1932

Abstract

Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood. In contrast to ATP, cytokines are a class of signaling molecule that are much larger, with longer signaling and farther diffusion. We posit that neuron-expressed cytokines are an essential mechanism of neuron–microglia communication that arises as part of both normal learning and memory and in response to tissue pathology. Thus, neurons are underappreciated immunomodulatory cells that express diverse immunomodulatory signals. While neuronally sourced cytokines have been understudied, new technical advances make this a timely topic. The goal of this review is to define what is known about the cytokines expressed from neurons, how they are regulated, and the effects of these cytokines on microglia. We delineate key knowledge gaps and needs for new tools to define and analyze neuronal roles in immunomodulation. Given that cytokines are central regulators of microglial function, a broad new body of work is required to illuminate functional links between these neuronally expressed cytokines and sustained and transient microglial function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110122-120158
2025-05-01
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-110122-120158.html?itemId=/content/journals/10.1146/annurev-bioeng-110122-120158&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hong S, Dissing-Olesen L, Stevens B. 2016.. New insights on the role of microglia in synaptic pruning in health and disease. . Curr. Opin. Neurobiol. 36::12834
    [Crossref] [Google Scholar]
  2. 2.
    Bisht K, Sharma K, Tremblay MÈ. 2018.. Chronic stress as a risk factor for Alzheimer's disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. . Neurobiol. Stress 9::921
    [Crossref] [Google Scholar]
  3. 3.
    Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. 2018.. Microglia in neurodegeneration. . Nat. Neurosci. 21:(10):135969
    [Crossref] [Google Scholar]
  4. 4.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, et al. 2011.. Synaptic pruning by microglia is necessary for normal brain development. . Science 333:(6048):145658
    [Crossref] [Google Scholar]
  5. 5.
    Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, et al. 2019.. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. . Nat. Neurosci. 22:(7):107588
    [Crossref] [Google Scholar]
  6. 6.
    Morizawa YM, Matsumoto M, Nakashima Y, Endo N, Aida T, et al. 2022.. Synaptic pruning through glial synapse engulfment upon motor learning. . Nat. Neurosci. 25:(11):145869
    [Crossref] [Google Scholar]
  7. 7.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, et al. 2011.. Synaptic pruning by microglia is necessary for normal brain development. . Science 333:(6048):145658
    [Crossref] [Google Scholar]
  8. 8.
    Lall D, Lorenzini I, Mota TA, Bell S, Mahan TE, et al. 2021.. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. . Neuron 109:(14):227591.e8
    [Crossref] [Google Scholar]
  9. 9.
    Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, et al. 2016.. Complement and microglia mediate early synapse loss in Alzheimer mouse models. . Science 352:(6286):71216
    [Crossref] [Google Scholar]
  10. 10.
    Zujovic V, Benavides J, Vigé X, Carter C, Taupin V. 2000.. Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. . Glia 29:(4):30515
    [Crossref] [Google Scholar]
  11. 11.
    Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB. 1999.. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. . J. Immunol. 163:(3):162835
    [Crossref] [Google Scholar]
  12. 12.
    Arnoux I, Audinat E. 2015.. Fractalkine signaling and microglia functions in the developing brain. . Neural Plast. 2015::689404
    [Crossref] [Google Scholar]
  13. 13.
    Lim JC, Lu W, Beckel JM, Mitchell CH. 2016.. Neuronal release of cytokine IL-3 triggered by mechanosensitive autostimulation of the P2X7 receptor is neuroprotective. . Front. Cell. Neurosci. 10::270
    [Google Scholar]
  14. 14.
    Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, et al. 2019.. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. . Nat. Neurosci. 22:(7):107588
    [Crossref] [Google Scholar]
  15. 15.
    Suzuki S, Tanaka K, Nagata E, Ito D, Dembo T, Fukuuchi Y. 1999.. Cerebral neurons express interleukin-6 after transient forebrain ischemia in gerbils. . Neurosci. Lett. 262:(2):11720
    [Crossref] [Google Scholar]
  16. 16.
    Tchelingerian JL, Vignais L, Jacque C. 1994.. TNFα gene expression is induced in neurones after a hippocampal lesion. . Neuroreport 5:(5):58588
    [Crossref] [Google Scholar]
  17. 17.
    Thurley K, Gerecht D, Friedmann E, Höfer T. 2015.. Three-dimensional gradients of cytokine signaling between T cells. . PLOS Comput. Biol. 11:(4):e1004206
    [Crossref] [Google Scholar]
  18. 18.
    Liu C, Chu D, Kalantar-Zadeh K, George J, Young HA, Liu G. 2021.. Cytokines: from clinical significance to quantification. . Adv. Sci. 8:(15):e2004433
    [Crossref] [Google Scholar]
  19. 19.
    Oyler-Yaniv A, Oyler-Yaniv J, Whitlock BM, Liu Z, Germain RN, et al. 2017.. A tunable diffusion-consumption mechanism of cytokine propagation enables plasticity in cell-to-cell communication in the immune system. . Immunity 46:(4):60920
    [Crossref] [Google Scholar]
  20. 20.
    Kiefer F, Siekmann AF. 2011.. The role of chemokines and their receptors in angiogenesis. . Cell. Mol. Life Sci. 68:(17):281130
    [Crossref] [Google Scholar]
  21. 21.
    Perrimon N, Pitsouli C, Shilo B-Z. 2012.. Signaling mechanisms controlling cell fate and embryonic patterning. . Cold Spring Harb. Perspect. Biol. 4:(8):a005975
    [Crossref] [Google Scholar]
  22. 22.
    Mousa A, Bakhiet M. 2013.. Role of cytokine signaling during nervous system development. . Int. J. Mol. Sci. 14:(7):1393157
    [Crossref] [Google Scholar]
  23. 23.
    Huang EJ, Reichardt LF. 2001.. Neurotrophins: roles in neuronal development and function. . Annu. Rev. Neurosci. 24::677736
    [Crossref] [Google Scholar]
  24. 24.
    Shi Y, Wang R, Sharma A, Gao C, Collins M, et al. 1997.. Dissociation of cytokine signals for proliferation and apoptosis. . J. Immunol. 159:(11):531828
    [Crossref] [Google Scholar]
  25. 25.
    Jayaraman A, Htike TT, James R, Picon C, Reynolds R. 2021.. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. . Acta Neuropathol. Commun. 9:(1):159
    [Crossref] [Google Scholar]
  26. 26.
    Bourgognon J-M, Cavanagh J. 2020.. The role of cytokines in modulating learning and memory and brain plasticity. . Brain Neurosci. Adv. 4::2398212820979802
    [Crossref] [Google Scholar]
  27. 27.
    Foti M. 2017.. Introduction to cytokines as tissue regulators in health and disease. . In Cytokine Effector Functions in Tissues, , pp. 330. Amsterdam:: Elsevier
    [Google Scholar]
  28. 28.
    Nat. Immunol. 2019.. Editorial: Cytokines in the balance. . Nat. Immunol. 20:(12):155757
    [Crossref] [Google Scholar]
  29. 29.
    Kany S, Vollrath JT, Relja B. 2019.. Cytokines in inflammatory disease. . Int. J. Mol. Sci. 20:(23):6008
    [Crossref] [Google Scholar]
  30. 30.
    Zhang W, Xiao D, Mao Q, Xia H. 2023.. Role of neuroinflammation in neurodegeneration development. . Signal Transduct. Target Ther. 8:(1):267
    [Crossref] [Google Scholar]
  31. 31.
    Athari SS. 2019.. Targeting cell signaling in allergic asthma. . Signal Transduct. Target. Ther. 4::45
    [Crossref] [Google Scholar]
  32. 32.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, et al. 2007.. The classical complement cascade mediates CNS synapse elimination. . Cell 131::116478
    [Crossref] [Google Scholar]
  33. 33.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, et al. 2012.. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. . Neuron 74:(4):691705
    [Crossref] [Google Scholar]
  34. 34.
    Paresce D, Ghosh R, Maxfield FR. 1996.. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. . Neuron 17::55365
    [Crossref] [Google Scholar]
  35. 35.
    Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, et al. 2006.. Regional and cellular gene expression changes in human Huntington's disease brain. . Hum. Mol. Genet. 15:(6):96577
    [Crossref] [Google Scholar]
  36. 36.
    Semple BD, Kossmann T, Morganti-Kossmann MC. 2010.. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. . J. Cereb. Blood Flow Metab. 30:(3):45973
    [Crossref] [Google Scholar]
  37. 37.
    Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G, et al. 2012.. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. . Dev. Biol. 367:(2):100113
    [Crossref] [Google Scholar]
  38. 38.
    Chitu V, Gokhan Ş, Nandi S, Mehler MF, Stanley ER. 2016.. Emerging roles for CSF-1 receptor and its ligands in the nervous system. . Trends Neurosci. 39:(6):37893
    [Crossref] [Google Scholar]
  39. 39.
    Stanley E, Heard PM. 1977.. Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. . J. Biol. Chem. 252:(12):430512
    [Crossref] [Google Scholar]
  40. 40.
    Kefaloyianni E. 2022.. Soluble forms of cytokine and growth factor receptors: mechanisms of generation and modes of action in the regulation of local and systemic inflammation. . FEBS Lett. 596:(5):589606
    [Crossref] [Google Scholar]
  41. 41.
    Chan AH, Schroder K. 2020.. Inflammasome signaling and regulation of interleukin-1 family cytokines. . J. Exp. Med. 217:(1):e20190314
    [Crossref] [Google Scholar]
  42. 42.
    Stanley AC, Lacy P. 2010.. Pathways for cytokine secretion. . Physiology 25:(4):21829
    [Crossref] [Google Scholar]
  43. 43.
    Zuber B, Nikonenko I, Klauser P, Muller D, Dubochet J. 2005.. The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. . PNAS 102:(52):1919297
    [Crossref] [Google Scholar]
  44. 44.
    Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL. 1992.. The time course of glutamate in the synaptic cleft. . Science 258:(5087):1498501
    [Crossref] [Google Scholar]
  45. 45.
    Jin H, Li M, Jeong E, Castro-Martinez F, Zuker C. 2024.. A body–brain circuit that regulates body inflammatory responses. . Nature 630:(8017):695703
    [Crossref] [Google Scholar]
  46. 46.
    Massaro AN, Wu YW, Bammler TK, Comstock B, Mathur A, et al. 2018.. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy. . J. Pediatr. 194::6775.e1
    [Crossref] [Google Scholar]
  47. 47.
    Rodney T, Osier N, Gill J. 2018.. Pro- and anti-inflammatory biomarkers and traumatic brain injury outcomes: a review. . Cytokine 110::24856
    [Crossref] [Google Scholar]
  48. 48.
    Johnson NH, Hadad R, Taylor RR, Rodríguez Pilar J, Salazar O, et al. 2022.. Inflammatory biomarkers of traumatic brain injury. . Pharmaceuticals 15:(6):660
    [Crossref] [Google Scholar]
  49. 49.
    Chen G, McCuskey RS, Reichlin S. 2000.. Blood interleukin-6 and tumor necrosis factor-alpha elevation after intracerebroventricular injection of Escherichia coli endotoxin in the rat is determined by two opposing factors: peripheral induction by LPS transferred from brain to blood and inhibition of peripheral response by a brain-mediated mechanism. . Neuroimmunomodulation 8:(2):5969
    [Crossref] [Google Scholar]
  50. 50.
    Banks WA. 2005.. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. . Curr. Pharm. Des. 11:(8):97384
    [Crossref] [Google Scholar]
  51. 51.
    Clements JD. 1996.. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. . Trends Neurosci. 19::16371
    [Crossref] [Google Scholar]
  52. 52.
    Pearce RA. 1993.. Physiological evidence for two distinct GABAA responses in rat hippocampus. . Neuron 10:(2):189200
    [Crossref] [Google Scholar]
  53. 53.
    Milior G, Lecours C, Samson L, Bisht K, Poggini S, et al. 2016.. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. . Brain Behav. Immun. 55::11425
    [Crossref] [Google Scholar]
  54. 54.
    Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, et al. 1998.. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. . PNAS 95:(18):10896901
    [Crossref] [Google Scholar]
  55. 55.
    Nemes-Baran AD, White DR, DeSilva TM. 2020.. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. . Cell Rep. 32::108047
    [Crossref] [Google Scholar]
  56. 56.
    Chen PH, Yao H, Huang LJS. 2017.. Cytokine receptor endocytosis: new kinase activity-dependent and -independent roles of PI3K. . Front. Endocrinol. 8::78
    [Crossref] [Google Scholar]
  57. 57.
    Melikian HE. 2004.. Neurotransmitter transporter trafficking: endocytosis, recycling, and regulation. . Pharmacol. Ther. 104:(1):1727
    [Crossref] [Google Scholar]
  58. 58.
    Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG. 1998.. Profound neuronal plasticity in response to inactivation of the dopamine transporter. . PNAS 95:(7):402934
    [Crossref] [Google Scholar]
  59. 59.
    Isaacson JS, Solis JM, Nicoll RA. 1993.. Local and diffuse synaptic actions of GABA in the hippocampus. . Neuron 10:(2):16575
    [Crossref] [Google Scholar]
  60. 60.
    Sun L, Ye RD. 2012.. Role of G protein-coupled receptors in inflammation. . Acta Pharmacol. Sin. 33:(3):34250
    [Crossref] [Google Scholar]
  61. 61.
    Liu JJ, Sharma K, Zangrandi L, Chen C, Humphrey SJ, et al. 2018.. In vivo brain GPCR signaling elucidated by phosphoproteomics. . Science 360:(6395):eaao4927
    [Crossref] [Google Scholar]
  62. 62.
    Premont R, Gainetdinov RR. 2007.. Physiological roles of G protein–coupled receptor kinases and arrestins. . Annu. Rev. Physiol. 69::51134
    [Crossref] [Google Scholar]
  63. 63.
    Sugiyama H, Ito I, Hirono C. 1987.. A new type of glutamate receptor linked to inositol phospholipid metabolism. . Nature 325:(6104):53133
    [Crossref] [Google Scholar]
  64. 64.
    Huang G, Shi LZ, Chi H. 2009.. Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. . Cytokine 48:(3):16169
    [Crossref] [Google Scholar]
  65. 65.
    Tak PP, Firestein GS. 2001.. NF-κB: a key role in inflammatory diseases. . J. Clin. Investig. 107:(1):711
    [Crossref] [Google Scholar]
  66. 66.
    Gamo K, Kiryu-Seo S, Konishi H, Aoki S, Matsushima K, et al. 2008.. G-protein-coupled receptor screen reveals a role for chemokine receptor CCR5 in suppressing microglial neurotoxicity. . J. Neurosci. 28:(46):1198088
    [Crossref] [Google Scholar]
  67. 67.
    Schulz R, Korkut-Demirbaş M, Venturino A, Colombo G, Siegert S. 2022.. Chimeric GPCRs mimic distinct signaling pathways and modulate microglia responses. . Nat. Commun. 13:(1):4728
    [Crossref] [Google Scholar]
  68. 68.
    Gerber KJ, Squires KE, Hepler JR. 2016.. Roles for regulator of G protein signaling proteins in synaptic signaling and plasticity. . Mol. Pharmacol. 89:(2):27386
    [Crossref] [Google Scholar]
  69. 69.
    Liu W, Yuen EY, Allen PB, Feng J, Greengard P, Yan Z. 2006.. Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. . PNAS 103:(48):1833843
    [Crossref] [Google Scholar]
  70. 70.
    Betke K, Wells C, Hamm HE. 2012.. GPCR mediated regulation of synaptic transmission. . Prog. Neurobiol. 96::30421
    [Crossref] [Google Scholar]
  71. 71.
    Bachstetter AD, Van Eldik LJ. 2010.. The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. . Aging Dis. 1:(3):199211
    [Google Scholar]
  72. 72.
    Shih RH, Wang CY, Yang CM. 2015.. NF-kappaB signaling pathways in neurological inflammation: a mini review. . Front. Mol. Neurosci. 8::165218
    [Crossref] [Google Scholar]
  73. 73.
    Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA. 1994.. Constitutive NF-kB activity in neurons. . Mol. Cell. Biol. 14:(6):398192
    [Google Scholar]
  74. 74.
    Fiore RS, Murphy TH, Sanghera JS, Pelech SL, Baraban JM. 1993.. Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. . J. Neurochem. 61:(5):162633
    [Crossref] [Google Scholar]
  75. 75.
    Rosen LB, Ginty DD, Weber MJ, Greenberg ME. 1994.. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. . Neuron 12:(6):120721
    [Crossref] [Google Scholar]
  76. 76.
    Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D. 2003.. NF-κB functions in synaptic signaling and behavior. . Nat. Neurosci. 6:(10):107278
    [Crossref] [Google Scholar]
  77. 77.
    Meffert MK, Baltimore D. 2005.. Physiological functions for brain NF-κB. . Trends Neurosci. 28:(1):3743
    [Crossref] [Google Scholar]
  78. 78.
    Prichard A, Garza KM, Shridhar A, He C, Bitarafan S, et al. 2023.. Brain rhythms control microglial response and cytokine expression via NF-κB signaling. . Sci. Adv. 9::eadf5672
    [Crossref] [Google Scholar]
  79. 79.
    Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, et al. 2016.. Gamma frequency entrainment attenuates amyloid load and modifies microglia. . Nature 540:(7632):23035
    [Crossref] [Google Scholar]
  80. 80.
    Singer AC, Martorell AJ, Douglas JM, Abdurrob F, Attokaren MK, et al. 2018.. Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load. . Nat. Protoc. 13:(8):185068
    [Crossref] [Google Scholar]
  81. 81.
    Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, et al. 2019.. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition. . Cell 177:(2):25671.e22
    [Crossref] [Google Scholar]
  82. 82.
    Adaikkan C, Middleton SJ, Marco A, Pao P-C, Mathys H, et al. 2019.. Gamma entrainment binds higher-order brain regions and offers neuroprotection. . Neuron 102:(5):92943.e8
    [Crossref] [Google Scholar]
  83. 83.
    Krumm B, Xiang Y, Deng J. 2014.. Structural biology of the IL-1 superfamily: key cytokines in the regulation of immune and inflammatory responses. . Protein Sci. 23:(5):52638
    [Crossref] [Google Scholar]
  84. 84.
    O'Carroll SJ, Kho DT, Wiltshire R, Nelson V, Rotimi O, et al. 2015.. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. . J. Neuroinflamm. 12::131
    [Crossref] [Google Scholar]
  85. 85.
    Rochfort KD, Cummins PM. 2015.. The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. . Biochem. Soc. Trans. 43:(4):7026
    [Crossref] [Google Scholar]
  86. 86.
    Sofroniew MV, Vinters HV. 2010.. Astrocytes: biology and pathology. . Acta Neuropathol. 119:(1):735
    [Crossref] [Google Scholar]
  87. 87.
    Vezzani A, Viviani B. 2015.. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. . Neuropharmacology 96:(Part A):7082
    [Crossref] [Google Scholar]
  88. 88.
    Fontaine RH, Cases O, Lelièvre V, Mesplès B, Renauld J-C, et al. 2008.. IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. . Cell Death Differ. 15:(10):154252
    [Crossref] [Google Scholar]
  89. 89.
    Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, et al. 2019.. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. . Immunity 50:(2):31733.e6
    [Crossref] [Google Scholar]
  90. 90.
    Birck C, Ginolhac A, Pavlou MAS, Michelucci A, Heuschling P, Grandbarbe L. 2021.. NF-κB and TNF affect the astrocytic differentiation from neural stem cells. . Cells 10:(4):840
    [Crossref] [Google Scholar]
  91. 91.
    Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. 2001.. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. . Nat. Neurosci. 4:(11):111622
    [Crossref] [Google Scholar]
  92. 92.
    Yan Y, Ramanan D, Rozenberg M, McGovern K, Rastelli D, et al. 2021.. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut. . Immunity 54:(3):499513.e5
    [Crossref] [Google Scholar]
  93. 93.
    Wang H, Foong JPP, Harris NL, Bornstein JC. 2022.. Enteric neuroimmune interactions coordinate intestinal responses in health and disease. . Mucosal Immunol. 15:(1):2739
    [Crossref] [Google Scholar]
  94. 94.
    Lee M, Lee Y, Song J, Lee J, Chang S-Y. 2018.. Tissue-specific role of CX3CR1 expressing immune cells and their relationships with human disease. . Immune Netw. 18:(1):e5
    [Crossref] [Google Scholar]
  95. 95.
    Jones BA, Beamer M, Ahmed S. 2010.. Fractalkine/CX3CL1: a potential new target for inflammatory diseases. . Mol. Interv. 10:(5):26370
    [Crossref] [Google Scholar]
  96. 96.
    Camacho-Hernández NP, Peña-Ortega F. 2023.. Fractalkine/CX3CR1-dependent modulation of synaptic and network plasticity in health and disease. . Neural Plast. 2023::4637073
    [Crossref] [Google Scholar]
  97. 97.
    Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T. 2020.. The impact of the CX3CL1/CX3CR1 axis in neurological disorders. . Cells 9:(10):2277
    [Crossref] [Google Scholar]
  98. 98.
    Michael BD, Bricio-Moreno L, Sorensen EW, Miyabe Y, Lian J, et al. 2020.. Astrocyte- and neuron-derived CXCL1 drives neutrophil transmigration and blood-brain barrier permeability in viral encephalitis. . Cell Rep. 32:(11):108150
    [Crossref] [Google Scholar]
  99. 99.
    Xia M, Hyman BT. 2002.. GROα/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation—a role in Alzheimer's disease?. J. Neuroimmunol. 122:(1–2):5564
    [Crossref] [Google Scholar]
  100. 100.
    Di Cesare Mannelli L, Micheli L, Cervetto C, Toti A, Lucarini E, et al. 2022.. Neuronal alarmin IL-1α evokes astrocyte-mediated protective signals: effectiveness in chemotherapy-induced neuropathic pain. . Neurobiol. Dis. 168::105716
    [Crossref] [Google Scholar]
  101. 101.
    Hallett H, Churchill L, Taishi P, De A, Krueger JM. 2010.. Whisker stimulation increases expression of nerve growth factor- and interleukin-1β-immunoreactivity in the rat somatosensory cortex. . Brain Res. 1333::4856
    [Crossref] [Google Scholar]
  102. 102.
    Ravizza T, Boer K, Redeker S, Spliet WGM, van Rijen PC, et al. 2006.. The IL-1β system in epilepsy-associated malformations of cortical development. . Neurobiol. Dis. 24:(1):12843
    [Crossref] [Google Scholar]
  103. 103.
    Alves S, Churlaud G, Audrain M, Michaelsen-Preusse K, Fol R, et al. 2017.. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice. . Brain 140:(3):82642
    [Google Scholar]
  104. 104.
    Meola D, Huang Z, Petitto JM. 2013.. Selective neuronal and brain regional expession of IL-2 in IL2P 8-GFP transgenic mice: relation to sensorimotor gating. . J. Alzheimers Dis. Parkinsonism 3:(4):1000127
    [Google Scholar]
  105. 105.
    Guo W, Zheng D-H, Sun F-J, Yang J-Y, Zang Z-L, et al. 2014.. Expression and cellular distribution of the interleukin 2 signaling system in cortical lesions from patients with focal cortical dysplasia. . J. Neuropathol. Exp. Neurol. 73:(3):20622
    [Crossref] [Google Scholar]
  106. 106.
    Li S, Olde Heuvel F, Rehman R, Aousji O, Froehlich A, et al. 2023.. Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. . Nat. Commun. 14:(1):200
    [Crossref] [Google Scholar]
  107. 107.
    Buzsaki G. 2006.. Rhythms of the Brain. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  108. 108.
    Singer AC, Martorell AJ, Douglas JM, Abdurrob F, Attokaren MK, et al. 2018.. Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load. . Nat. Protoc. 13::185068
    [Crossref] [Google Scholar]
  109. 109.
    Martorell AJ, Paulson AL, Suk H-J, Abdurrob F, Drummond GT, et al. 2019.. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition. . Cell 177::25671.e22
    [Crossref] [Google Scholar]
  110. 110.
    Rayaprolu S, Bitarafan S, Santiago JV, Betarbet R, Sunna S, et al. 2022.. Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain. . Nat. Commun. 13:(1):2927
    [Crossref] [Google Scholar]
  111. 111.
    O'Neill LAJ, Kaltschmidt C. 1997.. NF-κB: a crucial transcription factor for glial and neuronal cell function. . Trends Neurosci. 20:(6):25258
    [Crossref] [Google Scholar]
  112. 112.
    Hebert AE, Dash PK. 2002.. Extracellular signal-regulated kinase activity in the entorhinal cortex is necessary for long-term spatial memory. . Learn. Memory 9:(4):15666
    [Crossref] [Google Scholar]
  113. 113.
    Kelly A, Laroche S, Davis S. 2003.. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. . J. Neurosci. 23:(12):535460
    [Crossref] [Google Scholar]
  114. 114.
    Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, et al. 2002.. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. . Neuron 34::80720
    [Crossref] [Google Scholar]
  115. 115.
    Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ. 2003.. Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in aplysia. . Neuron 37::47384
    [Crossref] [Google Scholar]
  116. 116.
    Selcher JC, Weeber EJ, Christian J, Nekrasova T, Landreth GE, Sweatt JD. 2003.. A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. . Learn. Memory 10:(1):2639
    [Crossref] [Google Scholar]
  117. 117.
    Sharma SK, Sherff CM, Shobe J, Bagnall MW, Sutton MA, Carew TJ. 2003.. Differential role of mitogen-activated protein kinase in three distinct phases of memory for sensitization in aplysia. . J. Neurosci. 23:(9):3899907
    [Crossref] [Google Scholar]
  118. 118.
    Zhang JJ, Okutani F, Inoue S, Kaba H. 2003.. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway leading to cyclic AMP response element-binding protein phosphorylation is required for the long-term facilitation process of aversive olfactory learning in young rats. . Neuroscience 121:(1):916
    [Crossref] [Google Scholar]
  119. 119.
    English JD, David Sweatt J. 1997.. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. . J. Biol. Chem. 272:(31):191036
    [Crossref] [Google Scholar]
  120. 120.
    Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. 2002.. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. . Cell 110:(4):44355
    [Crossref] [Google Scholar]
  121. 121.
    Wu GY, Deisseroth K, Tsien RW. 2001.. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. . Nat. Neurosci. 4:(2):15158
    [Crossref] [Google Scholar]
  122. 122.
    Yasuda H, Barth AL, Stellwagen D, Malenka RC. 2002.. A developmental switch in the signaling cascades for LTP induction. . Nat. Neurosci. 6:(1):1516
    [Crossref] [Google Scholar]
  123. 123.
    Sweatt JD. 2004.. Mitogen-activated protein kinases in synaptic plasticity and memory. . Curr. Opin. Neurobiol. 14:(3):31117
    [Crossref] [Google Scholar]
  124. 124.
    Thomas GM, Huganir RL. 2004.. MAPK cascade signalling and synaptic plasticity. . Nat. Rev. Neurosci. 5:(3):17383
    [Crossref] [Google Scholar]
  125. 125.
    Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, et al. 2006.. NF-κB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. . Mol. Cell. Biol. 26:(8):293646
    [Crossref] [Google Scholar]
  126. 126.
    Albensi B, Mattson MP. 2000.. Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. . Synapse 35:(2):15159
    [Crossref] [Google Scholar]
  127. 127.
    Guerrini L, Blasi F, Denis-Donini S. 1995.. Synaptic activation of NF-κB by glutamate in cerebellar granule neurons in vitro. . PNAS 92:(20):907781
    [Crossref] [Google Scholar]
  128. 128.
    Snow WM, Stoesz BM, Kelly DM, Albensi BC. 2014.. Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. . Mol. Neurobiol. 49:(2):75770
    [Crossref] [Google Scholar]
  129. 129.
    Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B. 2015.. Microglia: dynamic mediators of synapse development and plasticity. . Trends Immunol. 36:(10):60513
    [Crossref] [Google Scholar]
  130. 130.
    Ferro A, Auguste YSS, Cheadle L. 2021.. Microglia, cytokines, and neural activity: unexpected interactions in brain development and function. . Front. Immunol. 12::2546
    [Crossref] [Google Scholar]
  131. 131.
    Döring A, Sloka S, Lau L, Manoj Mishra X, van Minnen J, et al. 2015.. Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. . J. Neurosci. 35::113648
    [Crossref] [Google Scholar]
  132. 132.
    Yuste R, Denk W. 1995.. Dendritic spines as basic functional units of neuronal integration. . Nature 375:(6533):68284
    [Crossref] [Google Scholar]
  133. 133.
    Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN. 1992.. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. . Nature 357::24446
    [Crossref] [Google Scholar]
  134. 134.
    Siebenlist U, Franzoso G, Brown K. 1994.. Structure, regulation and function of NF-κB. . Annu. Rev. Cell Biol. 10::40555
    [Crossref] [Google Scholar]
  135. 135.
    Yang SH, Sharrocks AD, Whitmarsh AJ. 2003.. Transcriptional regulation by the MAP kinase signaling cascades. . Gene 320:(1–2):321
    [Crossref] [Google Scholar]
  136. 136.
    Liu Y, Shepherd EG, Nelin LD. 2007.. MAPK phosphatases—regulating the immune response. . Nat. Rev. Immunol. 7:(3):20212
    [Crossref] [Google Scholar]
  137. 137.
    Balança B, Desmurs L, Grelier J, Perret-Liaudet A, Lukaszewicz A-C. 2021.. DAMPs and RAGE pathophysiology at the acute phase of brain injury: an overview. . Int. J. Mol. Sci. 22:(5):2439
    [Crossref] [Google Scholar]
  138. 138.
    Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J. 2022.. Phagocytic microglia and macrophages in brain injury and repair. . CNS Neurosci. Ther. 28:(9):127993
    [Crossref] [Google Scholar]
  139. 139.
    Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A. 2021.. Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: pathological mechanisms and therapeutic outlooks. . Eur. J. Pharmacol. 895::173873
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110122-120158
Loading
/content/journals/10.1146/annurev-bioeng-110122-120158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error