1932

Abstract

The lymphatic vasculature plays critical roles in maintaining fluid homeostasis, transporting lipid, and facilitating immune surveillance. A growing body of work has identified lymphatic dysfunction as contributing to the severity of myriad diseases and to systemic inflammation, as well as modulating drug responses. Here, we review efforts to reconstruct lymphatic vessels in vitro toward establishing humanized, functional models to advance understanding of lymphatic biology and pathophysiology. We first review lymphatic endothelial cell biology and the biophysical lymphatic microenvironment, with a focus on features that are unique to the lymphatics and that have been used as design parameters for lymphatic-on-chip devices. We then discuss the state of the art for recapitulating lymphatic function in vitro, and we acknowledge limitations and challenges to current approaches. Finally, we discuss opportunities and the need for further development of microphysiological lymphatic systems to bridge the gap in model systems between lymphatic cell culture and animal physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-100246
2025-05-01
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-110222-100246.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-100246&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mehrara BJ, Radtke AJ, Randolph GJ, Wachter BT, Greenwel P, et al. 2023.. The emerging importance of lymphatics in health and disease: an NIH workshop report. . J. Clin. Investig. 133::e171582
    [Crossref] [Google Scholar]
  2. 2.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, et al. 2015.. Structural and functional features of central nervous system lymphatic vessels. . Nature 523::33741
    [Crossref] [Google Scholar]
  3. 3.
    Trincot CE, Caron KM. 2019.. Lymphatic function and dysfunction in the context of sex differences. . ACS Pharmacol. Transl. Sci. 2::31124
    [Crossref] [Google Scholar]
  4. 4.
    Biswas L, Chen J, De Angelis J, Singh A, Owen-Woods C, et al. 2023.. Lymphatic vessels in bone support regeneration after injury. . Cell 186::38297.e24
    [Crossref] [Google Scholar]
  5. 5.
    Trevaskis NL, Kaminskas LM, Porter CJ. 2015.. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. . Nat. Rev. Drug Discov. 14::781803
    [Crossref] [Google Scholar]
  6. 6.
    Oliver G, Kipnis J, Randolph GJ, Harvey NL. 2020.. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. . Cell 182::27096
    [Crossref] [Google Scholar]
  7. 7.
    Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. 2016.. Lymphatic pumping: mechanics, mechanisms and malfunction. . J. Physiol. 594::574968
    [Crossref] [Google Scholar]
  8. 8.
    Castenholz A. 1984.. Morphological characteristics of initial lymphatics in the tongue as shown by scanning electron microscopy. . Scan. Electron Microsc. 1984:(Part 3):134352
    [Google Scholar]
  9. 9.
    Gerli R, Ibba L, Fruschelli C. 1990.. A fibrillar elastic apparatus around human lymph capillaries. . Anat. Embryol. 181::28186
    [Crossref] [Google Scholar]
  10. 10.
    Leak LV. 1970.. Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. . Microvasc. Res. 2::36191
    [Crossref] [Google Scholar]
  11. 11.
    Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, et al. 2007.. Functionally specialized junctions between endothelial cells of lymphatic vessels. . J. Exp. Med. 204::234962
    [Crossref] [Google Scholar]
  12. 12.
    Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schonbein GW. 2001.. Evidence for a second valve system in lymphatics: endothelial microvalves. . FASEB J. 15::171117
    [Crossref] [Google Scholar]
  13. 13.
    Takeda A, Salmi M, Jalkanen S. 2023.. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system. . Trends Immunol. 44::7286
    [Crossref] [Google Scholar]
  14. 14.
    Churchill MJ, du Bois H, Heim TA, Mudianto T, Steele MM, et al. 2022.. Infection-induced lymphatic zippering restricts fluid transport and viral dissemination from skin. . J. Exp. Med. 219::e20211830
    [Crossref] [Google Scholar]
  15. 15.
    Yao LC, Baluk P, Srinivasan RS, Oliver G, McDonald DM. 2012.. Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. . Am. J. Pathol. 180::256175
    [Crossref] [Google Scholar]
  16. 16.
    Ngamsnae P, Okazaki T, Ren Y, Xia Y, Hashimoto H, et al. 2023.. Anatomy and pathology of lymphatic vessels under physiological and inflammatory conditions in the mouse diaphragm. . Microvasc. Res. 145::104438
    [Crossref] [Google Scholar]
  17. 17.
    Yao LC, Testini C, Tvorogov D, Anisimov A, Vargas SO, et al. 2014.. Pulmonary lymphangiectasia resulting from vascular endothelial growth factor-C overexpression during a critical period. . Circ. Res. 114::80622
    [Crossref] [Google Scholar]
  18. 18.
    Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, et al. 2001.. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. . Circ. Res. 88::62329
    [Crossref] [Google Scholar]
  19. 19.
    Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, et al. 2013.. Interstitial dendritic cell guidance by haptotactic chemokine gradients. . Science 339::32832
    [Crossref] [Google Scholar]
  20. 20.
    Pflicke H, Sixt M. 2009.. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. . J. Exp. Med. 206::292535
    [Crossref] [Google Scholar]
  21. 21.
    Russo E, Teijeira A, Vaahtomeri K, Willrodt AH, Bloch JS, et al. 2016.. Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. . Cell Rep. 14::172334
    [Crossref] [Google Scholar]
  22. 22.
    Tomura M, Hata A, Matsuoka S, Shand FH, Nakanishi Y, et al. 2014.. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. . Sci. Rep. 4::6030
    [Crossref] [Google Scholar]
  23. 23.
    Arasa J, Collado-Diaz V, Kritikos I, Medina-Sanchez JD, Friess MC, et al. 2021.. Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. . J. Exp. Med. 218::e20201413
    [Crossref] [Google Scholar]
  24. 24.
    Hunter MC, Teijeira A, Montecchi R, Russo E, Runge P, et al. 2019.. Dendritic cells and T cells interact within murine afferent lymphatic capillaries. . Front. Immunol. 10::520
    [Crossref] [Google Scholar]
  25. 25.
    Fujimoto N, He Y, D'Addio M, Tacconi C, Detmar M, Dieterich LC. 2020.. Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes. . PLOS Biol. 18::e3000704
    [Crossref] [Google Scholar]
  26. 26.
    Xiang M, Grosso RA, Takeda A, Pan J, Bekkhus T, et al. 2020.. A single-cell transcriptional roadmap of the mouse and human lymph node lymphatic vasculature. . Front. Cardiovasc. Med. 7::52
    [Crossref] [Google Scholar]
  27. 27.
    Dieterich LC, Tacconi C, Ducoli L, Detmar M. 2022.. Lymphatic vessels in cancer. . Physiol. Rev. 102::183779
    [Crossref] [Google Scholar]
  28. 28.
    Brouillard P, Witte MH, Erickson RP, Damstra RJ, Becker C, et al. 2021.. Primary lymphoedema. . Nat. Rev. Dis. Primers 7::77
    [Crossref] [Google Scholar]
  29. 29.
    Bui HM, Enis D, Robciuc MR, Nurmi HJ, Cohen J, et al. 2016.. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. . J. Clin. Investig. 126::216780
    [Crossref] [Google Scholar]
  30. 30.
    Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppanen VM, et al. 2014.. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. . Circulation 129::196271
    [Crossref] [Google Scholar]
  31. 31.
    Norrmen C, Ivanov KI, Cheng J, Zangger N, Delorenzi M, et al. 2009.. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. . J. Cell Biol. 185::43957
    [Crossref] [Google Scholar]
  32. 32.
    Sabine A, Agalarov Y, Maby-El Hajjami H, Jaquet M, Hagerling R, et al. 2012.. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. . Dev. Cell 22::43045
    [Crossref] [Google Scholar]
  33. 33.
    Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, et al. 2015.. GATA2 is required for lymphatic vessel valve development and maintenance. . J. Clin. Investig. 125::297994
    [Crossref] [Google Scholar]
  34. 34.
    Sweet DT, Jimenez JM, Chang J, Hess PR, Mericko-Ishizuka P, et al. 2015.. Lymph flow regulates collecting lymphatic vessel maturation in vivo. . J. Clin. Investig. 125::29953007
    [Crossref] [Google Scholar]
  35. 35.
    Miaskowski C, Dodd M, Paul SM, West C, Hamolsky D, et al. 2013.. Lymphatic and angiogenic candidate genes predict the development of secondary lymphedema following breast cancer surgery. . PLOS ONE 8::e60164
    [Crossref] [Google Scholar]
  36. 36.
    Fu MR, Conley YP, Axelrod D, Guth AA, Yu G, et al. 2016.. Precision assessment of heterogeneity of lymphedema phenotype, genotypes and risk prediction. . Breast 29::23140
    [Crossref] [Google Scholar]
  37. 37.
    Dale RF. 1985.. The inheritance of primary lymphoedema. . J. Med. Genet. 22::27478
    [Crossref] [Google Scholar]
  38. 38.
    Morfoisse F, Tatin F, Chaput B, Therville N, Vaysse C, et al. 2018.. Lymphatic vasculature requires estrogen receptor-α signaling to protect from lymphedema. . Arterioscler. Thromb. Vasc. Biol. 38::134657
    [Crossref] [Google Scholar]
  39. 39.
    Tian W, Rockson SG, Jiang X, Kim J, Begaye A, et al. 2017.. Leukotriene B4 antagonism ameliorates experimental lymphedema. . Sci. Transl. Med. 9::eaal3920
    [Crossref] [Google Scholar]
  40. 40.
    Rockson SG, Tian W, Jiang X, Kuznetsova T, Haddad F, et al. 2018.. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. . JCI Insight 3::e123775
    [Crossref] [Google Scholar]
  41. 41.
    Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, et al. 2015.. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. . J. Pediatr. 166::104854.e5
    [Crossref] [Google Scholar]
  42. 42.
    Martinez-Corral I, Zhang Y, Petkova M, Ortsater H, Sjoberg S, et al. 2020.. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. . Nat. Commun. 11::2869
    [Crossref] [Google Scholar]
  43. 43.
    Petkova M, Kraft M, Stritt S, Martinez-Corral I, Ortsater H, et al. 2023.. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation. . J. Exp. Med. 220::e20220741
    [Crossref] [Google Scholar]
  44. 44.
    Mukherjee A, Dixon JB. 2021.. Mechanobiology of lymphatic vessels. . In Vascular Mechanobiology in Physiology and Disease, ed. M Hecker, DJ Duncker , pp. 191239. Cham, Switz:.: Springer Int. Publ.
    [Google Scholar]
  45. 45.
    Coffindaffer-Wilson M, Craig MP, Hove JR. 2011.. Normal interstitial flow is critical for developmental lymphangiogenesis in the zebrafish. . Lymphat. Res. Biol. 9::15158
    [Crossref] [Google Scholar]
  46. 46.
    Wiig H, Swartz MA. 2012.. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. . Physiol. Rev. 92::100560
    [Crossref] [Google Scholar]
  47. 47.
    Fleury ME, Boardman KC, Swartz MA. 2006.. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. . Biophys. J. 91::11321
    [Crossref] [Google Scholar]
  48. 48.
    Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. 2007.. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. . Cancer Cell 11::52638
    [Crossref] [Google Scholar]
  49. 49.
    Swartz MA, Lund AW. 2012.. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. . Nat. Rev. Cancer 12::21019
    [Crossref] [Google Scholar]
  50. 50.
    Baluk P, McDonald DM. 2022.. Buttons and zippers: endothelial junctions in lymphatic vessels. . Cold Spring Harb. Perspect. Med. 12::a041178
    [Crossref] [Google Scholar]
  51. 51.
    Pedersen JA, Boschetti F, Swartz MA. 2007.. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. . J. Biomech. 40::148492
    [Crossref] [Google Scholar]
  52. 52.
    Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. 2014.. Mechanotransduction of fluid stresses governs 3D cell migration. . PNAS 111::244752
    [Crossref] [Google Scholar]
  53. 53.
    Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA. 2010.. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. . Circ. Res. 106::92031
    [Crossref] [Google Scholar]
  54. 54.
    Planas-Paz L, Strilic B, Goedecke A, Breier G, Fassler R, Lammert E. 2012.. Mechanoinduction of lymph vessel expansion. . EMBO J. 31::788804
    [Crossref] [Google Scholar]
  55. 55.
    Moore JE Jr., Bertram CD. 2018.. Lymphatic system flows. . Annu. Rev. Fluid Mech. 50::45982
    [Crossref] [Google Scholar]
  56. 56.
    Nipper ME, Dixon JB. 2011.. Engineering the lymphatic system. . Cardiovasc. Eng. Technol. 2::296308
    [Crossref] [Google Scholar]
  57. 57.
    Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE. 2011.. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. . Am. J. Physiol. Heart Circ. Physiol. 301::H4860
    [Crossref] [Google Scholar]
  58. 58.
    Dixon JB, Greiner ST, Gashev AA, Cote GL, Moore JE, Zawieja DC. 2006.. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. . Microcirculation 13::597610
    [Crossref] [Google Scholar]
  59. 59.
    Muthuchamy M, Gashev A, Boswell N, Dawson N, Zawieja D. 2003.. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. . FASEB J. 17::92022
    [Crossref] [Google Scholar]
  60. 60.
    Li B, Silver I, Szalai JP, Johnston MG. 1998.. Pressure-volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia. . Microvasc. Res. 56::12738
    [Crossref] [Google Scholar]
  61. 61.
    Bohlen HG, Gasheva OY, Zawieja DC. 2011.. Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. . Am. J. Physiol. Heart Circ. Physiol. 301::H1897906
    [Crossref] [Google Scholar]
  62. 62.
    Wilson JT, Edgar LT, Prabhakar S, Horner M, van Loon R, Moore JE. 2018.. A fully coupled fluid-structure interaction model of the secondary lymphatic valve. . Comp. Methods Biomech. Biomed. Eng. 21::81323
    [Crossref] [Google Scholar]
  63. 63.
    Bálint L, Jakus Z. 2021.. Mechanosensation and mechanotransduction by lymphatic endothelial cells act as important regulators of lymphatic development and function. . Int. J. Mol. Sci. 22::3955
    [Crossref] [Google Scholar]
  64. 64.
    Hansen KC, D'Alessandro A, Clement CC, Santambrogio L. 2015.. Lymph formation, composition and circulation: a proteomics perspective. . Int. Immunol. 27::21927
    [Crossref] [Google Scholar]
  65. 65.
    Wilting J, Becker J. 2022.. The lymphatic vascular system: much more than just a sewer. . Cell Biosci. 12::157
    [Crossref] [Google Scholar]
  66. 66.
    Burton-Opitz R, Nemser R. 1917.. The viscosity of lymph. . Am. J. Physiol. Leg. Content 45::2529
    [Crossref] [Google Scholar]
  67. 67.
    Kassis T, Yarlagadda SC, Kohan AB, Tso P, Breedveld V, Dixon B. 2016.. Postprandial lymphatic pump function after a high-fat meal: a characterization of contractility, flow, and viscosity. . Am. J. Physiol. Gastrointest. Liver Physiol. 310::G77689
    [Crossref] [Google Scholar]
  68. 68.
    Zhang W, Li J, Liang J, Qi X, Tian J, Liu J. 2021.. Coagulation in lymphatic system. . Front. Cardiovasc. Med. 8::762648
    [Crossref] [Google Scholar]
  69. 69.
    Scallan J, Huxley VH, Korthuis RJ. 2010.. The lymphatic vasculature. . In Capillary Fluid Exchange: Regulation, Functions, and Pathology, pp. 3346. San Rafael, CA:: Morgan & Claypool Life Sci.
    [Google Scholar]
  70. 70.
    Ku DN. 1997.. Blood flow in arteries. . Annu. Rev. Fluid Mech. 29::399434
    [Crossref] [Google Scholar]
  71. 71.
    Pujari A, Smith AF, Hall JD, Mei P, Chau K, et al. 2020.. Lymphatic valves separate lymph flow into a central stream and a slow-moving peri-valvular milieu. . J. Biomech. Eng. 142::100805
    [Crossref] [Google Scholar]
  72. 72.
    Michalaki E, Surya VN, Rodríguez-Hakim M, Fuller GG, Dunn AR. 2023.. Response of lymphatic endothelial cells to combined spatial and temporal variations in fluid flow. . FASEB J. 37::e23240
    [Crossref] [Google Scholar]
  73. 73.
    Nonomura K, Lukacs V, Sweet DT, Goddard LM, Kanie A, et al. 2018.. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. . PNAS 115::1281722
    [Crossref] [Google Scholar]
  74. 74.
    Sabine A, Bovay E, Demir CS, Kimura W, Jaquet M, et al. 2015.. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. . J. Clin. Investig. 125::386177
    [Crossref] [Google Scholar]
  75. 75.
    Sabine A, Saygili Demir C, Petrova TV. 2016.. Endothelial cell responses to biomechanical forces in lymphatic vessels. . Antioxid. Redox Signal 25::45165
    [Crossref] [Google Scholar]
  76. 76.
    Petrova TV, Koh GY. 2020.. Biological functions of lymphatic vessels. . Science 369:(6500):eaax4063
    [Crossref] [Google Scholar]
  77. 77.
    Angeli V, Lim HY. 2023.. Biomechanical control of lymphatic vessel physiology and functions. . Cell. Mol. Immunol. 20::105162
    [Crossref] [Google Scholar]
  78. 78.
    Ng CP, Helm CL, Swartz MA. 2004.. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. . Microvasc. Res. 68::25864
    [Crossref] [Google Scholar]
  79. 79.
    Baeyens N, Nicoli S, Coon BG, Ross TD, Van den Dries K, et al. 2015.. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. . eLife 4::e04645
    [Crossref] [Google Scholar]
  80. 80.
    Mukherjee A, Hooks J, Nepiyushchikh Z, Dixon B. 2019.. Entrainment of lymphatic contraction to oscillatory flow. . Sci. Rep. 9::5840
    [Crossref] [Google Scholar]
  81. 81.
    Chen CY, Bertozzi C, Zou Z, Yuan L, Lee JS, et al. 2012.. Blood flow reprograms lymphatic vessels to blood vessels. . J. Clin. Investig. 122::200617
    [Crossref] [Google Scholar]
  82. 82.
    Fang JS, Coon BG, Gillis N, Chen Z, Qiu J, et al. 2017.. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. . Nat. Commun. 8::2149
    [Crossref] [Google Scholar]
  83. 83.
    Choi D, Park E, Jung E, Seong YJ, Hong M, et al. 2017.. ORAI1 activates proliferation of lymphatic endothelial cells in response to laminar flow through Kruppel-like factors 2 and 4. . Circ. Res. 120::142639
    [Crossref] [Google Scholar]
  84. 84.
    Geng X, Yanagida K, Akwii RG, Choi D, Chen L, et al. 2020.. S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling. . JCI Insight 5::e137652
    [Crossref] [Google Scholar]
  85. 85.
    Choi D, Park E, Jung E, Seong YJ, Yoo J, et al. 2017.. Laminar flow downregulates Notch activity to promote lymphatic sprouting. . J. Clin. Investig. 127::122540
    [Crossref] [Google Scholar]
  86. 86.
    Polacheck WJ, Kutys ML, Yang J, Eyckmans J, Wu Y, et al. 2017.. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. . Nature 552::25862
    [Crossref] [Google Scholar]
  87. 87.
    Bray SJ. 2016.. Notch signalling in context. . Nat. Rev. Mol. Cell Biol. 17::72235
    [Crossref] [Google Scholar]
  88. 88.
    Caolo V, Debant M, Endesh N, Futers TS, Lichtenstein L, et al. 2020.. Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. . eLife 9::e50684
    [Crossref] [Google Scholar]
  89. 89.
    Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, et al. 2005.. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. . Nature 437::42631
    [Crossref] [Google Scholar]
  90. 90.
    Yang Y, Cha B, Motawe ZY, Srinivasan RS, Scallan JP. 2019.. VE-cadherin is required for lymphatic valve formation and maintenance. . Cell Rep. 28::2397412.e4
    [Crossref] [Google Scholar]
  91. 91.
    Frye M, Taddei A, Dierkes C, Martinez-Corral I, Fielden M, et al. 2018.. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. . Nat. Commun. 9::1511
    [Crossref] [Google Scholar]
  92. 92.
    Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, et al. 2009.. A mechanosensitive transcriptional mechanism that controls angiogenesis. . Nature 457::11038
    [Crossref] [Google Scholar]
  93. 93.
    Wilting J, Felmerer G, Becker J. 2023.. Control of the extracellular matrix by hypoxic lymphatic endothelial cells: impact on the progression of lymphedema?. Dev. Dyn. 252::22738
    [Crossref] [Google Scholar]
  94. 94.
    Alderfer L, Russo E, Archilla A, Coe B, Hanjaya-Putra D. 2021.. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. . FASEB J. 35::e21498
    [Crossref] [Google Scholar]
  95. 95.
    Fan F, Su B, Kolodychak A, Ekwueme E, Alderfer L, et al. 2023.. Hyaluronic acid hydrogels with phototunable supramolecular cross-linking for spatially controlled lymphatic tube formation. . ACS Appl. Mater. Interfaces 15::5818195
    [Crossref] [Google Scholar]
  96. 96.
    Hooks JST, Bernard FC, Cruz-Acuna R, Nepiyushchikh Z, Gonzalez-Vargas Y, et al. 2022.. Synthetic hydrogels engineered to promote collecting lymphatic vessel sprouting. . Biomaterials 284::121483
    [Crossref] [Google Scholar]
  97. 97.
    Hadamitzky C, Zaitseva TS, Bazalova-Carter M, Paukshto MV, Hou L, et al. 2016.. Aligned nanofibrillar collagen scaffolds—guiding lymphangiogenesis for treatment of acquired lymphedema. . Biomaterials 102::25967
    [Crossref] [Google Scholar]
  98. 98.
    Nguyen D, Zaitseva TS, Zhou A, Rochlin D, Sue G, et al. 2022.. Lymphatic regeneration after implantation of aligned nanofibrillar collagen scaffolds: preliminary preclinical and clinical results. . J. Surg. Oncol. 125::11322
    [Crossref] [Google Scholar]
  99. 99.
    Wang S, Nie D, Rubin JP, Kokai L. 2017.. Lymphatic endothelial cells under mechanical stress: altered expression of inflammatory cytokines and fibrosis. . Lymphat. Res. Biol. 15::13035
    [Crossref] [Google Scholar]
  100. 100.
    Hooks JST, Clement CC, Nguyen HD, Santambrogio L, Dixon JB. 2018.. In vitro model reveals a role for mechanical stretch in the remodeling response of lymphatic muscle cells. . Microcirculation 26::e12512
    [Crossref] [Google Scholar]
  101. 101.
    Landau S, Newman A, Edri S, Michael I, Ben-Shaul S, et al. 2021.. Investigating lymphangiogenesis in vitro and in vivo using engineered human lymphatic vessel networks. . PNAS 118::e2101931118
    [Crossref] [Google Scholar]
  102. 102.
    Gibot L, Galbraith T, Bourland J, Rogic A, Skobe M, Auger FA. 2017.. Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. . Nat. Protoc. 12::107788
    [Crossref] [Google Scholar]
  103. 103.
    Helm C, Fleury M, Zisch A, Boschetti F, Swartz MA. 2005.. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. . PNAS 102::1577984
    [Crossref] [Google Scholar]
  104. 104.
    Wong KH, Truslow JG, Khankhel AH, Chan KL, Tien J. 2013.. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. . J. Biomed. Mater. Res. A 101::218190
    [Crossref] [Google Scholar]
  105. 105.
    Chan KLS, Khankhel AH, Thompson RL, Coisman BJ, Wong KHK, et al. 2014.. Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. . J. Biomed. Mater. Res. A 102::318695
    [Crossref] [Google Scholar]
  106. 106.
    Lugo-Cintron KM, Ayuso JM, White BR, Harari PM, Ponik SM, et al. 2020.. Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment. . Lab Chip 20::1586600
    [Crossref] [Google Scholar]
  107. 107.
    Henderson AR, Ilan IS, Lee E. 2021.. A bioengineered lymphatic vessel model for studying lymphatic endothelial cell-cell junction and barrier function. . Microcirculation 28::e12730
    [Crossref] [Google Scholar]
  108. 108.
    Lee E, Chan S-L, Lee Y, Polacheck WJ, Kwak S, et al. 2023.. A 3D biomimetic model of lymphatics reveals cell–cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. . PNAS 120::e2308941120
    [Crossref] [Google Scholar]
  109. 109.
    Hall E, Mendiola K, Lightsey NK, Hanjaya-Putra D. 2024.. Mimicking blood and lymphatic vasculatures using microfluidic systems. . Biomicrofluidics 18::031502
    [Crossref] [Google Scholar]
  110. 110.
    Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS. 2014.. Fluid shear stress threshold regulates angiogenic sprouting. . PNAS 111::796873
    [Crossref] [Google Scholar]
  111. 111.
    Kim S, Chung M, Jeon NL. 2016.. Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. . Biomaterials 78::11528
    [Crossref] [Google Scholar]
  112. 112.
    Tronolone JJ, Mohamed N, Jain A. 2024.. Engineering lymphangiogenesis-on-chip: the independent and cooperative regulation by biochemical factors, gradients, and interstitial fluid flow. . Adv. Biol. 8::e2400031
    [Crossref] [Google Scholar]
  113. 113.
    Kornuta JA, Nipper ME, Dixon B. 2013.. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro. . J. Biomech. 46::18386
    [Crossref] [Google Scholar]
  114. 114.
    Fathi P, Holland G, Pan D, Esch MB. 2020.. Lymphatic vessel on a chip with capability for exposure to cyclic fluidic flow. . ACS Appl. Bio Mater. 3::6697707
    [Crossref] [Google Scholar]
  115. 115.
    Selahi A, Fernando T, Chakraborty S, Muthuchamy M, Zawieja DC, Jain A. 2021.. Lymphangion-chip: a microphysiological system which supports co-culture and bidirectional signaling of lymphatic endothelial and muscle cells. . Lab Chip 22::12135
    [Crossref] [Google Scholar]
  116. 116.
    Selahi A, Chakraborty S, Muthuchamy M, Zawieja DC, Jain A. 2022.. Intracellular calcium dynamics of lymphatic endothelial and muscle cells co-cultured in a lymphangion-chip under pulsatile flow. . Analyst 147::295365
    [Crossref] [Google Scholar]
  117. 117.
    Sato M, Sasaki N, Ato M, Hirakawa S, Sato K, Sato K. 2015.. Microcirculation-on-a-chip: a microfluidic platform for assaying blood- and lymphatic-vessel permeability. . PLOS ONE 10::e0137301
    [Crossref] [Google Scholar]
  118. 118.
    Osaki T, Serrano JC, Kamm RD. 2018.. Cooperative effects of vascular angiogenesis and lymphangiogenesis. . Regen. Eng. Transl. Med. 4::12032
    [Crossref] [Google Scholar]
  119. 119.
    Cao X, Ashfaq R, Cheng F, Maharjan S, Li J, et al. 2019.. A tumor-on-a-chip system with bioprinted blood and lymphatic vessel pair. . Adv. Funct. Mater. 29::1807173
    [Crossref] [Google Scholar]
  120. 120.
    Swartz MA, Fleury ME. 2007.. Interstitial flow and its effects in soft tissues. . Annu. Rev. Biomed. Eng. 9::22956
    [Crossref] [Google Scholar]
  121. 121.
    Lee GH, Huang SA, Aw WY, Rathod ML, Cho C, et al. 2022.. Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow. . Biofabrication 14::025007
    [Crossref] [Google Scholar]
  122. 122.
    Birmingham KG, O'Melia MJ, Bordy S, Reyes Aguilar D, El-Reyas B, et al. 2020.. Lymph node subcapsular sinus microenvironment-on-a-chip modeling shear flow relevant to lymphatic metastasis and immune cell homing. . iScience 23::101751
    [Crossref] [Google Scholar]
  123. 123.
    Mazzaglia C, Munir H, Lei IM, Gerigk M, Huang YYS, Shields JD. 2024.. Modeling structural elements and functional responses to lymphatic-delivered cues in a murine lymph node on a chip. . Adv. Healthcare Mater. 13::e2303720
    [Crossref] [Google Scholar]
  124. 124.
    Kim M, Choi S, Choi D-H, Ahn J, Lee D, et al. 2024.. An advanced 3D lymphatic system for assaying human cutaneous lymphangiogenesis in a microfluidic platform. . NPG Asia Mater. 16::7
    [Crossref] [Google Scholar]
  125. 125.
    Dixon JB, Raghunathan S, Swartz MA. 2009.. A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. . Biotechnol. Bioeng. 103::122435
    [Crossref] [Google Scholar]
  126. 126.
    Reed AL, Rowson SA, Dixon JB. 2013.. Demonstration of ATP-dependent, transcellular transport of lipid across the lymphatic endothelium using an in vitro model of the lacteal. . Pharm. Res. 30::327180
    [Crossref] [Google Scholar]
  127. 127.
    Ayuso JM, Gong MM, Skala MC, Harari PM, Beebe DJ. 2020.. Human tumor-lymphatic microfluidic model reveals differential conditioning of lymphatic vessels by breast cancer cells. . Adv. Healthc. Mater. 9::e1900925
    [Crossref] [Google Scholar]
  128. 128.
    Seibel AJ, Kelly OM, Dance YW, Nelson CM, Tien J. 2022.. Role of lymphatic endothelium in vascular escape of engineered human breast microtumors. . Cell. Mol. Bioeng. 15::55369
    [Crossref] [Google Scholar]
  129. 129.
    Lugo-Cintron KM, Ayuso JM, Humayun M, Gong MM, Kerr SC, et al. 2021.. Primary head and neck tumour-derived fibroblasts promote lymphangiogenesis in a lymphatic organotypic co-culture model. . EBioMedicine 73::103634
    [Crossref] [Google Scholar]
  130. 130.
    Yada RC, Desa DE, Gillette AA, Bartels E, Harari PM, et al. 2023.. Microphysiological head and neck cancer model identifies novel role of lymphatically secreted monocyte migration inhibitory factor in cancer cell migration and metabolism. . Biomaterials 298::122136
    [Crossref] [Google Scholar]
  131. 131.
    Chung M, Ahn J, Son K, Kim S, Jeon NL. 2017.. Biomimetic model of tumor microenvironment on microfluidic platform. . Adv. Healthc. Mater. 6::1700196
    [Crossref] [Google Scholar]
  132. 132.
    Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. 2014.. Lymphangiogenesis and lymphatic vessel remodelling in cancer. . Nat. Rev. Cancer 14::15972
    [Crossref] [Google Scholar]
  133. 133.
    Stritt S, Koltowska K, Mäkinen T. 2021.. Homeostatic maintenance of the lymphatic vasculature. . Trends Mol. Med. 27::95570
    [Crossref] [Google Scholar]
  134. 134.
    Takeda A, Hollmén M, Dermadi D, Pan J, Brulois KF, et al. 2019.. Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils. . Immunity 51::56172.e5
    [Crossref] [Google Scholar]
  135. 135.
    Zawieja SD, Castorena-Gonzalez JA, Scallan J, Davis MJ. 2018.. Differences in L-type calcium channel activity partially underlie the regional dichotomy in pumping behavior by murine peripheral and visceral lymphatic vessels. . Am. J. Physiol. Heart Circ. Physiol. 5::e9863
    [Google Scholar]
  136. 136.
    Dai W, Yang M, Xia P, Xiao C, Huang S, et al. 2022.. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. . Nat. Commun. 13::4825
    [Crossref] [Google Scholar]
  137. 137.
    Frenkel N, Poghosyan S, Alarcon CR, Garcia SB, Queiroz K, et al. 2021.. Long-lived human lymphatic endothelial cells to study lymphatic biology and lymphatic vessel/tumor coculture in a 3D microfluidic model. . ACS Biomater. Sci. Eng. 7::303042
    [Crossref] [Google Scholar]
  138. 138.
    Saha S, Fan F, Alderfer L, Graham F, Hall E, Hanjaya-Putra D. 2023.. Synthetic hyaluronic acid coating preserves the phenotypes of lymphatic endothelial cells. . Biomater. Sci. 11::734657
    [Crossref] [Google Scholar]
  139. 139.
    Whitworth CP, Polacheck WJ. 2023.. Vascular organs-on-chip made with patient-derived endothelial cells: technologies to transform drug discovery and disease modeling. . Expert Opin. Drug Discov. 19::33951
    [Crossref] [Google Scholar]
  140. 140.
    DiMaio TA, Wentz BL, Lagunoff M. 2015.. Isolation and characterization of circulating lymphatic endothelial colony forming cells. . Exp. Cell Res. 340::15969
    [Crossref] [Google Scholar]
  141. 141.
    Campbell KT, Curtis MB, Massey JM, Wysoczynski K, Hadley DJ, et al. 2021.. Isolating and characterizing lymphatic endothelial progenitor cells for potential therapeutic lymphangiogenic applications. . Acta Biomater. 135::191202
    [Crossref] [Google Scholar]
  142. 142.
    Lee S-J, Park C, Lee JY, Kim S, Kwon PJ, et al. 2015.. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. . Sci. Rep. 5::11019
    [Crossref] [Google Scholar]
  143. 143.
    Forte AJ, Boczar D, Sarabia-Estrada R, Huayllani MT, Avila FR, et al. 2022.. Use of adipose-derived stem cells in lymphatic tissue engineering and regeneration. . Arch. Plast. Surg. 48::55967
    [Google Scholar]
  144. 144.
    Boscolo E, Coma S, Luks VL, Greene AK, Klagsbrun M, et al. 2015.. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. . Angiogenesis 18::15162
    [Crossref] [Google Scholar]
  145. 145.
    Lokmic Z, Mitchell GM, Koh Wee Chong N, Bastiaanse J, Gerrand Y-W, et al. 2013.. Isolation of human lymphatic malformation endothelial cells, their in vitro characterization and in vivo survival in a mouse xenograft model. . Angiogenesis 17::115
    [Crossref] [Google Scholar]
  146. 146.
    Usui H, Tsurusaki Y, Shimbo H, Saitsu H, Harada N, et al. 2021.. A novel method for isolating lymphatic endothelial cells from lymphatic malformations and detecting PIK3CA somatic mutation in these isolated cells. . Surg. Today 51::43946
    [Crossref] [Google Scholar]
  147. 147.
    Atchison L, Abutaleb NO, Snyder-Mounts E, Gete Y, Ladha A, et al. 2020.. iPSC-derived endothelial cells affect vascular function in a tissue-engineered blood vessel model of Hutchinson-Gilford progeria syndrome. . Stem Cell Rep. 14::32537
    [Crossref] [Google Scholar]
  148. 148.
    Michas C, Karakan , Nautiyal P, Seidman JG, Seidman CE, et al. 2022.. Engineering a living cardiac pump on a chip using high-precision fabrication. . Sci. Adv. 8::eabm3791
    [Crossref] [Google Scholar]
  149. 149.
    Fitzpatrick LE, McDevitt TC. 2015.. Cell-derived matrices for tissue engineering and regenerative medicine applications. . Biomater. Sci. 3::1224
    [Crossref] [Google Scholar]
  150. 150.
    Gibot L, Galbraith T, Kloos B, Das S, Lacroix DA, et al. 2016.. Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. . Biomaterials 78::12939
    [Crossref] [Google Scholar]
  151. 151.
    Doherty EL, Krohn G, Warren EC, Patton A, Whitworth CP, et al. 2024.. Human cell-derived matrix composite hydrogels with diverse composition for use in vasculature-on-chip models. . Adv. Healthcare Mater. 13::e2400192
    [Crossref] [Google Scholar]
  152. 152.
    Song HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. 2018.. Vascular tissue engineering: progress, challenges, and clinical promise. . Cell Stem Cell 22::34054
    [Crossref] [Google Scholar]
  153. 153.
    Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E. 2014.. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. . Sci. Transl. Med. 6::221ra14
    [Crossref] [Google Scholar]
  154. 154.
    Ross AE, Belanger MC, Woodroof JF, Pompano RR. 2017.. Spatially resolved microfluidic stimulation of lymphoid tissue ex vivo. . Analyst 142::64959
    [Crossref] [Google Scholar]
  155. 155.
    Pisano M, Triacca V, Barbee KA, Swartz MA. 2015.. An in vitro model of the tumor-lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. . Integr. Biol. 7::52533
    [Crossref] [Google Scholar]
  156. 156.
    Ilan IS, Yslas AR, Peng Y, Lu R, Lee E. 2023.. A 3D human lymphatic vessel-on-chip reveals the roles of interstitial flow and VEGF-A/C for lymphatic sprouting and discontinuous junction formation. . Cell. Mol. Bioeng. 16::32539
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-100246
Loading
/content/journals/10.1146/annurev-bioeng-110222-100246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error