1932

Abstract

Organ-on-a-chip (OOC) and organoid technologies are at the forefront of developing sophisticated in vitro systems that replicate complex host–microbiome interactions, including those associated with vaginal health and lung infection. We explore how these technologies provide insights into host–microbiome and host–pathogen interactions and the associated immune responses. Integrating omics data and high-resolution imaging in analyzing these models enhances our understanding of host–microbiome interactions' temporal and spatial aspects, paving the way for new diagnostic and treatment strategies. This review underscores the potential of OOC and organoid technologies in elucidating the complexities of vaginal health and lung disease, which have received less attention than other organ systems in recent organoid and OCC studies. Yet, each system presents notable characteristics, rendering them ideal candidates for these designs. Additionally, this review describes the key factors associated with each organ system and how to choose the technology setup to replicate human physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110122-122343
2025-05-01
2025-06-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-110122-122343.html?itemId=/content/journals/10.1146/annurev-bioeng-110122-122343&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Billman GE. 2020.. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. . Front. Physiol. 11::200. https://doi.org/10.3389/fphys.2020.00200
    [Crossref] [Google Scholar]
  2. 2.
    Liu M, Lu F, Feng J. 2024.. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. . Cell Death Dis. 15:(6):443. https://doi.org/10.1038/s41419-024-06818-z
    [Crossref] [Google Scholar]
  3. 3.
    Ruff WE, Greiling TM, Kriegel MA. 2020.. Host-microbiota interactions in immune-mediated diseases. . Nat. Rev. Microbiol. 18:(9):52138. https://doi.org/10.1038/s41579-020-0367-2
    [Crossref] [Google Scholar]
  4. 4.
    Zheng D, Liwinski T, Elinav E. 2020.. Interaction between microbiota and immunity in health and disease. . Cell Res. 30:(6):492506. https://doi.org/10.1038/s41422-020-0332-7
    [Crossref] [Google Scholar]
  5. 5.
    Graham DB, Xavier RJ. 2023.. Conditioning of the immune system by the microbiome. . Trends Immunol. 44:(7):499511. https://doi.org/10.1016/j.it.2023.05.002
    [Crossref] [Google Scholar]
  6. 6.
    Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. 2018.. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions?. Int. J. Mol. Sci. 19:(1):181. https://doi.org/10.3390/ijms19010181
    [Crossref] [Google Scholar]
  7. 7.
    Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, et al. 2018.. 2D and 3D cell cultures—a comparison of different types of cancer cell cultures. . Arch. Med. Sci. 14:(4):91019. https://doi.org/10.5114/aoms.2016.63743
    [Google Scholar]
  8. 8.
    Loewa A, Feng JJ, Hedtrich S. 2023.. Human disease models in drug development. . Nat. Rev. Bioeng. 1:(8):54559. https://doi.org/10.1038/s44222-023-00063-3
    [Crossref] [Google Scholar]
  9. 9.
    Gerardo-Nava JL, Jansen J, Günther D, Klasen L, Thiebes AL, et al. 2023.. Transformative materials to create 3D functional human tissue models in vitro in a reproducible manner. . Adv. Healthcare Mater. 12:(20):2301030. https://doi.org/10.1002/adhm.202301030
    [Crossref] [Google Scholar]
  10. 10.
    Hayden PJ, Harbell JW. 2021.. Special review series on 3D organotypic culture models: introduction and historical perspective. . In Vitro Cell. Dev. Biol. Anim. 57:(2):95103. https://doi.org/10.1007/s11626-020-00500-2
    [Crossref] [Google Scholar]
  11. 11.
    Tan S, Nemeth P. 2023.. Editorial: In vivo and in vitro models for research in pathology. . Pathol. Oncol. Res. 29::1611196. https://doi.org/10.3389/pore.2023.1611196
    [Crossref] [Google Scholar]
  12. 12.
    Caddeo A, Maurotti S, Kovooru L, Romeo S. 2024.. 3D culture models to study pathophysiology of steatotic liver disease. . Atherosclerosis 393::117544. https://doi.org/10.1016/j.atherosclerosis.2024.117544
    [Crossref] [Google Scholar]
  13. 13.
    Arnauts K, Verstockt B, Ramalho AS, Vermeire S, Verfaillie C, Ferrante M. 2020.. Ex vivo mimicking of inflammation in organoids derived from patients with ulcerative colitis. . Gastroenterology 159:(4):156467. https://doi.org/10.1053/j.gastro.2020.05.064
    [Crossref] [Google Scholar]
  14. 14.
    Kim J, Koo B-K, Knoblich JA. 2020.. Human organoids: model systems for human biology and medicine. . Nat. Rev. Mol. Cell Biol. 21:(10):57184. https://doi.org/10.1038/s41580-020-0259-3
    [Crossref] [Google Scholar]
  15. 15.
    Ma J, Liu J, Gao D, Li X, Zhang Q, et al. 2022.. Establishment of human pluripotent stem cell-derived skin organoids enabled pathophysiological model of SARS-CoV-2 infection. . Adv. Sci. 9:(7):2104192. https://doi.org/10.1002/advs.202104192
    [Crossref] [Google Scholar]
  16. 16.
    Chumduri C, Turco MY. 2021.. Organoids of the female reproductive tract. . J. Mol. Med. 99:(4):53153. https://doi.org/10.1007/s00109-020-02028-0
    [Crossref] [Google Scholar]
  17. 17.
    Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, et al. 2022.. Organoids. . Nat. Rev. Methods Primers 2::94. https://doi.org/10.1038/s43586-022-00174-y
    [Crossref] [Google Scholar]
  18. 18.
    Leung CM, de Haan P, Ronaldson-Bouchard K, Kim G-A, Ko J, et al. 2022.. A guide to the organ-on-a-chip. . Nat. Rev. Methods Primers 2::33. https://doi.org/10.1038/s43586-022-00118-6
    [Crossref] [Google Scholar]
  19. 19.
    Li J, Chen J, Bai H, Wang H, Hao S, et al. 2022.. An overview of organs-on-chips based on deep learning. . Research 2022::9869518. https://doi.org/10.34133/2022/9869518
    [Google Scholar]
  20. 20.
    Alonso-Roman R, Mosig AS, Figge MT, Papenfort K, Eggeling C, Schacher FH, Hube B, Gresnigt MS. 2024.. Organ-on-chip models for infectious disease research. . Nat. Microbiol. 9:(4):891904. https://doi.org/10.1038/s41564-024-01645-6
    [Crossref] [Google Scholar]
  21. 21.
    Ingber DE. 2022.. Human organs-on-chips for disease modelling, drug development and personalized medicine. . Nat. Rev. Genet. 23:(8):46791. https://doi.org/10.1038/s41576-022-00466-9
    [Crossref] [Google Scholar]
  22. 22.
    Jose A, Kulkarni P, Thilakan J, Munisamy M, Malhotra AG, et al. 2024.. Integration of pan-omics technologies and three-dimensional in vitro tumor models: an approach toward drug discovery and precision medicine. . Mol. Cancer 23:(1):50. https://doi.org/10.1186/s12943-023-01916-6
    [Crossref] [Google Scholar]
  23. 23.
    Ha D, Kong J, Kim D, Lee K, Lee J, et al. 2023.. Development of bioinformatics and multi-omics analyses in organoids. . BMB Rep. 56:(1):4348. https://doi.org/10.5483/BMBRep.2022-0155
    [Crossref] [Google Scholar]
  24. 24.
    Zhang N, Ohlstrom D, Pang S, Bharadwaj NS, Qu A, et al. 2023.. Tissue spatial omics dissects organoid biomimicry. . GEN Biotechnol. 2:(5):37283. https://doi.org/10.1089/genbio.2023.0039
    [Crossref] [Google Scholar]
  25. 25.
    Kromann EH, Cearra AP, Neves JF. 2024.. Organoids as a tool to study homeostatic and pathological immune-epithelial interactions in the gut. . Clin. Exp. Immunol. 218::2839. https://doi.org/10.1093/cei/uxad118
    [Crossref] [Google Scholar]
  26. 26.
    Angus HCK, Butt AG, Schultz M, Kemp RA. 2020.. Intestinal organoids as a tool for inflammatory bowel disease research. . Front. Med. 6::334. https://doi.org/10.3389/fmed.2019.00334
    [Crossref] [Google Scholar]
  27. 27.
    Chiaradia I, Lancaster MA. 2020.. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. . Nat. Neurosci. 23:(12):1496508. https://doi.org/10.1038/s41593-020-00730-3
    [Crossref] [Google Scholar]
  28. 28.
    Jeong E, Choi S, Cho S-W. 2023.. Recent advances in brain organoid technology for human brain research. . ACS Appl. Mater. Interfaces 15:(1):20019. https://doi.org/10.1021/acsami.2c17467
    [Crossref] [Google Scholar]
  29. 29.
    Kim S, Chang M-Y. 2023.. Application of human brain organoids—opportunities and challenges in modeling human brain development and neurodevelopmental diseases. . Int. J. Mol. Sci. 24:(15):12528. https://doi.org/10.3390/ijms241512528
    [Crossref] [Google Scholar]
  30. 30.
    Hoppe M, Habib A, Desai R, Edwards L, Kodavali C, et al. 2023.. Human brain organoid code of conduct. . Front. Mol. Med. 3::1143298. https://doi.org/10.3389/fmmed.2023.1143298
    [Crossref] [Google Scholar]
  31. 31.
    Puschhof J, Pleguezuelos-Manzano C, Clevers H. 2021.. Organoids and organs-on-chips: insights into human gut-microbe interactions. . Cell Host Microbe 29:(6):86778. https://doi.org/10.1016/j.chom.2021.04.002
    [Crossref] [Google Scholar]
  32. 32.
    Siwczak F, Loffet E, Kaminska M, Koceva H, Mahe MM, Mosig AS. 2021.. Intestinal stem cell-on-chip to study human host-microbiota interaction. . Front. Immunol. 12::798552. https://doi.org/10.3389/fimmu.2021.798552
    [Crossref] [Google Scholar]
  33. 33.
    Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A, et al. 2021.. Intestinal organoid cocultures with microbes. . Nat. Protoc. 16:(10):463349. https://doi.org/10.1038/s41596-021-00589-z
    [Crossref] [Google Scholar]
  34. 34.
    Stone L. 2023.. A vagina on a chip to model microbiome-host interactions. . Nat. Rev. Urol. 20:(2):6464. https://doi.org/10.1038/s41585-022-00717-8
    [Google Scholar]
  35. 35.
    Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, et al. 2022.. Exosomes from Ureaplasma parvum-infected ectocervical epithelial cells promote feto-maternal interface inflammation but are insufficient to cause preterm delivery. . Front. Cell Dev. Biol. 10::931609. https://doi.org/10.3389/fcell.2022.931609
    [Crossref] [Google Scholar]
  36. 36.
    Bodke VV, Burdette JE. 2021.. Advancements in microfluidic systems for the study of female reproductive biology. . Endocrinology 162:(10):bqab078. https://doi.org/10.1210/endocr/bqab078
    [Crossref] [Google Scholar]
  37. 37.
    Mahajan G, Doherty E, To T, Sutherland A, Grant J, et al. 2022.. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. . Microbiome 10:(1):201. https://doi.org/10.1186/s40168-022-01400-1
    [Crossref] [Google Scholar]
  38. 38.
    Berard AR, Brubaker DK, Birse K, Lamont A, Mackelprang RD, et al. 2023.. Vaginal epithelial dysfunction is mediated by the microbiome, metabolome, and mTOR signaling. . Cell Rep. 42:(5):112474. https://doi.org/10.1016/j.celrep.2023.112474
    [Crossref] [Google Scholar]
  39. 39.
    Berard A, Lajoie J, Herrera C. 2023.. Editorial: Inflammation in the female genital tract. . Front. Reprod. Health 5::1161839. https://doi.org/10.3389/frph.2023.1161839
    [Crossref] [Google Scholar]
  40. 40.
    Abdelmaksoud AA, Koparde VN, Sheth NU, Serrano MG, Glascock AL, et al. 2016.. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria. . Microbiology 162:(Part 3):46675. https://doi.org/10.1099/mic.0.000238
    [Crossref] [Google Scholar]
  41. 41.
    Pino A, Bartolo E, Caggia C, Cianci A, Randazzo CL. 2019.. Detection of vaginal lactobacilli as probiotic candidates. . Sci. Rep. 9:(1):3355. https://doi.org/10.1038/s41598-019-40304-3
    [Crossref] [Google Scholar]
  42. 42.
    Amabebe E, Anumba DOC. 2018.. The vaginal microenvironment: the physiologic role of Lactobacilli. . Front. Med. 5::181. https://doi.org/10.3389/fmed.2018.00181
    [Crossref] [Google Scholar]
  43. 43.
    Abbe C, Mitchell CM. 2023.. Bacterial vaginosis: a review of approaches to treatment and prevention. . Front. Reprod. Health 5::1100029. https://doi.org/10.3389/frph.2023.1100029
    [Crossref] [Google Scholar]
  44. 44.
    Castro J, Machado D, Cerca N. 2019.. Unveiling the role of Gardnerella vaginalis in polymicrobial bacterial vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. . ISME J. 13:(5):130617. https://doi.org/10.1038/s41396-018-0337-0
    [Crossref] [Google Scholar]
  45. 45.
    Bradshaw CS, Vodstrcil LA, Hocking JS, Law M, Pirotta M, et al. 2013.. Recurrence of bacterial vaginosis is significantly associated with posttreatment sexual activities and hormonal contraceptive use. . Clin. Infect. Dis. 56::77786. https://doi.org/10.1093/cid/cis1030
    [Crossref] [Google Scholar]
  46. 46.
    Lagenaur LA, Hemmerling A, Chiu C, Miller S, Lee PP, et al. 2021.. Connecting the dots: translating the vaginal microbiome into a drug. . J. Infect. Dis. 223:(Suppl. 3):S296306. https://doi.org/10.1093/infdis/jiaa676
    [Crossref] [Google Scholar]
  47. 47.
    Adnane M, Meade KG, O'Farrelly C. 2018.. Cervico-vaginal mucus (CVM)—an accessible source of immunologically informative biomolecules. . Vet. Res. Commun. 42:(4):25563. https://doi.org/10.1007/s11259-018-9734-0
    [Crossref] [Google Scholar]
  48. 48.
    Zierden HC, DeLong K, Zulfiqar F, Ortiz JO, Laney V, et al. 2023.. Cervicovaginal mucus barrier properties during pregnancy are impacted by the vaginal microbiome. . Front. Cell. Infect. Microbiol. 13::1015625. https://doi.org/10.3389/fcimb.2023.1015625
    [Crossref] [Google Scholar]
  49. 49.
    Vagios S, Mitchell CM. 2021.. Mutual preservation: a review of interactions between cervicovaginal mucus and microbiota. . Front. Cell. Infect. Microbiol. 11::676114. https://doi.org/10.3389/fcimb.2021.676114
    [Crossref] [Google Scholar]
  50. 50.
    Wu G, Grassi P, MacIntyre DA, Molina BG, Sykes L, et al. 2022.. N-glycosylation of cervicovaginal fluid reflects microbial community, immune activity, and pregnancy status. . Sci. Rep. 12:(1):16948. https://doi.org/10.1038/s41598-022-20608-7
    [Crossref] [Google Scholar]
  51. 51.
    Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ. 1998.. The ability of probiotic bacteria to bind to human intestinal mucus. . FEMS Microbiol. Lett. 167:(2):18589. https://doi.org/10.1111/j.1574-6968.1998.tb13226.x
    [Crossref] [Google Scholar]
  52. 52.
    Tassell MLV, Miller MJ. 2011.. Lactobacillus adhesion to mucus. . Nutrients 3:(5):61336. https://doi.org/10.3390/nu3050613
    [Crossref] [Google Scholar]
  53. 53.
    Hoang T, Toler E, DeLong K, Mafunda NA, Bloom SM, et al. 2020.. The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis. . PLOS Pathog. 16:(1):e1008236. https://doi.org/10.1371/journal.ppat.1008236
    [Crossref] [Google Scholar]
  54. 54.
    Izadifar Z, Cotton J, Chen S, Horvath V, Stejskalova A, et al. 2024.. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips. . Nat. Commun. 15:(1):4578. https://doi.org/10.1038/s41467-024-48910-0
    [Crossref] [Google Scholar]
  55. 55.
    Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, et al. 2017.. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. . Nat. Commun. 8::14584. https://doi.org/10.1038/ncomms14584
    [Crossref] [Google Scholar]
  56. 56.
    Celeste C, Ming D, Broce J, Ojo DP, Drobina E, et al. 2023.. Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning. . NPJ Digit. Med. 6::211. https://doi.org/10.1038/s41746-023-00953-1
    [Crossref] [Google Scholar]
  57. 57.
    Wilson JD, Lee RA, Balen AH, Rutherford AJ. 2007.. Bacterial vaginal flora in relation to changing oestrogen levels. . Int. J. STD AIDS 18:(5):30811. https://doi.org/10.1258/095646207780749583
    [Crossref] [Google Scholar]
  58. 58.
    Shen J, Song N, Williams CJ, Brown CJ, Yan Z, Xu C, Forney LJ. 2016.. Effects of low dose estrogen therapy on the vaginal microbiomes of women with atrophic vaginitis. . Sci. Rep. 6:(1):24380. https://doi.org/10.1038/srep24380
    [Crossref] [Google Scholar]
  59. 59.
    Kessler M, Hoffmann K, Fritsche K, Brinkmann V, Mollenkopf H-J, et al. 2019.. Chronic chlamydia infection in human organoids increases stemness and promotes age-dependent CpG methylation. . Nat. Commun. 10:(1):1194. https://doi.org/10.1038/s41467-019-09144-7
    [Crossref] [Google Scholar]
  60. 60.
    Ross J. 2024.. Pelvic inflammatory disease: clinical manifestations and diagnosis. . In UpToDate, ed. J Marrazzo, A Bloom . Waltham, MA:: Wolters Kluwer, accessed Jul. 12. https://www.uptodate.com/contents/pelvic-inflammatory-disease-clinical-manifestations-and-diagnosis/print#
    [Google Scholar]
  61. 61.
    Darville T. 2021.. Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways. . J. Infect. Dis. 224:(Suppl. 2):S3946. https://doi.org/10.1093/infdis/jiab031
    [Crossref] [Google Scholar]
  62. 62.
    Yu B, McCartney S, Strenk S, Valint D, Liu C, et al. 2024.. Vaginal bacteria elicit acute inflammatory response in fallopian tube organoids. . Reprod. Sci. 31::50513. https://doi.org/10.1007/s43032-023-01350-5
    [Crossref] [Google Scholar]
  63. 63.
    Natalini JG, Singh S, Segal LN. 2023.. The dynamic lung microbiome in health and disease. . Nat. Rev. Microbiol. 21:(4):22235. https://doi.org/10.1038/s41579-022-00821-x
    [Crossref] [Google Scholar]
  64. 64.
    Weathered C, Pennington K, Escalante P, Pienaar E. 2023.. Agent-based model indicates chemoattractant signaling caused by Mycobacterium avium biofilms in the lung airway increases bacterial loads by spatially diverting macrophages. . Tuberculosis 138::102300. https://doi.org/10.1016/j.tube.2022.102300
    [Crossref] [Google Scholar]
  65. 65.
    Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, et al. 2023.. Protocol for establishing primary human lung organoid-derived air-liquid interface cultures from cryopreserved human lung tissue. . STAR Protoc. 4:(4):102735. https://doi.org/10.1016/j.xpro.2023.102735
    [Crossref] [Google Scholar]
  66. 66.
    Leach T, Gandhi U, Reeves KD, Stumpf K, Okuda K, et al. 2023.. Development of a novel air-liquid interface airway tissue equivalent model for in vitro respiratory modeling studies. . Sci. Rep. 13:(1):10137. https://doi.org/10.1038/s41598-023-36863-1
    [Crossref] [Google Scholar]
  67. 67.
    Thacker VV, Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. 2020.. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. . eLife 9::e59961. https://doi.org/10.7554/eLife.59961
    [Crossref] [Google Scholar]
  68. 68.
    Iakobachvili N, Leon-Icaza SA, Knoops K, Sachs N, Mazères S, et al. 2022.. Mycobacteria-host interactions in human bronchiolar airway organoids. . Mol. Microbiol. 117:(3):68292. https://doi.org/10.1111/mmi.14824
    [Crossref] [Google Scholar]
  69. 69.
    Rouzine IM, Rozhnova G. 2023.. Evolutionary implications of SARS-CoV-2 vaccination for the future design of vaccination strategies. . Commun. Med. 3::86. https://doi.org/10.1038/s43856-023-00320-x
    [Crossref] [Google Scholar]
  70. 70.
    Lou J, Liang W, Cao L, Hu I, Zhao S, et al. 2024.. Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations. . Nat. Commun. 15:(1):2546. https://doi.org/10.1038/s41467-024-46918-0
    [Crossref] [Google Scholar]
  71. 71.
    Si L, Bai H, Oh CY, Jin L, Prantil-Baun R, Ingber DE. 2021.. Clinically relevant influenza virus evolution reconstituted in a human lung airway-on-a-chip. . Microbiol. Spectr. 9::e00257-21. https://doi.org/10.1128/Spectrum.00257-21
    [Crossref] [Google Scholar]
  72. 72.
    Zamprogno P, Wüthrich S, Achenbach S, Thoma G, Stucki JD, et al. 2021.. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. . Commun. Biol. 4::168. https://doi.org/10.1038/s42003-021-01695-0
    [Crossref] [Google Scholar]
  73. 73.
    Huang D, Liu T, Liao J, Maharjan S, Xie X, et al. 2021.. Reversed-engineered human alveolar lung-on-a-chip model. . PNAS 118:(19):e2016146118. https://doi.org/10.1073/pnas.2016146118
    [Crossref] [Google Scholar]
  74. 74.
    Gerli MFM, Calà G, Beesley MA, Sina B, Tullie L, et al. 2024.. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. . Nat. Med. 30:(3):87587. https://doi.org/10.1038/s41591-024-02807-z
    [Crossref] [Google Scholar]
  75. 75.
    Liang J, Li X, Dong Y, Zhao B. 2022.. Modeling human organ development and diseases with fetal tissue-derived organoids. . Cell Transplant. 31::09636897221124481. https://doi.org/10.1177/09636897221124481
    [Crossref] [Google Scholar]
  76. 76.
    Vandana JJ, Manrique C, Lacko LA, Chen S. 2023.. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. . Cell Stem Cell 30:(5):57191. https://doi.org/10.1016/j.stem.2023.04.011
    [Crossref] [Google Scholar]
  77. 77.
    Dye BR, Hill DR, Ferguson MA, Tsai Y-H, Nagy MS, et al. 2015.. In vitro generation of human pluripotent stem cell derived lung organoids. . eLife 4::e05098. https://doi.org/10.7554/eLife.05098
    [Crossref] [Google Scholar]
  78. 78.
    Harford TJ, Rezaee F, Dye BR, Fan J, Spence JR, Piedimonte G. 2022.. RSV-induced changes in a 3-dimensional organoid model of human fetal lungs. . PLOS ONE 17:(3):e0265094. https://doi.org/10.1371/journal.pone.0265094
    [Crossref] [Google Scholar]
  79. 79.
    Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, et al. 2021.. The use of stem cell-derived organoids in disease modeling: an update. . Int. J. Mol. Sci. 22:(14):7667. https://doi.org/10.3390/ijms22147667
    [Crossref] [Google Scholar]
  80. 80.
    Ring A, Kim Y-M, Kahn M. 2014.. Wnt/catenin signaling in adult stem cell physiology and disease. . Stem Cell Rev. Rep. 10:(4):51225. https://doi.org/10.1007/s12015-014-9515-2
    [Crossref] [Google Scholar]
  81. 81.
    Hahn S, Kim MS, Choi SY, Jeong S, Jee J, et al. 2019.. Leucine-rich repeat-containing G-protein coupled receptor 5 enriched organoids under chemically-defined growth conditions. . Biochem. Biophys. Res. Commun. 508:(2):43039. https://doi.org/10.1016/j.bbrc.2018.11.003
    [Crossref] [Google Scholar]
  82. 82.
    Lim K, Donovan APA, Tang W, Sun D, He P, et al. 2023.. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. . Cell Stem Cell 30:(1):2037.e9. https://doi.org/10.1016/j.stem.2022.11.013
    [Crossref] [Google Scholar]
  83. 83.
    Kim MB, Hwangbo S, Jang S, Jo YK. 2022.. Bioengineered co-culture of organoids to recapitulate host-microbe interactions. . Mater. Today Bio 16::100345. https://doi.org/10.1016/j.mtbio.2022.100345
    [Crossref] [Google Scholar]
  84. 84.
    Heo I, Dutta D, Schaefer DA, Iakobachvili N, Artegiani B, et al. 2018.. Modelling Cryptosporidium infection in human small intestinal and lung organoids. . Nat. Microbiol. 3:(7):81423. https://doi.org/10.1038/s41564-018-0177-8
    [Crossref] [Google Scholar]
  85. 85.
    Bhalchandra S, Lamisere H, Ward H. 2020.. Intestinal organoid/enteroid-based models for Cryptosporidium. . Curr. Opin. Microbiol. 58::12429. https://doi.org/10.1016/j.mib.2020.10.002
    [Crossref] [Google Scholar]
  86. 86.
    Lopes-Pacheco M, Silva PL, Cruz FF, Battaglini D, Robba C, et al. 2021.. Pathogenesis of multiple organ injury in COVID-19 and potential therapeutic strategies. . Front. Physiol. 12::593223. https://doi.org/10.3389/fphys.2021.593223
    [Crossref] [Google Scholar]
  87. 87.
    Skardal A, Murphy SV, Devarasetty M, Mead I, Kang H-W, et al. 2017.. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. . Sci. Rep. 7:(1):8837. https://doi.org/10.1038/s41598-017-08879-x
    [Crossref] [Google Scholar]
  88. 88.
    Wnorowski A, Yang H, Wu JC. 2019.. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. . Adv. Drug Deliv. Rev. 140::311. https://doi.org/10.1016/j.addr.2018.06.001
    [Crossref] [Google Scholar]
  89. 89.
    Mitrofanova O, Nikolaev M, Xu Q, Broguiere N, Cubela I, et al. 2024.. Bioengineered human colon organoids with in vivo-like cellular complexity and function. . Cell Stem Cell 31:(8):117586.e7. https://doi.org/10.1016/j.stem.2024.05.007
    [Crossref] [Google Scholar]
  90. 90.
    Deng Z-M, Dai F-F, Wang R-Q, Deng H-B, Yin T-L, . 2024.. Organ-on-a-chip: future of female reproductive pathophysiological models. . J. Nanobiotechnol. 22:(1):455. https://doi.org/10.1186/s12951-024-02651-w
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110122-122343
Loading
/content/journals/10.1146/annurev-bioeng-110122-122343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error