1932

Abstract

Despite the advances in detection, diagnosis, and treatments, cancer remains a lethal disease, claiming the lives of more than 600,000 people in the United States alone in 2024. To accelerate the development of new therapeutic strategies with improved responses, significant efforts have been made to develop microfabricated in vitro models of tumor microenvironments (TMEs) that address the limitations of animal-based cancer models. These models incorporate several advanced tissue engineering techniques to better reflect the organ- and patient-specific TMEs. Additionally, microfabricated models integrated with next-generation single-cell omics technologies provide unprecedented insights into patient's cellular and molecular heterogeneity and complexity. This review provides an overview of the recent understanding of cancer development and outlines the key TME elements that can be captured in microfabricated models to enhance their physiological relevance. We highlight the recent advances in microfabricated cancer models that reflect the unique characteristics of their organs of origin or sites of dissemination.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-103522
2025-05-01
2025-05-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/27/1/annurev-bioeng-110222-103522.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-103522&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Biotechnol. Innov. Org. (BIO), Informa Pharma Intell., Quant. Life Sci. Advis. (QLS). 2021.. Clinical development success rates and contributing factors 2011–2020. Rep. , BIO, Washington, DC:
    [Google Scholar]
  2. 2.
    Han JJ. 2023.. FDA Modernization Act 2.0 allows for alternatives to animal testing. . Artif. Organs 47::44950
    [Crossref] [Google Scholar]
  3. 3.
    Virumbrales-Muñoz M, Ayuso JM. 2022.. From microfluidics to microphysiological systems: past, present, and future. . Organs-on-a-Chip 4::100015
    [Crossref] [Google Scholar]
  4. 4.
    Hagerling C, Casbon A-J, Werb Z. 2015.. Balancing the innate immune system in tumor development. . Trends Cell Biol. 25::21420
    [Crossref] [Google Scholar]
  5. 5.
    Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. 2020.. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. . J. Exp. Clin. Cancer Res. 39::89
    [Crossref] [Google Scholar]
  6. 6.
    Upadhyay S, Sharma N, Gupta KB, Dhiman M. 2018.. Role of immune system in tumor progression and carcinogenesis. . J. Cell. Biochem. 119::502842
    [Crossref] [Google Scholar]
  7. 7.
    Beatty GL, Gladney WL. 2015.. Immune escape mechanisms as a guide for cancer immunotherapy. . Clin. Cancer Res. 21::68792
    [Crossref] [Google Scholar]
  8. 8.
    Ness S, Lin S, Gordon JR. 2021.. Regulatory dendritic cells, T cell tolerance, and dendritic cell therapy for immunologic disease. . Front. Immunol. 12::633436
    [Crossref] [Google Scholar]
  9. 9.
    Togashi Y, Shitara K, Nishikawa H. 2019.. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. . Nat. Rev. Clin. Oncol. 16::35671
    [Crossref] [Google Scholar]
  10. 10.
    Lv M, Wang K, Huang X-J. 2019.. Myeloid-derived suppressor cells in hematological malignancies: friends or foes. . J. Hematol. Oncol. 12::105
    [Crossref] [Google Scholar]
  11. 11.
    Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. 2016.. Tumor-associated stromal cells as key contributors to the tumor microenvironment. . Breast Cancer Res. 18::84
    [Crossref] [Google Scholar]
  12. 12.
    Jin M-Z, Jin W-L. 2020.. The updated landscape of tumor microenvironment and drug repurposing. . Signal Transduct. Targeted Ther. 5::166
    [Crossref] [Google Scholar]
  13. 13.
    Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. 2018.. The hypoxic tumour microenvironment. . Oncogenesis 7::10
    [Crossref] [Google Scholar]
  14. 14.
    Qiu GZ, Jin MZ, Dai JX, Sun W, Feng JH, Jin WL. 2017.. Reprogramming of the tumor in the hypoxic niche: the emerging concept and associated therapeutic strategies. . Trends Pharmacol. Sci. 38::66986
    [Crossref] [Google Scholar]
  15. 15.
    Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. 2020.. Concepts of extracellular matrix remodelling in tumour progression and metastasis. . Nat. Commun. 11::5120
    [Crossref] [Google Scholar]
  16. 16.
    Quail DF, Joyce JA. 2013.. Microenvironmental regulation of tumor progression and metastasis. . Nat. Med. 19::142337
    [Crossref] [Google Scholar]
  17. 17.
    Watnick RS. 2012.. The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harb. . Perspect. Med. 2::a006676
    [Google Scholar]
  18. 18.
    Acharyya S, Matrisian L, Welch DR, Massagué J. 2015.. Invasion and metastasis. . In The Molecular Basis of Cancer, ed. J Mendelsohn, JW Gray, PM Howley, MA Israel, CB Thompson , pp. 26984.e2. Philadelphia:: W.B. Saunders. , 4th ed..
    [Google Scholar]
  19. 19.
    Walker C, Mojares E, Del Río Hernández A. 2018.. Role of extracellular matrix in development and cancer progression. . Int. J. Mol. Sci. 19::3028
    [Crossref] [Google Scholar]
  20. 20.
    Chiang SP, Cabrera RM, Segall JE. 2016.. Tumor cell intravasation. . Am. J. Physiol. Cell Physiol. 311::C114
    [Crossref] [Google Scholar]
  21. 21.
    Sznurkowska MK, Aceto N. 2022.. The gate to metastasis: key players in cancer cell intravasation. . FEBS J. 289::433654
    [Crossref] [Google Scholar]
  22. 22.
    Wyckoff JB, Wang Y, Lin EY, Li J-F, Goswami S, et al. 2007.. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. . Cancer Res. 67::264956
    [Crossref] [Google Scholar]
  23. 23.
    Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, et al. 2015.. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage–derived VEGFA. . Cancer Discov. 5::93243
    [Crossref] [Google Scholar]
  24. 24.
    Welch DR, Hurst DR. 2019.. Defining the hallmarks of metastasis. . Cancer Res. 79::301127
    [Crossref] [Google Scholar]
  25. 25.
    Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, et al. 2014.. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. . Oncogene 33::420312
    [Crossref] [Google Scholar]
  26. 26.
    Lin Y, Xu J, Lan H. 2019.. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. . J. Hematol. Oncol. 12::76
    [Crossref] [Google Scholar]
  27. 27.
    Massagué J, Obenauf AC. 2016.. Metastatic colonization by circulating tumour cells. . Nature 529::298306
    [Crossref] [Google Scholar]
  28. 28.
    Kang DS, Moriarty A, Oh JM, Begum HM, Shen K, Yu M. 2023.. Biophysical properties and isolation of circulating tumor cells. . In Engineering and Physical Approaches to Cancer, ed. IY Wong, MR Dawson , pp. 25583. Cham:: Springer Int. Publ.
    [Google Scholar]
  29. 29.
    Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, et al. 2014.. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. . Cell 158::111022
    [Crossref] [Google Scholar]
  30. 30.
    Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, et al. 2013.. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. . Science 339::58084
    [Crossref] [Google Scholar]
  31. 31.
    Leach J, Morton JP, Sansom OJ. 2019.. Neutrophils: homing in on the myeloid mechanisms of metastasis. . Mol. Immunol. 110::6976
    [Crossref] [Google Scholar]
  32. 32.
    Gay LJ, Felding-Habermann B. 2011.. Contribution of platelets to tumour metastasis. . Nat. Rev. Cancer 11::12334
    [Crossref] [Google Scholar]
  33. 33.
    Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, et al. 2019.. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. . Cell 176::98112.e14
    [Crossref] [Google Scholar]
  34. 34.
    Hamidi H, Ivaska J. 2018.. Every step of the way: integrins in cancer progression and metastasis. . Nat. Rev. Cancer 18::53348
    [Crossref] [Google Scholar]
  35. 35.
    Hill CN, Hernández-Cáceres MP, Asencio C, Torres B, Solis B, Owen GI. 2020.. Deciphering the role of the coagulation cascade and autophagy in cancer-related thrombosis and metastasis. . Front. Oncol. 10::605314
    [Crossref] [Google Scholar]
  36. 36.
    Reymond N, d'Água BB, Ridley AJ. 2013.. Crossing the endothelial barrier during metastasis. . Nat. Rev. Cancer 13::85870
    [Crossref] [Google Scholar]
  37. 37.
    Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, et al. 2016.. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. . Nature 536::21518
    [Crossref] [Google Scholar]
  38. 38.
    Braun S, Vogl FD, Naume B, Janni W, Osborne MP, et al. 2005.. A pooled analysis of bone marrow micrometastasis in breast cancer. . N. Engl. J. Med. 353::793802
    [Crossref] [Google Scholar]
  39. 39.
    Wang C, Luo D. 2021.. The metabolic adaptation mechanism of metastatic organotropism. . Exp. Hematol. Oncol. 10::30
    [Crossref] [Google Scholar]
  40. 40.
    Azubuike UF, Tanner K. 2023.. Biophysical determinants of cancer organotropism. . Trends Cancer 9::18897
    [Crossref] [Google Scholar]
  41. 41.
    Chen W, Hoffmann AD, Liu H, Liu X. 2018.. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. . NPJ Precision Oncol. 2::4
    [Crossref] [Google Scholar]
  42. 42.
    Aird WC. 2007.. Phenotypic heterogeneity of the endothelium. . Circ. Res. 100::15873
    [Crossref] [Google Scholar]
  43. 43.
    Croucher PI, McDonald MM, Martin TJ. 2016.. Bone metastasis: the importance of the neighbourhood. . Nat. Rev. Cancer 16::37386
    [Crossref] [Google Scholar]
  44. 44.
    Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, et al. 2022.. Human organs-on-chips: a review of the state-of-the-art, current prospects, and future challenges. . Adv. Biol. 6::2000526
    [Crossref] [Google Scholar]
  45. 45.
    Sackmann EK, Fulton AL, Beebe DJ. 2014.. The present and future role of microfluidics in biomedical research. . Nature 507::18189
    [Crossref] [Google Scholar]
  46. 46.
    Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. 2021.. Fabrication and applications of microfluidic devices: a review. . Int. J. Mol. Sci. 22::2011
    [Crossref] [Google Scholar]
  47. 47.
    Folch A. 2013.. Introduction to BioMEMS. Boca Raton, FL:: CRC Press
    [Google Scholar]
  48. 48.
    Begum HM, Ta HP, Zhou H, Ando Y, Kang D, et al. 2019.. Spatial regulation of mitochondrial heterogeneity by stromal confinement in micropatterned tumor models. . Sci. Rep. 9::11187
    [Crossref] [Google Scholar]
  49. 49.
    Oh JM, Begum HM, Liu YL, Ren Y, Shen K. 2022.. Recapitulating tumor hypoxia in a cleanroom-free, liquid-pinning-based microfluidic tumor model. . ACS Biomater. Sci. Eng. 8::310721
    [Crossref] [Google Scholar]
  50. 50.
    Anderson NM, Simon MC. 2020.. The tumor microenvironment. . Curr. Biol. 30::R92125
    [Crossref] [Google Scholar]
  51. 51.
    Agrawal B. 2019.. New therapeutic targets for cancer: the interplay between immune and metabolic checkpoints and gut microbiota. . Clin. Transl. Med. 8::e23
    [Crossref] [Google Scholar]
  52. 52.
    de Visser KE, Joyce JA. 2023.. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. . Cancer Cell 41::374403
    [Crossref] [Google Scholar]
  53. 53.
    Man SM, Jenkins BJ. 2022.. Context-dependent functions of pattern recognition receptors in cancer. . Nat. Rev. Cancer 22::397413
    [Crossref] [Google Scholar]
  54. 54.
    Mason J, Öhlund D. 2023.. Key aspects for conception and construction of co-culture models of tumor-stroma interactions. . Front. Bioeng. Biotechnol. 11::1150764
    [Crossref] [Google Scholar]
  55. 55.
    Kim H, Schaniel C. 2018.. Modeling hematological diseases and cancer with patient-specific induced pluripotent stem cells. . Front. Immunol. 9::2243
    [Crossref] [Google Scholar]
  56. 56.
    Li C, Holman JB, Shi Z, Qiu B, Ding W. 2023.. On-chip modeling of tumor evolution: advances, challenges and opportunities. . Mater. Today Bio 21::100724
    [Crossref] [Google Scholar]
  57. 57.
    Ronaldson-Bouchard K, Vunjak-Novakovic G. 2018.. Organs-on-a-chip: a fast track for engineered human tissues in drug development. . Cell Stem Cell 22:(3):31024
    [Crossref] [Google Scholar]
  58. 58.
    Bonnans C, Chou J, Werb Z. 2014.. Remodelling the extracellular matrix in development and disease. . Nat. Rev. Mol. Cell Biol. 15::786801
    [Crossref] [Google Scholar]
  59. 59.
    Langhans SA. 2018.. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. . Front. Pharmacol. 9::6
    [Crossref] [Google Scholar]
  60. 60.
    Henke E, Nandigama R, Ergün S. 2020.. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. . Front. Mol. Biosci. 6::160
    [Crossref] [Google Scholar]
  61. 61.
    Huang J, Zhang L, Wan D, Zhou L, Zheng S, et al. 2021.. Extracellular matrix and its therapeutic potential for cancer treatment. . Signal Transduct. Targeted Ther. 6::153
    [Crossref] [Google Scholar]
  62. 62.
    Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 2021.. 3D in vitro model (r)evolution: unveiling tumor–stroma interactions. . Trends Cancer 7::24964
    [Crossref] [Google Scholar]
  63. 63.
    Gil JF, Moura CS, Silverio V, Gonçalves G, Santos HA. 2023.. Cancer models on chip: paving the way to large-scale trial applications. . Adv. Mater. 35::e2300692
    [Crossref] [Google Scholar]
  64. 64.
    Elango J, Zamora-Ledezma C, Maté-Sánchez de Val JE. 2023.. Natural versus synthetic polymers: How do they communicate with cells for skin regeneration—a review. . J. Compos. Sci. 7::385
    [Crossref] [Google Scholar]
  65. 65.
    Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, et al. 2024.. Biofabrication methods for reconstructing extracellular matrix mimetics. . Bioactive Mater. 31::47596
    [Crossref] [Google Scholar]
  66. 66.
    De Wever O, Pauwels P, De Craene B, Sabbah M, Emami S, et al. 2008.. Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. . Histochem. Cell Biol. 130::48194
    [Crossref] [Google Scholar]
  67. 67.
    Shen K, Luk S, Hicks DF, Elman JS, Bohr S, et al. 2014.. Resolving cancer–stroma interfacial signalling and interventions with micropatterned tumour–stromal assays. . Nat. Commun. 5::5662
    [Crossref] [Google Scholar]
  68. 68.
    Ahmed MAM, Nagelkerke A. 2021.. Current developments in modelling the tumour microenvironment in vitro: incorporation of biochemical and physical gradients. . Organs-on-a-Chip 3::100012
    [Crossref] [Google Scholar]
  69. 69.
    Wang HF, Ran R, Liu Y, Hui Y, Zeng B, et al. 2018.. Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation. . ACS Nano 12::116009
    [Crossref] [Google Scholar]
  70. 70.
    Luo Z, Zhou X, Mandal K, He N, Wennerberg W, et al. 2021.. Reconstructing the tumor architecture into organoids. . Adv. Drug Deliv. Rev. 176::113839
    [Crossref] [Google Scholar]
  71. 71.
    Nia HT, Munn LL, Jain RK. 2020.. Physical traits of cancer. . Science 370:(6516):eaaz0868
    [Crossref] [Google Scholar]
  72. 72.
    Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, et al. 2012.. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. . PNAS 109::151018
    [Crossref] [Google Scholar]
  73. 73.
    Heldin C-H, Rubin K, Pietras K, Östman A. 2004.. High interstitial fluid pressure—an obstacle in cancer therapy. . Nat. Rev. Cancer 4::80613
    [Crossref] [Google Scholar]
  74. 74.
    Begum HM, Oh JM, Kang DS, Yu M, Shen K. 2023.. Physical regulations of cell interactions and metabolism in tumor microenvironments. . In Engineering and Physical Approaches to Cancer, ed. IY Wong, MR Dawson , pp. 13957. Cham:: Springer Int. Publ.
    [Google Scholar]
  75. 75.
    Yan J, Chen Y, Luo M, Hu X, Li H, et al. 2023.. Chronic stress in solid tumor development: from mechanisms to interventions. . J. Biomed. Sci. 30::8
    [Crossref] [Google Scholar]
  76. 76.
    Martín-Asensio A, Dávila S, Cacheux J, Lindstaedt A, Dziadosz A, et al. 2023.. Recapitulating solid stress on tumor on a chip for nanomedicine diffusive transport prediction. . Adv. NanoBiomed Res. 3::2200164
    [Crossref] [Google Scholar]
  77. 77.
    Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, et al. 2017.. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. . Cell Rep. 21::50816
    [Crossref] [Google Scholar]
  78. 78.
    Xiao Y, Kim D, Dura B, Zhang K, Yan R, et al. 2019.. Ex vivo dynamics of human glioblastoma cells in a microvasculature-on-a-chip system correlates with tumor heterogeneity and subtypes. . Adv. Sci. 6::1801531
    [Crossref] [Google Scholar]
  79. 79.
    Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. 2015.. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. . Biosens. Bioelectron. 63::21831
    [Crossref] [Google Scholar]
  80. 80.
    Schneider G, Schmidt-Supprian M, Rad R, Saur D. 2017.. Tissue-specific tumorigenesis: context matters. . Nat. Rev. Cancer 17::23953
    [Crossref] [Google Scholar]
  81. 81.
    Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, et al. 2020.. Structural cells are key regulators of organ-specific immune responses. . Nature 583::296302
    [Crossref] [Google Scholar]
  82. 82.
    Marcu R, Choi YJ, Xue J, Fortin CL, Wang Y, et al. 2018.. Human organ-specific endothelial cell heterogeneity. . iScience 4::2035
    [Crossref] [Google Scholar]
  83. 83.
    Deasy SK, Erez N. 2022.. A glitch in the matrix: organ-specific matrisomes in metastatic niches. . Trends Cell Biol. 32::11023
    [Crossref] [Google Scholar]
  84. 84.
    Lee CZW, Ginhoux F. 2022.. Biology of resident tissue macrophages. . Development 149::dev200270
    [Crossref] [Google Scholar]
  85. 85.
    Schenkel JM, Masopust D. 2014.. Tissue-resident memory T cells. . Immunity 41::88697
    [Crossref] [Google Scholar]
  86. 86.
    Siegel RL, Miller KD, Wagle NS, Jemal A. 2023.. Cancer statistics, 2023. . CA Cancer J. Clin. 73::1748
    [Crossref] [Google Scholar]
  87. 87.
    Paek J, Park SE, Lu Q, Park K-T, Cho M, et al. 2019.. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. . ACS Nano 13::762743
    [Crossref] [Google Scholar]
  88. 88.
    Liu W, Song J, Du X, Zhou Y, Li Y, et al. 2019.. AKR1B10 (aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. . Acta Biomater. 91::195208
    [Crossref] [Google Scholar]
  89. 89.
    Kim Y, Ko J, Shin N, Park S, Lee S-R, et al. 2022.. All-in-one microfluidic design to integrate vascularized tumor spheroid into high-throughput platform. . Biotechnol. Bioeng. 119::367893
    [Crossref] [Google Scholar]
  90. 90.
    Shen P, Jia Y, Zhou W, Zheng W, Wu Y, et al. 2023.. A biomimetic liver cancer on-a-chip reveals a critical role of LIPOCALIN-2 in promoting hepatocellular carcinoma progression. . Acta Pharm. Sin. B 13::462137
    [Crossref] [Google Scholar]
  91. 91.
    Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, et al. 2018.. Organoid models of human liver cancers derived from tumor needle biopsies. . Cell Rep. 24::136376
    [Crossref] [Google Scholar]
  92. 92.
    Baek S, Ha H-S, Park JS, Cho MJ, Kim H-S, et al. 2024.. Chip collection of hepatocellular carcinoma based on O2 heterogeneity from patient tissue. . Nat. Commun. 15::5117
    [Crossref] [Google Scholar]
  93. 93.
    Miller AJ, Spence JR. 2017.. In vitro models to study human lung development, disease and homeostasis. . Physiology 32::24660
    [Crossref] [Google Scholar]
  94. 94.
    Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, et al. 2021.. Tumor-on-chip modeling of organ-specific cancer and metastasis. . Adv. Drug Deliv. Rev. 175::113798
    [Crossref] [Google Scholar]
  95. 95.
    Waters CM, Roan E, Navajas D. 2012.. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. . Compr. Physiol. 2::129
    [Crossref] [Google Scholar]
  96. 96.
    Mirhadi S, Tam S, Li Q, Moghal N, Pham N-A, et al. 2022.. Integrative analysis of non-small cell lung cancer patient-derived xenografts identifies distinct proteotypes associated with patient outcomes. . Nat. Commun. 13::1811
    [Crossref] [Google Scholar]
  97. 97.
    Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, et al. 2022.. The 2021 WHO Classification of Lung Tumors: impact of advances since 2015. . J. Thorac. Oncol. 17::36287
    [Crossref] [Google Scholar]
  98. 98.
    Herbst RS, Heymach JV, Lippman SM. 2008.. Lung cancer. . N. Engl. J. Med. 359::136780
    [Crossref] [Google Scholar]
  99. 99.
    Larsen JE, Minna JD. 2011.. Molecular biology of lung cancer: clinical implications. . Clin. Chest Med. 32::70340
    [Crossref] [Google Scholar]
  100. 100.
    Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, et al. 2019.. The lung microenvironment: an important regulator of tumour growth and metastasis. . Nat. Rev. Cancer 19::931
    [Crossref] [Google Scholar]
  101. 101.
    Alexandre J, Hu Y, Lu W, Pelicano H, Huang P. 2007.. Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. . Cancer Res. 67::351217
    [Crossref] [Google Scholar]
  102. 102.
    Trefts E, Gannon M, Wasserman DH. 2017.. The liver. . Curr. Biol. 27::R114751
    [Crossref] [Google Scholar]
  103. 103.
    Ben-Moshe S, Itzkovitz S. 2019.. Spatial heterogeneity in the mammalian liver. . Nat. Rev. Gastroenterol. Hepatol. 16::395410
    [Crossref] [Google Scholar]
  104. 104.
    Grisham JW. 2009.. Organizational principles of the liver. . In The Liver: Biology and Pathobiology, 5th ed., ed. IM Arias , pp. 115, Hoboken, NJ:: Wiley
    [Google Scholar]
  105. 105.
    Farazi PA, DePinho RA. 2006.. Hepatocellular carcinoma pathogenesis: from genes to environment. . Nat. Rev. Cancer 6::67487
    [Crossref] [Google Scholar]
  106. 106.
    Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, et al. 2021.. Hepatocellular carcinoma. . Nat. Rev. Dis. Primers 7::6
    [Crossref] [Google Scholar]
  107. 107.
    Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, et al. 2018.. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. . Hepatology 68::72350
    [Crossref] [Google Scholar]
  108. 108.
    Barry AE, Baldeosingh R, Lamm R, Patel K, Zhang K, et al. 2020.. Hepatic stellate cells and hepatocarcinogenesis. . Front. Cell Dev. Biol. 8::709
    [Crossref] [Google Scholar]
  109. 109.
    Adjei-Sowah EA, O'Connor SA, Veldhuizen J, Lo Cascio C, Plaisier C, et al. 2022.. Investigating the interactions of glioma stem cells in the perivascular niche at single-cell resolution using a microfluidic tumor microenvironment model. . Adv. Sci. 9::2201436
    [Crossref] [Google Scholar]
  110. 110.
    Seo S, Nah S-Y, Lee K, Choi N, Kim HN. 2022.. Triculture model of in vitro BBB and its application to study BBB-associated chemosensitivity and drug delivery in glioblastoma. . Adv. Funct. Mater. 32::2106860
    [Crossref] [Google Scholar]
  111. 111.
    Ozturk MS, Lee VK, Zou H, Friedel RH, Intes X, Dai G. 2020.. High-resolution tomographic analysis of in vitro 3D glioblastoma tumor model under long-term drug treatment. . Sci. Adv. 6::eaay7513
    [Crossref] [Google Scholar]
  112. 112.
    Komez A, Buyuksungur A, Antmen E, Swieszkowski W, Hasirci N, Hasirci V. 2020.. A two-compartment bone tumor model to investigate interactions between healthy and tumor cells. . Biomed. Mater. 15::035007
    [Crossref] [Google Scholar]
  113. 113.
    Paindelli C, Navone N, Logothetis CJ, Friedl P, Dondossola E. 2019.. Engineered bone for probing organotypic growth and therapy response of prostate cancer tumoroids in vitro. . Biomaterials 197::296304
    [Crossref] [Google Scholar]
  114. 114.
    Bock N, Kryza T, Shokoohmand A, Rohl J, Ravichandran A, et al. 2021.. In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. . Sci. Adv. 7::eabg2564
    [Crossref] [Google Scholar]
  115. 115.
    Villasante A, Marturano-Kruik A, Robinson ST, Liu Z, Guo XE, Vunjak-Novakovic G. 2017.. Tissue-engineered model of human osteolytic bone tumor. . Tissue Eng. Part C Methods 23::98107
    [Crossref] [Google Scholar]
  116. 116.
    Marturano-Kruik A, Nava MM, Yeager K, Chramiec A, Hao L, et al. 2018.. Human bone perivascular niche-on-a-chip for studying metastatic colonization. . PNAS 115::125661
    [Crossref] [Google Scholar]
  117. 117.
    Stiles J, Jernigan TL. 2010.. The basics of brain development. . Neuropsychol. Rev. 20::32748
    [Crossref] [Google Scholar]
  118. 118.
    von Bartheld CS. 2018.. Myths and truths about the cellular composition of the human brain: a review of influential concepts. . J. Chem. Neuroanat. 93::215
    [Crossref] [Google Scholar]
  119. 119.
    Allen NJ, Lyons DA. 2018.. Glia as architects of central nervous system formation and function. . Science 362::18185
    [Crossref] [Google Scholar]
  120. 120.
    Hajal C, Roi BL, Kamm RD, Maoz BM. 2021.. Biology and models of the blood–brain barrier. . Annu. Rev. Biomed. Eng. 23::35984
    [Crossref] [Google Scholar]
  121. 121.
    Reinhard J, Brösicke N, Theocharidis U, Faissner A. 2016.. The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. . Int. J. Biochem. Cell Biol. 81::17483
    [Crossref] [Google Scholar]
  122. 122.
    Venkatesh Humsa S, Johung Tessa B, Caretti V, Noll A, Tang Y, et al. 2015.. Neuronal activity promotes glioma growth through neuroligin-3 secretion. . Cell 161::80316
    [Crossref] [Google Scholar]
  123. 123.
    Steeg PS. 2021.. The blood–tumour barrier in cancer biology and therapy. . Nat. Rev. Clin. Oncol. 18::696714
    [Crossref] [Google Scholar]
  124. 124.
    Bao X, Wu J, Xie Y, Kim S, Michelhaugh S, et al. 2020.. Protein expression and functional relevance of efflux and uptake drug transporters at the blood–brain barrier of human brain and glioblastoma. . Clin. Pharmacol. Ther. 107::111627
    [Crossref] [Google Scholar]
  125. 125.
    Quail DF, Joyce JA. 2017.. The microenvironmental landscape of brain tumors. . Cancer Cell 31::32641
    [Crossref] [Google Scholar]
  126. 126.
    Tao W, Zhang A, Zhai K, Huang Z, Huang H, et al. 2020.. SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expression in glioma stem cells. . EMBO Mol. Med. 12::e12291
    [Crossref] [Google Scholar]
  127. 127.
    Cornelison RC, Yuan JX, Tate KM, Petrosky A, Beeghly GF, et al. 2022.. A patient-designed tissue-engineered model of the infiltrative glioblastoma microenvironment. . NPJ Precision Oncol. 6::54
    [Crossref] [Google Scholar]
  128. 128.
    Tang M, Xie Q, Gimple RC, Zhong Z, Tam T, et al. 2020.. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. . Cell Res. 30::83353
    [Crossref] [Google Scholar]
  129. 129.
    Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. 2015.. Biology of bone tissue: structure, function, and factors that influence bone cells. . BioMed. Res. Int. 2015::421746
    [Crossref] [Google Scholar]
  130. 130.
    Clarke B. 2008.. Normal bone anatomy and physiology. . Clin. J. Am. Soc. Nephrol. 3:(Suppl. 3):S13139
    [Crossref] [Google Scholar]
  131. 131.
    Mercier FE, Ragu C, Scadden DT. 2012.. The bone marrow at the crossroads of blood and immunity. . Nat. Rev. Immunol. 12::4960
    [Crossref] [Google Scholar]
  132. 132.
    Morrison SJ, Scadden DT. 2014.. The bone marrow niche for haematopoietic stem cells. . Nature 505::32734
    [Crossref] [Google Scholar]
  133. 133.
    Ascenzi M-G, Roe AK. 2012.. The osteon: the micromechanical unit of compact bone. . Front. Biosci. 17::155181
    [Crossref] [Google Scholar]
  134. 134.
    Liu Y, Luo D, Wang T. 2016.. Hierarchical structures of bone and bioinspired bone tissue engineering. . Small 12::461132
    [Crossref] [Google Scholar]
  135. 135.
    Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, et al. 2012.. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. . Acta Biomater. 8::387687
    [Crossref] [Google Scholar]
  136. 136.
    Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. 2008.. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. . Chem. Rev. 108::475483
    [Crossref] [Google Scholar]
  137. 137.
    Eriksen EF. 2010.. Cellular mechanisms of bone remodeling. . Rev. Endocr. Metab. Disord. 11::21927
    [Crossref] [Google Scholar]
  138. 138.
    Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, et al. 2022.. Osteosarcoma. . Nat. Rev. Dis. Primers 8::77
    [Crossref] [Google Scholar]
  139. 139.
    Odri GA, Tchicaya-Bouanga J, Yoon DJY, Modrowski D. 2022.. Metastatic progression of osteosarcomas: a review of current knowledge of environmental versus oncogenic drivers. . Cancers 14::360
    [Crossref] [Google Scholar]
  140. 140.
    Lee J, Cuddihy MJ, Kotov NA. 2008.. Three-dimensional cell culture matrices: state of the art. . Tissue Eng. Part B Rev. 14::6186
    [Crossref] [Google Scholar]
  141. 141.
    Offeddu GS, Hajal C, Foley CR, Wan Z, Ibrahim L, et al. 2021.. The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination. . Commun. Biol. 4::255
    [Crossref] [Google Scholar]
  142. 142.
    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, et al. 2013.. The perivascular niche regulates breast tumour dormancy. . Nat. Cell Biol. 15::80717
    [Crossref] [Google Scholar]
  143. 143.
    Fairfield H, Falank C, Farrell M, Vary C, Boucher JM, et al. 2019.. Development of a 3D bone marrow adipose tissue model. . Bone 118::7788
    [Crossref] [Google Scholar]
  144. 144.
    Chou DB, Frismantas V, Milton Y, David R, Pop-Damkov P, et al. 2020.. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. . Nat. Biomed. Eng. 4::394406
    [Crossref] [Google Scholar]
  145. 145.
    Glaser DE, Curtis MB, Sariano PA, Rollins ZA, Shergill BS, et al. 2022.. Organ-on-a-chip model of vascularized human bone marrow niches. . Biomaterials 280::121245
    [Crossref] [Google Scholar]
  146. 146.
    Ma C, Witkowski MT, Harris J, Dolgalev I, Sreeram S, et al. 2020.. Leukemia-on-a-chip: dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. . Sci. Adv. 6::eaba5536
    [Crossref] [Google Scholar]
  147. 147.
    Gonzalez Diaz EC, Tai M, Monette CEF, Wu JY, Yang F. 2023.. Spatially patterned 3D model mimics key features of cancer metastasis to bone. . Biomaterials 299::122163
    [Crossref] [Google Scholar]
  148. 148.
    Choudhary S, Ramasundaram P, Dziopa E, Mannion C, Kissin Y, et al. 2018.. Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer. . Sci. Rep. 8::17975
    [Crossref] [Google Scholar]
  149. 149.
    Park Y, Cheong E, Kwak JG, Carpenter R, Shim JH, Lee J. 2021.. Trabecular bone organoid model for studying the regulation of localized bone remodeling. . Sci. Adv. 7::eabd6495
    [Crossref] [Google Scholar]
  150. 150.
    Park Y, Sato T, Lee J. 2023.. Functional and analytical recapitulation of osteoclast biology on demineralized bone paper. . Nat. Commun. 14::8092
    [Crossref] [Google Scholar]
  151. 151.
    Kwak JG, Lee J. 2023.. Bone marrow adipocytes contribute to tumor microenvironment-driven chemoresistance via sequestration of doxorubicin. . Cancers 15::2737
    [Crossref] [Google Scholar]
  152. 152.
    Bonewald LF. 2011.. The amazing osteocyte. . J. Bone Miner. Res. 26::22938
    [Crossref] [Google Scholar]
  153. 153.
    Yoon H, Park Y, Kwak J-G, Lee J. 2024.. Collagen structures of demineralized bone paper direct mineral metabolism. . JBMR Plus 8::ziae080
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-103522
Loading
/content/journals/10.1146/annurev-bioeng-110222-103522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error