1932

Abstract

The host-to-host transmission of respiratory infectious diseases is fundamentally enabled by the interaction of pathogens with a variety of fluids (gas or liquid) that shape pathogen encapsulation and emission, transport and persistence in the environment, and new host invasion and infection. Deciphering the mechanisms and fluid properties that govern and promote these steps of pathogen transmission will enable better risk assessment and infection control strategies, and may reveal previously underappreciated ways in which the pathogens might actually adapt to or manipulate the physical and chemical characteristics of these carrier fluids to benefit their own transmission. In this article, I review our current understanding of the mechanisms shaping the fluid dynamics of respiratory infectious diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-111820-025044
2021-07-13
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-111820-025044.html?itemId=/content/journals/10.1146/annurev-bioeng-111820-025044&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20:533–34
    [Google Scholar]
  2. 2. 
    Blanton L, Dugan V, Elal A, Alabi N, Barnes J et al. 2019. Update: influenza activity—United States, September 30, 2018–February 2, 2019. Morb. Mortal. Wkly. Rep. 68:125–34
    [Google Scholar]
  3. 3. 
    Browne C, Smith R, Bourouiba L. 2015. From regional pulse vaccination to global disease eradication: insights from a mathematical model of poliomyelitis. J. Math. Biol. 71:215–53
    [Google Scholar]
  4. 4. 
    CDC (Cent. Dis. Control Prev.) 2017. Severe acute respiratory syndrome (SARS) Inf. Sheet, CDC Washington, DC: https://www.cdc.gov/sars/index.html
    [Google Scholar]
  5. 5. 
    CDC 2019. Middle East respiratory syndrome (MERS)—transmission Inf. Sheet, CDC Washington, DC: http://www.cdc.gov/coronavirus/mers/about/transmission.html
    [Google Scholar]
  6. 6. 
    Shrestha S, Swerdlow D, Borse R, Prabhu V, Finelli L et al. 2011. Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009–April 2010). Clin. Infect. Dis. 52:75–82
    [Google Scholar]
  7. 7. 
    WHO (World Health Organ.) 2018. Global Health Observatory (GHO) data—tuberculosis (TB) Inf. Sheet, WHO Geneva, Switz: https://www.who.int/gho/tb/en/
    [Google Scholar]
  8. 8. 
    Lancet Comm. Tuberc 2019. Building a tuberculosis-free world. Lancet 393:1331–84
    [Google Scholar]
  9. 9. 
    Nathan C. 2009. Taming tuberculosis: a challenge for science and society. Cell Host Microbe 5:220–24
    [Google Scholar]
  10. 10. 
    CDC 2017. Seasonal flu death estimate increases worldwide Press Release, CDC Washington, DC: https://www.cdc.gov/media/releases/2017/p1213-flu-death-estimate.html
    [Google Scholar]
  11. 11. 
    Helmerhorst E, Oppenheim F. 2007. Saliva: a dynamic proteome. J. Dent. Res. 86:680–93
    [Google Scholar]
  12. 12. 
    Schipper R, Silletti E, Vingerhoeds M. 2007. Saliva as research material: biochemical, physicochemical and practical aspects. Arch. Oral Biol. 52:1114–35
    [Google Scholar]
  13. 13. 
    Beeley J. 1993. Fascinating families of proteins: electrophoresis of human saliva. Biochem. Soc. Trans. 21:133–38
    [Google Scholar]
  14. 14. 
    Haward S, Odell J, Berry M, Hall T. 2011. Extensional rheology of human saliva. Rheol. Acta 50:869–79
    [Google Scholar]
  15. 15. 
    Kleinstreuer C, Zhang Z. 2010. Airflow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech. 42:301–34
    [Google Scholar]
  16. 16. 
    Pedley T. 1977. Pulmonary fluid dynamics. Annu. Rev. Fluid Mech. 9:229–74
    [Google Scholar]
  17. 17. 
    Bourouiba L. 2021. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53:473–508
    [Google Scholar]
  18. 18. 
    Pasteur L. 1861. Mémoire sur les corpuscules organisés qui existent dans l'atmosphère; examen de la doctrine de générations spontanées. Ann. Sci. Nat. 16:5–98
    [Google Scholar]
  19. 19. 
    Koch R. 1876. Untersuchungen über Bakterien. V. Die Aetiologie der Milzbrandkrankheit, begründet auf der Entwicklungsgeschichte des Bacillus anthracis. Beitr. Biol. Pflanz. 2:277–310
    [Google Scholar]
  20. 20. 
    SARS Comm 2006. SARS Commission Final Report, Vol. 3: The Spring of Fear Ottawa, Can: SARS Comm http://www.archives.gov.on.ca/en/e_records/sars/report/index.html
    [Google Scholar]
  21. 21. 
    Bourouiba L. 2020. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA 323:1837–38
    [Google Scholar]
  22. 22. 
    Morawska L, Cao J. 2020. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139:105730
    [Google Scholar]
  23. 23. 
    Flügge C. 1897. Ueber die nächsten Aufgaben zur Erforschung der Verbreitungsweise der Phthise. Dtsch. Med. Wochenschr. 23:665–68
    [Google Scholar]
  24. 24. 
    Hirst J 1995. Bioaerosols: introduction, retrospect and prospect. Bioaerosols Handbook C Wathes, CS Cox 5–14 Boca Raton, FL: CRC
    [Google Scholar]
  25. 25. 
    Flügge C. 1899. Die Verbreitung der Phthise durch staubförmiges Sputum und durch beim Husten verspritzte Tröpfchen. Z. Hyg. Infekt. 30:107–24
    [Google Scholar]
  26. 26. 
    Flügge C. 1905. Ueber Luftverunreinigung, Wärmestauung und Lüftung in geschlossenen Räumen. Z. Hyg. Infekt. 49:363–87
    [Google Scholar]
  27. 27. 
    Flügge C. 1908. Die Verbreitungsweise und Bekämpfung der Tuberkulose aufgrund experimenteller Untersuchungen im hygienischen Institut der Kgl. Universität Breslau 1897–1908 Leipzig, Ger: Veit
    [Google Scholar]
  28. 28. 
    Flügge C. 1897. Ueber Luftinfection. Z. Hyg. Infekt. 25:179–224
    [Google Scholar]
  29. 29. 
    Laschtschenko P. 1899. Ueber Luftinfektion durch beim Husten, Niessen und Sprechen verspritzte Tröpfchen. Z. Hyg. Infekt. 30:125–38
    [Google Scholar]
  30. 30. 
    Heymann B. 1899. Ueber die Ausstreuung infectiöser Tröpfchen beim Husten der Phthisker. Z. Hyg. Infekt. 30:139–62
    [Google Scholar]
  31. 31. 
    Ziesché H. 1907. Über die quantitative Verhältnisse der Tröpfchenausbreitung durch hustende Phthisker. Z. Hyg. Infekt. 50:50–82
    [Google Scholar]
  32. 32. 
    Langmuir A. 1980. Changing concepts of acute contagious diseases: a reconsideration of classic epidemiologic theories. Ann. N. Y. Acad. Sci. 353:35–44
    [Google Scholar]
  33. 33. 
    Wells W. 1955. Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infection Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  34. 34. 
    Verreault D, Moineau S, Duchaine C. 2008. Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 72:413–44
    [Google Scholar]
  35. 35. 
    Wells W. 1934. On air-born infection. Study II. Droplet and droplet nuclei. Am. J. Epidemiol. 20:611–18
    [Google Scholar]
  36. 36. 
    Hare R. 1964. The transmission of respiratory infections. Proc. R. Soc. Lond. 57:221–30
    [Google Scholar]
  37. 37. 
    Macher J 1999. Bioaerosols: Assessment and Control Boca Raton, FL: CRC. , 3rd ed..
    [Google Scholar]
  38. 38. 
    Rom W, Garay S. 2017. Tuberculosis Philadelphia: Lippincott, Williams & Wilkins. , 2nd ed..
    [Google Scholar]
  39. 39. 
    Bourouiba L, Dehandschoewercker E, Bush J. 2014. Violent expiratory events: on coughing and sneezing. J. Fluid Mech. 745:537–63
    [Google Scholar]
  40. 40. 
    Bourouiba L. 2016. A sneeze. N. Engl. J. Med. 375:e15
    [Google Scholar]
  41. 41. 
    Jones N, Qureshi Z, Temple R, Larwood J, Greenhalgh T et al. 2020. Two metres or one: What is the evidence for physical distancing in COVID-19?. BMJ 370:m3223
    [Google Scholar]
  42. 42. 
    Abkarian M, Mendez S, Xue N, Yang F, Stone H 2020. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. PNAS 117:412523745
    [Google Scholar]
  43. 43. 
    Chong K, Ng C, Hori N, Yang R, Verzicco R et al. 2020. Extended lifetime of respiratory droplets in a turbulent vapour puff and its implications on airborne disease transmission. Phys. Rev. Lett 126:034502
    [Google Scholar]
  44. 44. 
    Morton BR, Taylor GI, Turner JS. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. A 234:1–23
    [Google Scholar]
  45. 45. 
    Scorer R. 1957. Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech. 2:583–94
    [Google Scholar]
  46. 46. 
    von Weismayr A. 1898. Zur Frage der Verbreitung der Tuberkulose. Wien. Klin. Wochenschr. 46:1039–45
    [Google Scholar]
  47. 47. 
    Clark R, de Calcina-Goff M. 2009. Some aspects of the airborne transmission of infection. J. R. Soc. Interface 6:Suppl. 6S767–82
    [Google Scholar]
  48. 48. 
    Richardson L. 1926. Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. Lond. 110:709–37
    [Google Scholar]
  49. 49. 
    Balachandar S, Zaleski S, Soldati A, Ahmadi G, Bourouiba L. 2020. Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Int. J. Multiphase Flow 132:103439
    [Google Scholar]
  50. 50. 
    Okubo A. 1971. Oceanic diffusion diagrams. Deep-Sea Res 18:789–802
    [Google Scholar]
  51. 51. 
    Bahl P, Bhattacharjee S, de Silva A, Doolan C, MacIntyre C. 2020. Face coverings and mask to minimise droplet dispersion and aerosolisation: a video case study. Thorax 75:1024–25
    [Google Scholar]
  52. 52. 
    Linden P. 1999. The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31:201–38
    [Google Scholar]
  53. 53. 
    Bhagat R, Davies Wykes M, Dalziel S, Linden P. 2020. Effects of ventilation on the indoor spread of COVID-19. J. Fluid Mech. 903:F1
    [Google Scholar]
  54. 54. 
    ASHRAE Standing Stand. Proj. Com 2019. ANSI/ASHRAE Standard 62.1-2019: ventilation for acceptable indoor air quality Tech. Rep., Am. Soc. Heat. Refrig. Air-Cond. Eng. Atlanta, GA:
    [Google Scholar]
  55. 55. 
    Tang J, Liebner T, Craven B, Settles G. 2009. A Schlieren optical study of the human cough with and without wearing masks for aerosol infection control. J. R. Soc. Interface 6:S727–36
    [Google Scholar]
  56. 56. 
    Morey P. 1994. Suggested guidance on prevention of microbial contamination for the next revision of ASHRAE Standard 62. Proceedings of IAQ'94: Engineering Indoor Environments139–48 Atlanta, GA: Am. Soc. Heat., Refrig. Air-Cond. Eng.
    [Google Scholar]
  57. 57. 
    Chu D, Akl E, Duda S, Solo K, Yaacoub S et al. 2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 395:P1973–87
    [Google Scholar]
  58. 58. 
    Liu W, Tang F, Fang L, De Vlas S, Ma H et al. 2009. Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study. Trop. Med. Int. Health 14:52–59
    [Google Scholar]
  59. 59. 
    Offeddu V, Yung C, Low M, Tam C. 2017. Effectiveness of masks and respirators against respiratory infections in healthcare workers: a systematic review and meta-analysis. Clin. Inf. Dis. 65:1934–42
    [Google Scholar]
  60. 60. 
    Wang Y, Tian H, Zhang L, Zhang M, Guo D et al. 2020. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob. Health 5:e002794
    [Google Scholar]
  61. 61. 
    Mao N 2017. Nonwoven fabric filters. Fibrous Filter Media P Brown, C Cox 133–71 Cambridge, UK: Woodhead
    [Google Scholar]
  62. 62. 
    Gao S, Kim J, Yermakov M, Elmashae Y, He X et al. 2016. Performance of N95 FFRs against combustion and NaCl aerosols in dry and moderately humid air: manikin-based study. Ann. Occup. Hyg. 60:748–60
    [Google Scholar]
  63. 63. 
    Mahdavi A, Haghighat F, Bahloul A, Brochot C, Ostiguy C. 2015. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows. Ann. Occup. Hyg. 59:629–40
    [Google Scholar]
  64. 64. 
    Ramirez J, O'Shaughnessy P. 2016. The effect of simulated air conditions on N95 filtering facepiece respirators performance. J. Occup. Environ. Hyg. 13:491–500
    [Google Scholar]
  65. 65. 
    Reponen C, McKay R, Haruta H, Sekar P. 2010. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow. Ann. Occup. Hyg. 54:68–77
    [Google Scholar]
  66. 66. 
    Rengasamy S, Eimer B, Shaffer R. 2010. Simple respiratory protection—evaluation of the filtration performance of cloth masks and common fabric materials against 20–1000 nm size particles. Ann. Occup. Hyg. 54:789–98
    [Google Scholar]
  67. 67. 
    Konda A, Prakash A, Moss G, Schmoldt G, Guha S. 2020. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 14:6339–47
    [Google Scholar]
  68. 68. 
    Deleted in proof
  69. 69. 
    Chao C, Wan M, Morawska L, Johnson G, Ristovski Z et al. 2009. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Aerosol Sci 40:122–33
    [Google Scholar]
  70. 70. 
    Han Z, Weng W, Huang Q. 2013. Characterizations of particle size distribution of the droplets exhaled by sneeze. J. R. Soc. 10:20130560
    [Google Scholar]
  71. 71. 
    Deleted in proof
  72. 72. 
    Deleted in proof
  73. 73. 
    Zayas G, Chiang M, Wong E, MacDonald F, Lange C et al. 2012. Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management. BMC Pulm. Med. 12:11
    [Google Scholar]
  74. 74. 
    Lee J, Yoo D, Ryu S, Ham S, Lee K et al. 2019. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection. Aerosol Air Qual. Res. 19:840–53
    [Google Scholar]
  75. 75. 
    Yang S, Lee GWM, Chen CM, Wu CC, Yu KP. 2007. The size and concentration of droplets generated by coughing in human subjects. J. Aerosol Med. 20:484–94
    [Google Scholar]
  76. 76. 
    Asadi S, Wexler A, Cappa C, Barreda S, Bouvier N et al. 2019. Aerosol emission and superemission during human speech increases with voice loudness. Sci. Rep. 9:2348
    [Google Scholar]
  77. 77. 
    Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K et al. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40:256–69
    [Google Scholar]
  78. 78. 
    Duguid J. 1945. The numbers and the sites of origin of the droplets expelled during expiratory activities. Edinb. Med. J. 52:385–401
    [Google Scholar]
  79. 79. 
    Johnson G, Morawska L, Ristovski Z, Hargreaves M, Mengersen K et al. 2011. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42:839–51
    [Google Scholar]
  80. 80. 
    Deleted in proof
  81. 81. 
    Cheng Y, Wang C, You S, Hsieh N, Chen W et al. 2016. Assessing coughing-induced influenza droplet transmission and implications for infection risk control. Epidemiol. Infect. 144:333–45
    [Google Scholar]
  82. 82. 
    Deleted in proof
  83. 83. 
    Fabian P, McDevitt J, DeHaan W, Fung R, Cowling B et al. 2008. Influenza virus in human exhaled breath: an observational study. PLOS ONE 3:e2691
    [Google Scholar]
  84. 84. 
    Holmgren H, Gerth E, Ljungström E, Larsson P, Almstrand A et al. 2013. Effects of breath holding at low and high lung volumes on amount of exhaled particles. Respir. Physiol. Neurobiol. 185:228–34
    [Google Scholar]
  85. 85. 
    Lindsley W, Pearce T, Hudnall J, Davis K, Davis S et al. 2012. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. J. Occup. Environ. Hyg. 9:443–49
    [Google Scholar]
  86. 86. 
    Papineni RS, Rosenthal FS. 1997. The size distribution of droplets in the exhaled breath of healthy human subjects. J. Aerosol Med. 10:105–16
    [Google Scholar]
  87. 87. 
    Deleted in proof
  88. 88. 
    Deleted in proof
  89. 89. 
    Gerone P, Couch R, Keefer G, Douglas R, Derrenbacher E et al. 1966. Assessment of experimental and natural viral aerosols. Bacteriol. Rev. 30:576–84
    [Google Scholar]
  90. 90. 
    Hersen G, Moularat S, Robine E, Gehin E, Corbet S et al. 2008. Impact of health on particle size of exhaled respiratory aerosols: case-control study. Clean 36:572–77
    [Google Scholar]
  91. 91. 
    Loudon R, Roberts R. 1967. Droplet expulsion from the respiratory tract. Am. Rev. Respir. Dis. 95:435–42
    [Google Scholar]
  92. 92. 
    Johnson G, Morawska L, Ristovski Z, Hargreaves M, Mengersen K et al. 2011. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42:839–51
    [Google Scholar]
  93. 93. 
    Xie X, Li Y, Sun H, Liu L. 2009. Exhaled droplets due to talking and coughing. J. R. Soc. Interface 6:Suppl. 6S703–14
    [Google Scholar]
  94. 94. 
    Baron P, Willeke K. 2001. Aerosol Measurement: Principles, Techniques, and Applications New York: Wiley. , 2nd ed..
    [Google Scholar]
  95. 95. 
    Black D, McQuay M, Bonin M. 1996. Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications. Prog. Energy Combust. Sci. 22:267–306
    [Google Scholar]
  96. 96. 
    TSI 2012. Aerodynamic Particle Sizer model 3321: theory of operation Publ. P/N 5001469 Rev. A TSI Shoreview, MN: https://www.tsi.com/getmedia/26cd9e57-9050-4a57-a442-3ec3a4338808/3321%20Operation%20brochure%20A4-5001469_WEB?ext=.pdf
    [Google Scholar]
  97. 97. 
    Alsved M, Bourouiba L, Duchaine C, Löndahl J, Marr L et al. 2020. Natural sources and experimental generation of bioaerosols: challenges and perspectives. Aerosol Sci. Technol. 54:547–71
    [Google Scholar]
  98. 98. 
    Zanin M, Baviskar P, Webster R, Webby R. 2016. The interaction between respiratory pathogens and mucus. Cell Host Microbe 19:159–68
    [Google Scholar]
  99. 99. 
    Ruhl C, Pasko B, Khan H, Kindt L, Stamm C et al. 2020. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. Cell 181:293305.e11
    [Google Scholar]
  100. 100. 
    Rubin B. 2010. The role of mucus in cough research. Lung 188:69–72
    [Google Scholar]
  101. 101. 
    Villermaux E. 2007. Fragmentation. Annu. Rev. Fluid Mech. 39:419–46
    [Google Scholar]
  102. 102. 
    Villermaux E. 2020. Fragmentation versus cohesion. J. Fluid Mech. 898:P1
    [Google Scholar]
  103. 103. 
    Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:036601
    [Google Scholar]
  104. 104. 
    Lefebvre AH, McDonell VG. 2017. Atomization and Sprays Boca Raton, FL: CRC. , 2nd ed..
    [Google Scholar]
  105. 105. 
    Bourouiba L. 2013. Understanding the transmission of H5N1. CAB Rev 8:1–8
    [Google Scholar]
  106. 106. 
    Grotberg JB. 2001. Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng. 3:421–57
    [Google Scholar]
  107. 107. 
    Wang Y, Bourouiba L. 2018. Non-isolated drop impact on surfaces. J. Fluid Mech. 835:24–44
    [Google Scholar]
  108. 108. 
    Wang Y, Bourouiba L. 2018. Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech. 848:946–67
    [Google Scholar]
  109. 109. 
    Scharfman BE, Techet AH, Bush JWM, Bourouiba L. 2016. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids 57:24
    [Google Scholar]
  110. 110. 
    Déchelette A, Babinsky E, Sojka PE. 2011. Drop size distributions. See Ref. 123 479–95
  111. 111. 
    Clanet C, Villermaux E. 2002. Life of a smooth liquid sheet. J. Fluid Mech. 462:307–40
    [Google Scholar]
  112. 112. 
    Bremond N, Villermaux E. 2006. Atomization by jet impact. J. Fluid Mech. 549:273–306
    [Google Scholar]
  113. 113. 
    Wang Y, Bourouiba L. 2017. Drop impact on small surfaces: thickness and velocity profiles of the expanding sheet in the air. J. Fluid Mech. 814:510–34
    [Google Scholar]
  114. 114. 
    Walls P, Bird J, Bourouiba L. 2014. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them. Integr. Comp. Biol. 54:1014–25
    [Google Scholar]
  115. 115. 
    Poulain S, Villermaux E, Bourouiba L. 2018. Aging and burst of surface bubbles. J. Fluid Mech. 851:636–71
    [Google Scholar]
  116. 116. 
    Scharfman B, Techet A. 2012. Bag instabilities. Phys. Fluids 24:091112
    [Google Scholar]
  117. 117. 
    Bourouiba L, Bush JWM 2013. Drops and bubbles in the environment. Handbook of Environmental Fluid Dynamics, Vol. 1: Overview and Fundamentals HJ Fernando 427–39 Boca Raton, FL: CRC
    [Google Scholar]
  118. 118. 
    Poulain S, Bourouiba L. 2018. Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces. Phys. Rev. Lett. 121:204502
    [Google Scholar]
  119. 119. 
    Néel B, Villermaux E. 2018. The spontaneous puncture of thick liquid films. J. Fluid Mech. 838:192–221
    [Google Scholar]
  120. 120. 
    Culick F. 1960. Comments on a ruptured soap film. J. Appl. Phys. 31:1128–29
    [Google Scholar]
  121. 121. 
    Clasen C, Eggers J, Fontelos M, Li J, McKinley G 2006. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556:283–308
    [Google Scholar]
  122. 122. 
    Wagner C, Bourouiba L, McKinley G. 2015. An analytic solution for capillary thinning and breakup of FENE-P fluids. J. Non-Newton. Fluid Mech. 218:53–61
    [Google Scholar]
  123. 123. 
    Ashgriz N 2011. Handbook of Atomization: Theory and Application New York: Springer
    [Google Scholar]
  124. 124. 
    Wang Y, Bourouiba L. 2021. Growth and breakup of ligaments in unsteady fragmentation. J. Fluid Mech. 910:A39
    [Google Scholar]
  125. 125. 
    Wang Y, Dandekar R, Bustos N, Poulain S, Bourouiba L. 2018. Universal rim thickness in unsteady sheet fragmentation. Phys. Rev. Lett. 120:204503
    [Google Scholar]
  126. 126. 
    Ouyang W, Han J 2019. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration. PNAS 116:16240–49
    [Google Scholar]
  127. 127. 
    Mbareche H, Veillette M, Teertstra W, Kegel W, Bilodeau G et al. 2019. Recovery of fungal cells from air samples: a tale of loss and gain. Appl. Environ. Microbiol. 85:e02941
    [Google Scholar]
  128. 128. 
    van Doremalen N, Bushmaker T, Morris D, Holbrook M, Gamble A et al. 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382:1564–67
    [Google Scholar]
  129. 129. 
    Bean B, Moore B, Sterner B, Peterson L, Gerding D et al. 1982. Survival of influenza viruses on environmental surfaces. J. Infect. Dis. 146:47–51
    [Google Scholar]
  130. 130. 
    Hall C. 2007. The spread of influenza and other respiratory viruses: complexities and conjectures. Clin. Infect. Dis. 45:353–59
    [Google Scholar]
  131. 131. 
    Bloch A, Orenstein W, Ewing W, Spain W, Mallison G et al. 1985. Measles outbreak in a pediatric practice: airborne transmission in an office setting. Pediatrics 75:676–83
    [Google Scholar]
  132. 132. 
    Remington P, Hall W, Davis I, Herald A, Gunn R. 1985. Airborne transmission of measles in a physician's office. JAMA 253:1574–77
    [Google Scholar]
  133. 133. 
    Loudon R, Bumgarner L, Lacy J, Coffman G. 1969. Aerial transmission of mycobacteria. Am. Rev. Respir. Dis. 100:165–71
    [Google Scholar]
  134. 134. 
    Kormuth KA, Lin K, Prussin A, Vejerano EP, Tiwari AJ et al. 2018. Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity. J. Infect. Dis. 218:739–47
    [Google Scholar]
  135. 135. 
    Smither S, Eastaugh L, Findlay J, Lever M. 2020. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg. Microbes Infect. 9:1415–17
    [Google Scholar]
  136. 136. 
    Fears AC, Klimstra WB, Duprex P, Hartman A, Weaver SC et al. 2020. Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions. medRxiv 20063784. https://doi.org/10.1101/2020.04.13.20063784
    [Crossref]
  137. 137. 
    Chin A, Chu J, Perera M, Hui K, Yen HL et al. 2020. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 1:e10
    [Google Scholar]
  138. 138. 
    Matson M, Yinda C, Seifert S, Bushmaker T, Fischer R et al. 2020. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum. Emerg. Infect. Dis. 26:2276–78
    [Google Scholar]
  139. 139. 
    Riddell S, Goldie S, Hill A, Eagles D, Drew T 2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 17:145
    [Google Scholar]
  140. 140. 
    Chan KH, Sridhar S, Zhang R, Chu H, Fung AYF et al. 2020. Factors affecting stability and infectivity of SARS-CoV-2. J. Hosp. Infect. 106:226–31
    [Google Scholar]
  141. 141. 
    Sonkin LS. 1951. The role of particle size in experimental airborne infection. Am. J. Hyg. 53:337–54
    [Google Scholar]
  142. 142. 
    Majumder MS, Brownstein JS, Finkelstein SN, Larson RC, Bourouiba L. 2017. Nosocomial amplification of MERS-coronavirus in South Korea, 2015. Trans. R. Soc. Trop. Med. Hyg. 111:261–69
    [Google Scholar]
  143. 143. 
    Levy S, Alladina J, Hibbert K, Harris R, Bajwa E et al. 2016. High-flow oxygen therapy and other inhaled therapies in intensive care units. Lancet 387:1867–78
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-111820-025044
Loading
/content/journals/10.1146/annurev-bioeng-111820-025044
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error