and exciting opportunities for biomedical applications that lie ahead for this intriguing and emerging technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110122-015901
2025-05-01
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-110122-015901.html?itemId=/content/journals/10.1146/annurev-bioeng-110122-015901&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Jenkins M. 2007.. Biomedical Polymers. Boca Raton, FL:: CRC Press
    [Google Scholar]
  2. 2.
    Isayev AI. 2000.. Molding processes. . In Handbook of Industrial Automation. Boca Raton, FL:: CRC Press
    [Google Scholar]
  3. 3.
    Hull CW. 1984.. Apparatus for production of three-dimensional objects by stereolithography. US Patent Appl. 638905
    [Google Scholar]
  4. 4.
    Crump SS. 1992.. Apparatus and method for creating three-dimensional objects. US Patent 5,121,329
    [Google Scholar]
  5. 5.
    Deckard CR. 1997.. Apparatus for producing parts by selective sintering. US Patent 5,597,589
    [Google Scholar]
  6. 6.
    Maruo S, Kawata S. 1997.. Two-photon-absorbed photopolymerization for three-dimensional microfabrication. . In Proceedings of the IEEE: The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp. 16974. New York:: IEEE
    [Google Scholar]
  7. 7.
    Liu YJ, Yang JY, Nie YM, Lu CH, Huang ED, et al. 2015.. A simple and direct reading flow meter fabricated by two-photon polymerization for microfluidic channel. . Microfluid. Nanofluidics 18:(3):42731
    [Crossref] [Google Scholar]
  8. 8.
    Guo R, Xiao S, Zhai X, Li J, Xia A, Huang W. 2006.. Micro lens fabrication by means of femtosecond two photon photopolymerization. . Opt. Express 14:(2):81016
    [Crossref] [Google Scholar]
  9. 9.
    Hu X, Yasa IC, Ren Z, Goudu SR, Ceylan H, et al. 2021.. Magnetic soft micromachines made of linked microactuator networks. . Sci. Adv. 7:(23):eabe8436
    [Crossref] [Google Scholar]
  10. 10.
    Göppert-Mayer M. 1931.. Über elementarakte mit zwei quantensprüngen. . Ann. Phys. 401:(3):27394
    [Crossref] [Google Scholar]
  11. 11.
    Rumi M, Perry JW. 2010.. Two-photon absorption: an overview of measurements and principles. . Adv. Opt. Photon. 2:(4):451518
    [Crossref] [Google Scholar]
  12. 12.
    Sun HB, Kawata S. 2004.. Two-photon photopolymerization and 3D lithographic microfabrication. . Adv. Polym. Sci. 170::169273
    [Crossref] [Google Scholar]
  13. 13.
    Denk W, Strickler JH, Webb WW. 1990.. Two-photon laser scanning fluorescence microscopy. . Science 248:(4951):7376
    [Crossref] [Google Scholar]
  14. 14.
    Hahn V, Messer T, Bojanowski NM, Curticean ER, Wacker I, et al. 2021.. Two-step absorption instead of two-photon absorption in 3D nanoprinting. . Nat. Photon. 15:(12):93238
    [Crossref] [Google Scholar]
  15. 15.
    Stampfl J, Liska R, Ovsianikov A. 2016.. Multiphoton Lithography: Techniques, Materials, and Applications. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  16. 16.
    Odian G. 2004.. Principles of Polymerization. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  17. 17.
    Lim KS, Galarraga JH, Cui X, Lindberg GC, Burdick JA, Woodfield TB. 2020.. Fundamentals and applications of photo-cross-linking in bioprinting. . Chem. Rev. 120:(19):1066294
    [Crossref] [Google Scholar]
  18. 18.
    Greant C, Van Durme B, Van Hoorick J, Van Vlierberghe S. 2023.. Multiphoton lithography as a promising tool for biomedical applications. . Adv. Funct. Mater. 33::2212641
    [Crossref] [Google Scholar]
  19. 19.
    Hoyle CE, Bowman CN. 2010.. Thiol–ene click chemistry. . Angew. Chem. Int. Ed. 49:(9):154073
    [Crossref] [Google Scholar]
  20. 20.
    Lee M, Rizzo R, Surman F, Zenobi-Wong M. 2020.. Guiding lights: tissue bioprinting using photoactivated materials. . Chem. Rev. 120:(19):109501027
    [Crossref] [Google Scholar]
  21. 21.
    Adzima BJ, Tao Y, Kloxin CJ, DeForest CA, Anseth KS, Bowman CN. 2011.. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. . Nat. Chem. 3:(3):25659
    [Crossref] [Google Scholar]
  22. 22.
    Loebel C, Broguiere N, Alini M, Zenobi-Wong M, Eglin D. 2015.. Microfabrication of photo-cross-linked hyaluronan hydrogels by single-and two-photon tyramine oxidation. . Biomacromolecules 16:(9):262430
    [Crossref] [Google Scholar]
  23. 23.
    Li L, Gattass RR, Gershgoren E, Hwang H, Fourkas JT. 2009.. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. . Science 324:(5929):91013
    [Crossref] [Google Scholar]
  24. 24.
    Sakellari I, Kabouraki E, Gray D, Purlys V, Fotakis C, et al. 2012.. Diffusion-assisted high-resolution direct femtosecond laser writing. . ACS Nano 6:(3):230211
    [Crossref] [Google Scholar]
  25. 25.
    Wiesbauer M, Wollhofen R, Vasic B, Schilcher K, Jacak J, Klar TA. 2013.. Nano-anchors with single protein capacity produced with STED lithography. . Nano Lett. 13:(11):567278
    [Crossref] [Google Scholar]
  26. 26.
    Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, et al. 2012.. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. . Adv. Mater. 24:(20):271014
    [Crossref] [Google Scholar]
  27. 27.
    Woods R, Feldbacher S, Langer G, Satzinger V, Schmidt V, Kern W. 2011.. Epoxy silicone based matrix materials for two-photon patterning of optical waveguides. . Polymer 52:(14):303137
    [Crossref] [Google Scholar]
  28. 28.
    Majee SB, ed. 2016.. Emerging Concepts in Analysis and Applications of Hydrogels. London:: IntechOpen
    [Google Scholar]
  29. 29.
    Drury JL, Mooney DJ. 2003.. Hydrogels for tissue engineering: scaffold design variables and applications. . Biomaterials 24:(24):433751
    [Crossref] [Google Scholar]
  30. 30.
    Kufelt O, El-Tamer A, Sehring C, Meißner M, Schlie-Wolter S, Chichkov BN. 2015.. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. . Acta Biomater. 18::18695
    [Crossref] [Google Scholar]
  31. 31.
    Wang L, Xu M, Luo L, Zhou Y, Si P. 2018.. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. . Sci. Rep. 8::2802
    [Crossref] [Google Scholar]
  32. 32.
    Kufelt O, El-Tamer A, Sehring C, Schlie-Wolter S, Chichkov BN. 2014.. Hyaluronic acid based materials for scaffolding via two-photon polymerization. . Biomacromolecules 15:(2):65059
    [Crossref] [Google Scholar]
  33. 33.
    Koroleva A, Gittard S, Schlie S, Deiwick A, Jockenhoevel S, Chichkov B. 2012.. Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization–micromolding technique. . Biofabrication 4:(1):015001
    [Crossref] [Google Scholar]
  34. 34.
    Bell A, Kofron M, Nistor V. 2015.. Multiphoton crosslinking for biocompatible 3D printing of type I collagen. . Biofabrication 7:(3):035007
    [Crossref] [Google Scholar]
  35. 35.
    Cho KC, Lien CH, Lin CY, Chang CY, Huang LL, et al. 2011.. Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures. . Opt. Express 19:(12):1173239
    [Crossref] [Google Scholar]
  36. 36.
    Tomal W, Ortyl J. 2020.. Water-soluble photoinitiators in biomedical applications. . Polymers 12:(5):1073
    [Crossref] [Google Scholar]
  37. 37.
    Haas KH, Wolter H. 1999.. Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER®s). . Curr. Opin. Solid State Mater. Sci. 4:(6):57180
    [Crossref] [Google Scholar]
  38. 38.
    Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, et al. 2008.. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. . ACS Nano 2:(11):225762
    [Crossref] [Google Scholar]
  39. 39.
    Balčiūnas E, Dreižė N, Grubliauskaitė M, Urnikytė S, Šimoliūnas E, et al. 2019.. Biocompatibility investigation of hybrid organometallic polymers for sub-micron 3D printing via laser two-photon polymerisation. . Materials 12:(23):3932
    [Crossref] [Google Scholar]
  40. 40.
    Sakellari I, Gaidukeviciute A, Giakoumaki A, Gray D, Fotakis C, et al. 2010.. Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication. . Appl. Phys. A 100::35964
    [Crossref] [Google Scholar]
  41. 41.
    Shukla S, Vidal X, Furlani EP, Swihart MT, Kim KT, et al. 2011.. Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction. . Acs Nano 5:(3):194757
    [Crossref] [Google Scholar]
  42. 42.
    Saha SK, Au B, Oakdale JS. 2019.. High-speed direct laser writing of silver nanostructures via two-photon reduction. . Adv. Eng. Mater. 21:(9):1900583
    [Crossref] [Google Scholar]
  43. 43.
    Kabouraki E, Giakoumaki AN, Danilevicius P, Gray D, Vamvakaki M, Farsari M. 2013.. Redox multiphoton polymerization for 3D nanofabrication. . Nano Lett. 13:(8):383135
    [Crossref] [Google Scholar]
  44. 44.
    Caddeo S, Boffito M, Sartori S. 2017.. Tissue engineering approaches in the design of healthy and pathological in vitro tissue models. . Front. Bioeng. Biotechnol. 5::40
    [Crossref] [Google Scholar]
  45. 45.
    Spatz JP, Geiger B. 2007.. Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. . In Methods in Cell Biology, Vol. 83. Cambridge, MA:: Academic Press
    [Google Scholar]
  46. 46.
    Robotti F, Bottan S, Fraschetti F, Mallone A, Pellegrini G, et al. 2018.. A micron-scale surface topography design reducing cell adhesion to implanted materials. . Sci. Rep. 8:(1):10887
    [Crossref] [Google Scholar]
  47. 47.
    Jeon H, Hidai H, Hwang DJ, Grigoropoulos CP. 2010.. Fabrication of arbitrary polymer patterns for cell study by two-photon polymerization process. . J. Biomed. Mater. Res. A 93A:(1):5666
    [Crossref] [Google Scholar]
  48. 48.
    Jeon H, Hidai H, Hwang DJ, Healy KE, Grigoropoulos CP. 2010.. The effect of micronscale anisotropic cross patterns on fibroblast migration. . Biomaterials 31:(15):428695
    [Crossref] [Google Scholar]
  49. 49.
    dos Santos LMS, de Oliveira JM, da Silva ECO, Fonseca VML, Silva JP, et al. 2023.. Mechanical and morphological responses of osteoblast-like cells to two-photon polymerized microgrooved surfaces. . J. Biomed. Mater. Res. A 111:(2):23444
    [Crossref] [Google Scholar]
  50. 50.
    Callens SJP, Fan D, van Hengel IAJ, Minneboo M, Díaz-Payno PJ, et al. 2023.. Emergent collective organization of bone cells in complex curvature fields. . Nat. Commun. 14::855
    [Crossref] [Google Scholar]
  51. 51.
    Shivani S, Hsu YH, Lee CJ, Cheong CS, Chung TT, Wang AB. 2022.. Programmed topographic substrates for studying roughness gradient-dependent cell migration using two-photon polymerization. . Front. Cell Dev. Biol. 10::825791
    [Crossref] [Google Scholar]
  52. 52.
    Liu X, Gu H, Wang M, Du X, Gao B, et al. 2018.. 3D printing of bioinspired liquid superrepellent structures. . Adv. Mater. 30:(22):e1800103
    [Crossref] [Google Scholar]
  53. 53.
    Dong Z, Schumann MF, Hokkanen MJ, Chang B, Welle A, et al. 2018.. Superoleophobic slippery lubricant-infused surfaces: combining two extremes in the same surface. . Adv. Mater. 30:(45):e1803890
    [Crossref] [Google Scholar]
  54. 54.
    Zhou J, Xiong S, Liu M, Yang H, Wei P, et al. 2023.. Study on the influence of scaffold morphology and structure on osteogenic performance. . Front. Bioeng. Biotechnol. 11::1127162
    [Crossref] [Google Scholar]
  55. 55.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, et al. 2008.. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. . Nat. Med. 14:(2):21321
    [Crossref] [Google Scholar]
  56. 56.
    Agarwal S, Wendorff JH, Greiner A. 2008.. Use of electrospinning technique for biomedical applications. . Polymer 49:(26):560321
    [Crossref] [Google Scholar]
  57. 57.
    Peck M, Dusserre N, McAllister TN, L'Heureux N. 2011.. Tissue engineering by self-assembly. . Mater. Today 14:(5):21824
    [Crossref] [Google Scholar]
  58. 58.
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, et al. 2018.. Protein phase separation: a new phase in cell biology. . Trends Cell Biol. 28:(6):42035
    [Crossref] [Google Scholar]
  59. 59.
    Erisken C, Zhang X, Moffat KL, Levine WN, Lu HH. 2013.. Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation. . Tissue Eng. Part A 19:(3–4):51928
    [Crossref] [Google Scholar]
  60. 60.
    Bashur CA, Shaffer RD, Dahlgren LA, Guelcher SA, Goldstein AS. 2009.. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. . Tissue Eng. Part A 15:(9):243545
    [Crossref] [Google Scholar]
  61. 61.
    Kuetemeyer K, Kensah G, Heidrich M, Meyer H, Martin U, et al. 2011.. Two-photon induced collagen cross-linking in bioartificial cardiac tissue. . Opt. Express 19:(17):15996
    [Crossref] [Google Scholar]
  62. 62.
    Salazar Coariti AC, Fabien MS, Guzman J, McGuire JA, De Vita R, Toussaint KC Jr. 2022.. Fluid mechanics approach to analyzing collagen fiber organization. . J. Biomed. Opt. 27:(1):016503
    [Crossref] [Google Scholar]
  63. 63.
    Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint KC Jr. 2012.. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. . Biomed. Opt. Express 3:(9):202135
    [Crossref] [Google Scholar]
  64. 64.
    Ambekar R, Toussaint KC Jr., Wagoner Johnson A. 2011.. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. . J. Mech. Behav. Biomed. Mater. 4:(3):22336
    [Crossref] [Google Scholar]
  65. 65.
    Lee W, Rahman H, Kersh ME, Toussaint KC Jr. 2017.. Application of quantitative second-harmonic generation microscopy to posterior cruciate ligament for crimp analysis studies. . J. Biomed. Opt. 22:(4):46009
    [Crossref] [Google Scholar]
  66. 66.
    Lee W, Ostadi Moghaddam A, Shen S, Phillips H, McFarlin BL, et al. 2021.. An optomechanogram for assessment of the structural and mechanical properties of tissues. . Sci. Rep. 11:(1):324
    [Crossref] [Google Scholar]
  67. 67.
    Alkmin S, Brodziski R, Simon H, Hinton D, Goldsmith RH, et al. 2020.. Role of collagen fiber morphology on ovarian cancer cell migration using image-based models of the extracellular matrix. . Cancers 12:(6):1390
    [Crossref] [Google Scholar]
  68. 68.
    Shors EC. 1999.. Coralline bone graft substitutes. . Orthop. Clin. 30:(4):599613
    [Google Scholar]
  69. 69.
    van Helvert S, Storm C, Friedl P. 2018.. Mechanoreciprocity in cell migration. . Nat. Cell Biol. 20:(1):820
    [Crossref] [Google Scholar]
  70. 70.
    Han P, Gomez GA, Duda GN, Ivanovski S, Poh PSP. 2023.. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. . Acta Biomater. 163::25974
    [Crossref] [Google Scholar]
  71. 71.
    Tayalia P, Mendonca CR, Baldacchini T, Mooney DJ, Mazur E. 2008.. 3D cell-migration studies using two-photon engineered polymer scaffolds. . Adv. Mater. 20:(23):449498
    [Crossref] [Google Scholar]
  72. 72.
    Melissinaki V, Gill AA, Ortega I, Vamvakaki M, Ranella A, et al. 2011.. Direct laser writing of 3D scaffolds for neural tissue engineering applications. . Biofabrication 3:(4):045005
    [Crossref] [Google Scholar]
  73. 73.
    Accardo A, Blatché MC, Courson R, Loubinoux I, Vieu C, Malaquin L. 2018.. Two-photon lithography and microscopy of 3D hydrogel scaffolds for neuronal cell growth. . Biomed. Phys. Eng. Express 4:(2):027009
    [Crossref] [Google Scholar]
  74. 74.
    Tayalia P, Mazur E, Mooney DJ. 2011.. Controlled architectural and chemotactic studies of 3D cell migration. . Biomaterials 32:(10):263441
    [Crossref] [Google Scholar]
  75. 75.
    Greiner AM, Jäckel M, Scheiwe AC, Stamow DR, Autenrieth TJ, et al. 2014.. Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion. . Biomaterials 35:(2):61119
    [Crossref] [Google Scholar]
  76. 76.
    Dehghani F, Annabi N. 2011.. Engineering porous scaffolds using gas-based techniques. . Curr. Opin. Biotechnol. 22:(5):66166
    [Crossref] [Google Scholar]
  77. 77.
    Suh SW, Shin JY, Kim J, Kim J, Beak CH, et al. 2002.. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. . ASAIO J. 48:(5):46064
    [Crossref] [Google Scholar]
  78. 78.
    Danilevicius P, Georgiadi L, Pateman CJ, Claeyssens F, Chatzinikolaidou M, Farsari M. 2015.. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds. . Appl. Surf. Sci. 336::210
    [Crossref] [Google Scholar]
  79. 79.
    Raimondi MT, Eaton SM, Laganà M, Aprile V, Nava MM, et al. 2013.. Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. . Acta Biomater. 9:(1):457984
    [Crossref] [Google Scholar]
  80. 80.
    Worthington KS, Wiley LA, Kaalberg EE, Collins MM, Mullins RF, et al. 2017.. Two-photon polymerization for production of human iPSC-derived retinal cell grafts. . Acta Biomater. 55::38595
    [Crossref] [Google Scholar]
  81. 81.
    Davis Gittard S, Koroleva A, Nguyen A, Fadeeva E, Gaidukeviciute A, et al. 2013.. Two-photon polymerization microstructuring in regenerative medicine. . Front. Biosci. 5:(2):6029
    [Crossref] [Google Scholar]
  82. 82.
    Kufelt O, El-Tamer A, Sehring C, Meißner M, Schlie-Wolter S, Chichkov BN. 2015.. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. . Acta Biomater. 18::18695
    [Crossref] [Google Scholar]
  83. 83.
    Marino A, Tricinci O, Battaglini M, Filippeschi C, Mattoli V, et al. 2018.. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. . Small 14:(6):1702959
    [Crossref] [Google Scholar]
  84. 84.
    Culver JC, Hoffmann JC, Poché RA, Slater JH, West JL, Dickinson ME. 2012.. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. . Adv. Mater. 24:(17):234448
    [Crossref] [Google Scholar]
  85. 85.
    Marino A, Filippeschi C, Genchi GG, Mattoli V, Mazzolai B, Ciofani G. 2014.. The osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. . Acta Biomater. 10:(10):430413
    [Crossref] [Google Scholar]
  86. 86.
    Esquibel CR, Wendt KD, Lee HC, Gaire J, Shoffstall A, et al. 2020.. Second harmonic generation imaging of collagen in chronically implantable electrodes in brain tissue. . Front. Neurosci. 14::95
    [Crossref] [Google Scholar]
  87. 87.
    Moughames J, Porte X, Thiel M, Ulliac G, Larger L, et al. 2020.. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. . Optica 7:(6):640
    [Crossref] [Google Scholar]
  88. 88.
    Yu H, Zhang Q, Gu M. 2018.. Three-dimensional direct laser writing of biomimetic neuron structures. . Opt. Express 26:(24):3211117
    [Crossref] [Google Scholar]
  89. 89.
    Jonušauskas L, Pautienius A, Ežerskytė E, Grigas J, Andriukaitis D, et al. 2023.. Femtosecond laser-made 3D micro-chainmail scaffolds towards regenerative medicine. . Opt. Laser Technol. 162::109240
    [Crossref] [Google Scholar]
  90. 90.
    Vangelatos Z, Melissinaki V, Farsari M, Komvopoulos K, Grigoropoulos C. 2019.. Intertwined microlattices greatly enhance the performance of mechanical metamaterials. . Math. Mech. Solids 24:(8):263648
    [Crossref] [Google Scholar]
  91. 91.
    Vassey M, Ma L, Kämmerling L, Mbadugha C, Trindade GF, et al. 2023.. Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: the ChemoArchiChip. . Matter 6:(3):887906
    [Crossref] [Google Scholar]
  92. 92.
    Wittig R, Waller E, Freymann G, Steiner R. 2012.. Direct laser writing-mediated generation of standardized topographies for dental implant surface optimization. . J. Laser Appl. 24::042011
    [Crossref] [Google Scholar]
  93. 93.
    Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, et al. 2015.. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. . J. R. Soc. Interface 12:(108):20150254
    [Crossref] [Google Scholar]
  94. 94.
    Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki-Toroudi H, et al. 2019.. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. . Adv. Mater. Interfaces 6:(13):1900572
    [Crossref] [Google Scholar]
  95. 95.
    Klein F, Richter B, Striebel T, Franz CM, von Freymann G, et al. 2011.. Two-component polymer scaffolds for controlled three-dimensional cell culture. . Adv. Mater. 11:(23):134145
    [Crossref] [Google Scholar]
  96. 96.
    Richter B, Hahn V, Bertels S, Claus TK, Wegener M, et al. 2016.. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. . Adv. Mater. 29:(5):1604342
    [Crossref] [Google Scholar]
  97. 97.
    Skylar-Scott MA, Liu MC, Wu Y, Dixit A, Yanik MF. 2016.. Guided homing of cells in multi-photon microfabricated bioscaffolds. . Adv. Healthc. Mater. 5:(10):123343
    [Crossref] [Google Scholar]
  98. 98.
    Lee SH, Moon JJ, West JL. 2008.. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. . Biomaterials 29:(20):296268
    [Crossref] [Google Scholar]
  99. 99.
    Richter B, Pauloehrl T, Kaschke J, Fichtner D, Fischer J, et al. 2013.. Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry. . Adv. Mater. 25:(42):611722
    [Crossref] [Google Scholar]
  100. 100.
    Hoffmann JC, West JL. 2010.. Three-dimensional photolithographic patterning of multiple bioactive ligands in poly (ethylene glycol) hydrogels. . Soft Matter 6:(20):505663
    [Crossref] [Google Scholar]
  101. 101.
    Huang F, Chen M, Zhou Z, Duan R, Xia F, Willner I. 2021.. Spatiotemporal patterning of photoresponsive DNA-based hydrogels to tune local cell responses. . Nat. Commun. 12:(1):2364
    [Crossref] [Google Scholar]
  102. 102.
    Batalov I, Stevens KR, DeForest CA. 2021.. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. . PNAS 118:(4):e2014194118
    [Crossref] [Google Scholar]
  103. 103.
    DeForest CA, Tirrell DA. 2015.. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. . Nat. Mater. 14:(5):52331
    [Crossref] [Google Scholar]
  104. 104.
    Toulouse A, Drozella J, Thiele S, Giessen H, Herkommer A, et al. 2021.. 3D-printed miniature spectrometer for the visible range with a footprint. . Light Adv. Manufactur. 2:(1):2030
    [Crossref] [Google Scholar]
  105. 105.
    Gissibl T, Thiele S, Herkommer A, Giessen H. 2016.. Two-photon direct laser writing of ultracompact multi-lens objectives. . Nat. Photon. 10:(8):55460
    [Crossref] [Google Scholar]
  106. 106.
    Zhou J, Lin PT. 2022.. Generation of mid-infrared vortex beams by 3-D printed polymer phase plates. . Opt. Laser Technol. 156::108509
    [Crossref] [Google Scholar]
  107. 107.
    Wetzel AE, Del Castillo Iniesta N, Engay E, Mandsberg NK, Schou Dinesen C, et al. 2021.. Bioinspired microstructured polymer surfaces with antireflective properties. . Nanomaterials 11:(9):2298
    [Crossref] [Google Scholar]
  108. 108.
    Yanny K, Antipa N, Liberti W, Dehaeck S, Monakhova K, et al. 2020.. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. . Light Sci. Appl. 9::171
    [Crossref] [Google Scholar]
  109. 109.
    Wang H, Zhang W, Ladika D, Yu H, Gailevičius D, et al. 2023.. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. . Adv. Funct. Mater. 33::2214211
    [Crossref] [Google Scholar]
  110. 110.
    Li J, Thiele S, Quirk BC, Kirk RW, Verjans JW, et al. 2020.. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. . Light Sci. Appl. 9::124
    [Crossref] [Google Scholar]
  111. 111.
    Sheil CJ, Khan U, Zakharov YN, Coughlan MF, Pleskow DK, et al. 2021.. Two-photon polymerization nanofabrication of ultracompact light scattering spectroscopic probe for detection of pre-cancer in pancreatic cyst. . Opt. Lasers Eng. 142::106616
    [Crossref] [Google Scholar]
  112. 112.
    Li J, Thiele S, Kirk RW, Quirk BC, Hoogendoorn A, et al. 2022.. 3D-printed micro lens-in-lens for in vivo multimodal microendoscopy. . Small 18:(17):e2107032
    [Crossref] [Google Scholar]
  113. 113.
    Zou M, Liao C, Liu S, Xiong C, Zhao C, et al. 2021.. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. . Light Sci. Appl. 10::171
    [Crossref] [Google Scholar]
  114. 114.
    Shang X, Wang N, Wang Z, Jiang H, Jia Y, et al. 2022.. Customizable and highly sensitive 3D micro-springs produced by two-photon polymerizations with improved post-treatment processes. . Appl. Phys. Lett. 120:(17):171107
    [Crossref] [Google Scholar]
  115. 115.
    Jeon H, Kim E, Grigoropoulos CP. 2011.. Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds. . Biomed. Microdevices 13:(1):10715
    [Crossref] [Google Scholar]
  116. 116.
    Klein F, Striebel T, Fischer J, Jiang Z, Franz CM, et al. 2010.. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. . Adv. Mater. 22:(8):86871
    [Crossref] [Google Scholar]
  117. 117.
    Sima F, Sugioka K, Vázquez RM, Osellame R, Kelemen L, Ormos P. 2018.. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. . Nanophotonics 7:(3):61334
    [Crossref] [Google Scholar]
  118. 118.
    Sala F, Ficorella C, Martínez Vázquez R, Eichholz HM, Käs JA, Osellame R. 2021.. Rapid prototyping of 3D biochips for cell motility studies using two-photon polymerization. . Front. Bioeng. Biotechnol. 9::289
    [Crossref] [Google Scholar]
  119. 119.
    Amato L, Gu Y, Bellini N, Eaton SM, Cerullo G, Osellame R. 2012.. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. . Lab Chip 12:(6):113542
    [Crossref] [Google Scholar]
  120. 120.
    McLennan HJ, Blanch AJ, Wallace SJ, Ritter LJ, Heinrich SL, et al. 2023.. Nano-liter perfusion microfluidic device made entirely by two-photon polymerization for dynamic cell culture with easy cell recovery. . Sci. Rep. 13:(1):562
    [Crossref] [Google Scholar]
  121. 121.
    Schizas C, Melissinaki V, Gaidukeviciute A, Reinhardt C, Ohrt C, et al. 2010.. On the design and fabrication by two-photon polymerization of a readily assembled micro-valve. . Int. J. Adv. Manuf. Technol. 48:(5):43541
    [Crossref] [Google Scholar]
  122. 122.
    Xu B, Shi Y, Lao Z, Ni J, Li G, et al. 2018.. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. . Lab Chip 18:(3):44250
    [Crossref] [Google Scholar]
  123. 123.
    Liu YJ, Chen PY, Yang JY, Tsou C, Lee YH, et al. 2014.. Three-dimensional passive micromixer fabricated by two-photon polymerization for microfluidic mixing. . Sens. Mater. 26:(2):3944
    [Google Scholar]
  124. 124.
    Oellers M, Lucklum F, Vellekoop MJ. 2019.. On-chip mixing of liquids with swap structures written by two-photon polymerization. . Microfluid. Nanofluid. 24::4
    [Crossref] [Google Scholar]
  125. 125.
    Gittard SD, Ovsianikov A, Chichkov BN, Doraiswamy A, Narayan RJ. 2010.. Two-photon polymerization of microneedles for transdermal drug delivery. . Expert Opin. Drug Deliv. 7:(4):51333
    [Crossref] [Google Scholar]
  126. 126.
    Moussi K, Bukhamsin A, Hidalgo T, Kosel J. 2020.. Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. . Adv. Eng. Mater. 22:(2):1901358
    [Crossref] [Google Scholar]
  127. 127.
    Chichkov B. 2007.. Two-photon polymerization enhances rapid prototyping of medical devices. . SPIE Newsroom, May 4. https://www.spie.org/news/0705-two-photon-polymerization-enhances-rapid-prototyping-of-medical-devices
    [Google Scholar]
  128. 128.
    Chandrasekaran S, Frazier AB. 2003.. Characterization of surface micromachined metallic microneedles. . J. Microelectromech. Syst. 12:(3):28995
    [Crossref] [Google Scholar]
  129. 129.
    Gittard SD, Miller PR, Boehm RD, Ovsianikov A, Chichkov BN, et al. 2011.. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. . Faraday Discuss. 149::17185
    [Crossref] [Google Scholar]
  130. 130.
    Balmert SC, Carey CD, Falo GD, Sethi SK, Erdos G, et al. 2020.. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. . J. Control. Release 317::33646
    [Crossref] [Google Scholar]
  131. 131.
    Sarker S, Colton A, Wen Z, Xu X, Erdi M, et al. 2023.. 3D-Printed microinjection needle arrays via a hybrid DLP-direct laser writing strategy. . Adv. Mater. Technol. 8:(5):2201641
    [Crossref] [Google Scholar]
  132. 132.
    Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregõn A, Nelson BJ. 2012.. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. . Adv. Mater. 24:(6):81116
    [Crossref] [Google Scholar]
  133. 133.
    Dong M, Wang X, Chen XZ, Mushtaq F, Deng S, et al. 2020.. 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. . Adv. Funct. Mater. 30:(17):1910323
    [Crossref] [Google Scholar]
  134. 134.
    Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 2019.. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. . ACS Nano 13:(3):335362
    [Crossref] [Google Scholar]
  135. 135.
    Knöner G, Higuet J, Parkin S, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. 2006.. Two-photon polymerization process for optically driven micromachines. . In Photonics: Design, Technology, and Packaging II, Vol. 6038, pp. 20816. Bellingham, WA:: SPIE
    [Google Scholar]
  136. 136.
    Yang W, Wang X, Wang Z, Liang W, Ge Z. 2023.. Light-powered microrobots: Recent progress and future challenges. . Opt. Lasers Eng. 161::107380
    [Crossref] [Google Scholar]
  137. 137.
    Lee JG, Raj RR, Thome CP, Day NB, Martinez P, et al. 2023.. Bubble-based microrobots with rapid circular motions for epithelial pinning and drug delivery. . Small 19:(32):e2300409
    [Crossref] [Google Scholar]
  138. 138.
    Zhou X, Hou Y, Lin J. 2015.. A review on the processing accuracy of two-photon polymerization. . AIP Adv. 5:(3):030701
    [Crossref] [Google Scholar]
  139. 139.
    Ajeti V, Lien CH, Chen SJ, Su PJ, Squirrell JM, et al. 2013.. Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning. . Opt. Express 21::2534655
    [Crossref] [Google Scholar]
  140. 140.
    Buchegger B, Tanzer A, Posch S, Gabriel C, Klar TA, Jacak J. 2021.. STED lithography in microfluidics for 3D thrombocyte aggregation testing. . J. Nanobiotechnol. 19:(1):23
    [Crossref] [Google Scholar]
  141. 141.
    De Loor R. 2013.. Polygon scanner system for ultra short pulsed laser micro-machining applications. . Phys. Procedia 41::54451
    [Crossref] [Google Scholar]
  142. 142.
    Pearre BW, Michas C, Tsang JM, Gardner TJ, Otchy TM. 2019.. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. . Addit. Manuf. 30::100887
    [Google Scholar]
  143. 143.
    Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F. 2010.. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. . Nat. Methods 7:(5):399405
    [Crossref] [Google Scholar]
  144. 144.
    Shunhua Y, Chenliang D, Dazhao Z, Zhenyao Y, Yong L, et al. 2023.. High-speed two-photon lithography based on femtosecond laser. . Opto-Electron. Eng. 50:(3):220133
    [Google Scholar]
  145. 145.
    Geng Q, Wang D, Chen P, Chen SC. 2019.. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. . Nat. Commun. 10::2179
    [Crossref] [Google Scholar]
  146. 146.
    Saha SK, Wang D, Nguyen VH, Chang Y, Oakdale JS, Chen SC. 2019.. Scalable submicrometer additive manufacturing. . Science 366::1059
    [Crossref] [Google Scholar]
  147. 147.
    Yang L, Hu Z, Xin C, Hu K, Hu Y, et al. 2018.. One-step synthesis of three-dimensional microtubes with single exposure of structured femtosecond optical vortices. . In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVIII, Vol. 10522, pp. 11319. Bellingham, WA:: SPIE
    [Google Scholar]
  148. 148.
    Philipp T, Neusser G, Abouzari-Lotf E, Shakouri S, Wilke FD, et al. 2022.. Visualization of structural changes and degradation of porphyrin-based battery electrodes. . J. Power Sources 522::231002
    [Crossref] [Google Scholar]
  149. 149.
    Sun HB, Tanaka T, Takada K, Kawata S. 2001.. Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. . Appl. Phys. Lett. 79:(10):141113
    [Crossref] [Google Scholar]
  150. 150.
    Maibohm C, Silvestre OF, Borme J, Sinou M, Heggarty K, Nieder JB. 2020.. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. . Sci. Rep. 10:(1):8740
    [Crossref] [Google Scholar]
  151. 151.
    Elmeranta M, Vicidomini G, Duocastella M, Diaspro A, de Miguel G. 2016.. Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy. . Opt. Mater. Express 6:(10):316979
    [Crossref] [Google Scholar]
  152. 152.
    Lee XY, Saha SK, Sarkar S, Giera B. 2020.. Automated detection of part quality during two-photon lithography via deep learning. . Addit. Manuf. 36::101444
    [Google Scholar]
  153. 153.
    Sun J, Howes AM, Jia S, Burrow JA, Felzenszwalb PF, et al. 2024.. Automated brightfield layerwise evaluation in three-dimensional micropatterning via two-photon polymerization. . Opt. Express 32:(7):1250819
    [Crossref] [Google Scholar]
  154. 154.
    Zvagelsky R, Mayer F, Beutel D, Rockstuhl C, Gomard G, Wegener M. 2022.. Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography. . Light Adv. Manuf. 3:(3):46680
    [Google Scholar]
  155. 155.
    He Y, Shao Q, Chen SC, Zhou R. 2022.. Characterization of two-photon photopolymerization fabrication using high-speed optical diffraction tomography. . Addit. Manuf. 60::103293
    [Google Scholar]
  156. 156.
    Kunwar P, Toivonen J, Kauranen M, Bautista G. 2016.. Third-harmonic generation imaging of three-dimensional microstructures fabricated by photopolymerization. . Opt. Express 24:(9):935358
    [Crossref] [Google Scholar]
  157. 157.
    Kallioniemi L, Annurakshita S, Bautista G. 2020.. Third-harmonic generation microscopy of undeveloped photopolymerized structures. . OSA Continuum 3:(11):296167
    [Crossref] [Google Scholar]
  158. 158.
    Baldacchini T, Zimmerley M, Kuo CH, Potma EO, Zadoyan R. 2009.. Characterization of microstructures fabricated by two-photon polymerization using coherent anti-Stokes Raman scattering microscopy. . J. Phys. Chem. B 113:(38):1266368
    [Crossref] [Google Scholar]
  159. 159.
    Baldacchini T, Zadoyan R. 2010.. In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy. . Opt. Express 18:(18):1921931
    [Crossref] [Google Scholar]
  160. 160.
    Jia S, Sun J, Howes A, Dawson MR, Toussaint KC Jr., Shao C. 2024.. Hybrid physics-guided data-driven modeling for generalizable geometric accuracy prediction and improvement in two-photon lithography. . J. Manuf. Process. 110::20210
    [Crossref] [Google Scholar]
  161. 161.
    Yang Y, Kelkar VA, Rajput HS, Coariti ACS, Toussaint KC Jr., Shao C. 2022.. Machine-learning-enabled geometric compliance improvement in two-photon lithography without hardware modifications. . J. Manuf. Process. 76::84149
    [Crossref] [Google Scholar]
  162. 162.
    Diamantopoulou M, Karathanasopoulos N, Mohr D. 2021.. Stress-strain response of polymers made through two-photon lithography: micro-scale experiments and neural network modeling. . Addit. Manuf. 47::102266
    [Google Scholar]
  163. 163.
    Zhou L, Zhang L, Konz N. 2022.. Computer vision techniques in manufacturing. . IEEE Trans. Syst. Man Cybern. Syst. 53:(1):10517
    [Crossref] [Google Scholar]
  164. 164.
    Lee XY, Saha SK, Sarkar S, Giera B. 2020.. Two photon lithography additive manufacturing: video dataset of parameter sweep of light dosages, photo-curable resins, and structures. . Data Brief 32::106119
    [Crossref] [Google Scholar]
  165. 165.
    Panusa G, Dinc NU, Psaltis D. 2022.. Photonic waveguide bundles using 3D laser writing and deep neural network image reconstruction. . Opt. Express 30:(2):256477
    [Crossref] [Google Scholar]
  166. 166.
    Bai B, Wei H, Yang X, Gan T, Mengu D, et al. 2023.. Data-class-specific all-optical transformations and encryption. . Adv. Mater. 35:(31):2212091
    [Crossref] [Google Scholar]
  167. 167.
    Liu X, Ding C, Gao X, Shen X, Tang M, et al. 2023.. High-resolution 3D nanoprinting based on two-step absorption via an integrated fiber-coupled laser diode. . Opt. Lett. 48::4300-3
    [Crossref] [Google Scholar]
  168. 168.
    Ouyang W, Xu X, Lu W, Zhao N, Han F, Chen SC. 2023.. Ultrafast 3D nanofabrication via digital holography. . Nat. Commun. 14:(1):1716
    [Crossref] [Google Scholar]
  169. 169.
    Schmidt J, Brigo L, Gandin A, Schwentenwein M, Colombo P, Brusatin G. 2019.. Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies. , Addit. Manuf. 30::100913
    [Google Scholar]
  170. 170.
    Chía Gómez LP, Pitrat D, Bretonnière Y, Borondics F, Banyasz A, et al. 2024.. Dual one and two-photon solvent-free hybrid photoresist for high-resolution and grayscale 3D microprinting. . Adv. Eng. Mater. 26:(12):2301617
    [Crossref] [Google Scholar]
  171. 171.
    Lamprecht B, Ulm A, Lichtenegger P, Leiner C, Nemitz W, Sommer C. 2022.. Origination of free-form micro-optical elements using one- and two-photon grayscale laser lithography. . Appl. Opt. 61:(8):186375
    [Crossref] [Google Scholar]
  172. 172.
    Alhayek A, Lu PR. 2015.. Corneal collagen crosslinking in keratoconus and other eye disease. . Int. J. Ophthalmol. 8:(2):40718
    [Google Scholar]
  173. 173.
    Ma H, Peng Y, Zhang S, Zhang Y, Min P. 2022.. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. . Gels 8:(10):609
    [Crossref] [Google Scholar]
  174. 174.
    Ocier CR, Richards CA, Bacon-Brown DA, Ding Q, Kumar R, et al. 2020.. Direct laser writing of volumetric gradient index lenses and waveguides. . Light Sci. Appl. 9:(1):196
    [Crossref] [Google Scholar]
  175. 175.
    Yao X, Moon SK, Bi G. 2017.. A hybrid machine learning approach for additive manufacturing design feature recommendation. . Rapid Prototyp. J. 23:(6):98397
    [Crossref] [Google Scholar]
  176. 176.
    Tamir TS, Xiong G, Fang Q, Yang Y, Shen Z, et al. 2023.. Machine-learning-based monitoring and optimization of processing parameters in 3D printing. . Int. J. Comput. Integr. Manuf. 36:(9):136278
    [Crossref] [Google Scholar]
  177. 177.
    Ramani KS, He C, Tsai YL, Okwudire CE, Malekipour E. 2022.. Smartscan: an intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing. . Addit. Manuf. 52::102643
    [Google Scholar]
  178. 178.
    Ogunsanya M, Isichei J, Parupelli SK, Desai S, Cai Y. 2021.. In-situ droplet monitoring of inkjet 3D printing process using image analysis and machine learning models. . Procedia Manuf. 53::42734
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110122-015901
Loading
/content/journals/10.1146/annurev-bioeng-110122-015901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error