1932

Abstract

Double electron–electron resonance (DEER) combined with site-directed spin labeling can provide distance distributions between selected protein residues to investigate protein structure and conformational heterogeneity. The utilization of the full quantitative information contained in DEER data requires effective protein and spin label modeling methods. Here, we review the application of DEER data to protein modeling. First, we discuss the significance of spin label modeling for accurate extraction of protein structural information and review the most popular label modeling methods. Next, we review several important aspects of protein modeling with DEER, including site selection, how DEER restraints are applied, common artifacts, and the unique potential of DEER data for modeling structural ensembles and conformational landscapes. Finally, we discuss common applications of protein modeling with DEER data and provide an outlook.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030524-013431
2025-05-06
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/biophys/54/1/annurev-biophys-030524-013431.html?itemId=/content/journals/10.1146/annurev-biophys-030524-013431&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdullin D. 2020.. AnisoDipFit: simulation and fitting of pulsed EPR dipolar spectroscopy data for anisotropic spin centers. . Appl. Magn. Reson. 51::72548
    [Crossref] [Google Scholar]
  2. 2.
    Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. . Nature 630:(8016):493500
    [Crossref] [Google Scholar]
  3. 3.
    Ackermann K, Chapman A, Bode BE. 2021.. A comparison of cysteine-conjugated nitroxide spin labels for pulse dipolar EPR spectroscopy. . Molecules 26:(24):7534
    [Crossref] [Google Scholar]
  4. 4.
    Ahdritz G, Bouatta N, Floristean C, Kadyan S, Xia Q, et al. 2024.. OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. . Nat. Methods 21:(8):151424
    [Crossref] [Google Scholar]
  5. 5.
    Ahmed A, Rippmann F, Barnickel G, Gohlke H. 2011.. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins. . J. Chem. Inf. Model. 51:(7):160422
    [Crossref] [Google Scholar]
  6. 6.
    Alexander N, Bortolus M, Al-Mestarihi A, Mchaourab H, Meiler J. 2008.. De novo high-resolution protein structure determination from sparse spin-labeling EPR data. . Structure 16:(2):18195
    [Crossref] [Google Scholar]
  7. 7.
    Alexander NS, Stein RA, Koteiche HA, Kaufmann KW, Mchaourab HS, Meiler J. 2013.. RosettaEPR: rotamer library for spin label structure and dynamics. . PLOS ONE 8:(9):e72851
    [Crossref] [Google Scholar]
  8. 8.
    Altenbach C, Flitsch SL, Khorana HG, Hubbell WL. 1989.. Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. . Biochemistry 28:(19):780612
    [Crossref] [Google Scholar]
  9. 9.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, et al. 2021.. Accurate prediction of protein structures and interactions using a three-track neural network. . Science 373:(6557):87176
    [Crossref] [Google Scholar]
  10. 10.
    Barozet A, Chacón P, Cortés J. 2021.. Current approaches to flexible loop modeling. . Curr. Res. Struct. Biol. 3::18791
    [Crossref] [Google Scholar]
  11. 11.
    Beasley KN, Sutch BT, Hatmal MM, Langen R, Qin PZ, Haworth IS. 2015.. Computer modeling of spin labels NASNOX, PRONOX, and ALLNOX. . Methods Enzymol. 563::56993
    [Crossref] [Google Scholar]
  12. 12.
    Ben-Ishay Y, Barak Y, Feintuch A, Ouari O, Pierro A, et al. 2024.. Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy. . Protein Sci. 33:(3):e4903
    [Crossref] [Google Scholar]
  13. 13.
    Bergdoll LA, Lerch MT, Patrick JW, Belardo K, Altenbach C, et al. 2018.. Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1. . PNAS 115:(2):E17279
    [Crossref] [Google Scholar]
  14. 14.
    Berliner LJ, Grunwald J, Hankovszky HO, Hideg K. 1982.. A novel reversible thiol-specific spin label: papain active site labeling and inhibition. . Anal. Biochem. 119:(2):45055
    [Crossref] [Google Scholar]
  15. 15.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. 2000.. The Protein Data Bank. . Nucleic Acids Res. 28:(1):23542
    [Crossref] [Google Scholar]
  16. 16.
    Bleicken S, Jeschke G, Stegmueller C, Salvador-Gallego R, García-Sáez AJ, Bordignon E. 2014.. Structural model of active Bax at the membrane. . Mol. Cell 56:(4):496505
    [Crossref] [Google Scholar]
  17. 17.
    Bogetti X, Ghosh S, Jarvi AG, Wang J, Saxena S. 2020.. Molecular dynamics simulations based on newly developed force field parameters for Cu2+ spin labels provide insights into double-histidine-based double electron-electron resonance. . J. Phys. Chem. B 124:(14):278897
    [Crossref] [Google Scholar]
  18. 18.
    Bogetti X, Hasanbasri Z, Hunter HR, Saxena S. 2022.. An optimal acquisition scheme for Q-band EPR distance measurements using Cu2+-based protein labels. . Phys. Chem. Chem. Phys. 24:(24):1472739
    [Crossref] [Google Scholar]
  19. 19.
    Bonomi M, Heller GT, Camilloni C, Vendruscolo M. 2017.. Principles of protein structural ensemble determination. . Curr. Opin. Struct. Biol. 42::10616
    [Crossref] [Google Scholar]
  20. 20.
    Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, et al. 2019.. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. . J. Magn. Reson. 308::106560
    [Crossref] [Google Scholar]
  21. 21.
    Brown BP, Stein RA, Meiler J, Mchaourab HS. 2024.. Approximating projections of conformational Boltzmann distributions with AlphaFold2 predictions: opportunities and limitations. . J. Chem. Theory Comput. 20:(3):143447
    [Crossref] [Google Scholar]
  22. 22.
    Casto J, Mandato A, Saxena S. 2021.. dHis-troying barriers: Deuteration provides a pathway to increase sensitivity and accessible distances for Cu2+ labels. . J. Phys. Chem. Lett. 12:(19):468185
    [Crossref] [Google Scholar]
  23. 23.
    Chang Y-N, Jaumann EA, Reichel K, Hartmann J, Oliver D, et al. 2019.. Structural basis for functional interactions in dimers of SLC26 transporters. . Nat. Commun. 10:(1):2032
    [Crossref] [Google Scholar]
  24. 24.
    Chiang Y-W, Borbat PP, Freed JH. 2005.. Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. . J. Magn. Reson. 177:(2):18496
    [Crossref] [Google Scholar]
  25. 25.
    Chiang Y-W, Borbat PP, Freed JH. 2005.. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. . J. Magn. Reson. 172:(2):27995
    [Crossref] [Google Scholar]
  26. 26.
    Cunningham TF, Putterman MR, Desai A, Horne WS, Saxena S. 2015.. The double-histidine Cu2+-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements. . Angew. Chem. Int. Ed. 127:(21):642832
    [Crossref] [Google Scholar]
  27. 27.
    Dastvan R, Fischer AW, Mishra S, Meiler J, Mchaourab HS. 2016.. Protonation-dependent conformational dynamics of the multidrug transporter EmrE. . PNAS 113:(5):122025
    [Crossref] [Google Scholar]
  28. 28.
    DeBerg HA, Bankston JR, Rosenbaum JC, Brzovic PS, Zagotta WN, Stoll S. 2015.. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b. . Structure 23:(4):73444
    [Crossref] [Google Scholar]
  29. 29.
    del Alamo D, DeSousa L, Nair RM, Rahman S, Meiler J, Mchaourab HS. 2022.. Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter. . PNAS 119:(34):e2206129119
    [Crossref] [Google Scholar]
  30. 30.
    del Alamo D, Govaerts C, Mchaourab HS. 2021.. AlphaFold2 predicts the inward-facing conformation of the multidrug transporter LmrP. . Proteins Struct. Funct. Bioinform. 89:(9):122628
    [Crossref] [Google Scholar]
  31. 31.
    del Alamo D, Jagessar KL, Meiler J, Mchaourab HS. 2021.. Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints. . PLOS Comput. Biol. 17:(6):e1009107
    [Crossref] [Google Scholar]
  32. 32.
    del Alamo D, Sala D, Mchaourab HS, Meiler J. 2022.. Sampling alternative conformational states of transporters and receptors with AlphaFold2. . eLife 11::e75751
    [Crossref] [Google Scholar]
  33. 33.
    del Alamo D, Tessmer MH, Stein RA, Feix JB, Mchaourab HS, Meiler J. 2019.. Rapid simulation of unprocessed DEER decay data for protein fold prediction. . Biophys. J. 2:(118):36675
    [Google Scholar]
  34. 34.
    Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA. 2016.. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. . Curr. Opin. Struct. Biol. 40::16385
    [Crossref] [Google Scholar]
  35. 35.
    Dimura M, Peulen T-O, Sanabria H, Rodnin D, Hemmen K, et al. 2020.. Automated and optimally FRET-assisted structural modeling. . Nat. Commun. 11:(1):5394
    [Crossref] [Google Scholar]
  36. 36.
    Edwards SJ, Moth CW, Kim S, Brandon S, Zhou Z, et al. 2014.. Automated structure refinement for a protein heterodimer complex using limited EPR spectroscopic data and a rigid-body docking algorithm: a three-dimensional model for an ankyrin-CDB3 complex. . J. Phys. Chem. B 118:(18):471726
    [Crossref] [Google Scholar]
  37. 37.
    Edwards TH, Stoll S. 2018.. Optimal Tikhonov regularization for DEER spectroscopy. . J. Magn. Reson. 288::5868
    [Crossref] [Google Scholar]
  38. 38.
    Elgeti M, Hubbell WL. 2021.. DEER analysis of GPCR conformational heterogeneity. . Biomolecules 11:(6):778
    [Crossref] [Google Scholar]
  39. 39.
    Eps NV, Caro LN, Morizumi T, Kusnetzow AK, Szczepek M, et al. 2017.. Conformational equilibria of light-activated rhodopsin in nanodiscs. . PNAS 114:(16):E326875
    [Google Scholar]
  40. 40.
    Evans EGB, Morgan JLW, DiMaio F, Zagotta WN, Stoll S. 2020.. Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. . PNAS 20:(117):1083947
    [Crossref] [Google Scholar]
  41. 41.
    Fábregas-Ibáñez L, Jeschke G, Stoll S. 2022.. Compactness regularization in the analysis of dipolar EPR spectroscopy data. . J. Magn. Reson. 339::107218
    [Crossref] [Google Scholar]
  42. 42.
    Fábregas-Ibáñez L, Tessmer MH, Jeschke G, Stoll S. 2022.. Dipolar pathways in dipolar EPR spectroscopy. . Phys. Chem. Chem. Phys. 24:(4):250420
    [Crossref] [Google Scholar]
  43. 43.
    Fehr N, Dietz C, Polyhach Y, von Hagens T, Jeschke G, Paulsen H. 2015.. Modeling of the N-terminal section and the lumenal loop of trimeric light harvesting complex II (LHCII) by using EPR. . J. Biol. Chem. 290:(43):2600720
    [Crossref] [Google Scholar]
  44. 44.
    Fielding AJ, Concilio MG, Heaven G, Hollas MA. 2014.. New developments in spin labels for pulsed dipolar EPR. . Molecules 19:(10):1699825
    [Crossref] [Google Scholar]
  45. 45.
    Fischer AW, Anderson DM, Tessmer MH, Frank DW, Feix JB, Meiler J. 2017.. Structure and dynamics of type III secretion effector protein ExoU as determined by SDSL-EPR spectroscopy in conjunction with de novo protein folding. . ACS Omega 2:(6):297784
    [Crossref] [Google Scholar]
  46. 46.
    Fleissner MR, Bridges MD, Brooks EK, Cascio D, Kálai T, et al. 2011.. Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. . PNAS 108:(39):1624146
    [Crossref] [Google Scholar]
  47. 47.
    Georgieva ER, Roy AS, Grigoryants VM, Borbat PP, Earle KA, et al. 2012.. Effect of freezing conditions on distances and their distributions derived from double electron electron resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. . J. Magn. Reson. 216::6977
    [Crossref] [Google Scholar]
  48. 48.
    Ghosh S, Saxena S, Jeschke G. 2018.. Rotamer modelling of Cu(II) spin labels based on the double-histidine motif. . Appl. Magn. Reson. 49:(11):128198
    [Crossref] [Google Scholar]
  49. 49.
    Glaenzer J, Peter MF, Thomas GH, Hagelueken G. 2017.. PELDOR spectroscopy reveals two defined states of a sialic acid TRAP transporter SBP in solution. . Biophys. J. 112:(1):10920
    [Crossref] [Google Scholar]
  50. 50.
    Göddeke H, Timachi HM, Hutter CA, Galazzo L, Seeger MA, et al. 2018.. Atomistic mechanism of large-scale conformational transition in a heterodimeric ABC exporter. . J. Am. Chem. Soc. 140:(13):454351
    [Crossref] [Google Scholar]
  51. 51.
    Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, et al. 2003.. Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. . J. Mol. Biol. 331:(1):28199
    [Crossref] [Google Scholar]
  52. 52.
    Graziadei A, Rappsilber J. 2022.. Leveraging crosslinking mass spectrometry in structural and cell biology. . Structure 30:(1):3754
    [Crossref] [Google Scholar]
  53. 53.
    Hagelueken G, Abdullin D, Schiemann O. 2015.. mtsslSuite: probing biomolecular conformation by spin-labeling studies. . Methods Enzymol. 563::595622
    [Crossref] [Google Scholar]
  54. 54.
    Hagelueken G, Abdullin D, Ward R, Schiemann O. 2013.. mtsslSuite: in silico spin labelling, trilateration and distance-constrained rigid body docking in PyMOL. . Mol. Phys. 111:(18–19):275766
    [Crossref] [Google Scholar]
  55. 55.
    Hagelueken G, Ward R, Naismith JH, Schiemann O. 2012.. MtsslWizard: in silico spin-labeling and generation of distance distributions in PyMOL. . Appl. Magn. Reson. 42:(3):37791
    [Crossref] [Google Scholar]
  56. 56.
    Hammond CM, Owen-Hughes T, Norman DG. 2014.. Modelling multi-protein complexes using PELDOR distance measurements for rigid body minimisation experiments using XPLOR-NIH. . Methods 70:(2–3):13953
    [Crossref] [Google Scholar]
  57. 57.
    Hanson SM, Dawson ES, Francis DJ, Eps N, Klug CS, et al. 2008.. A model for the solution structure of the rod arrestin tetramer. . Proteins 16:(6):92434
    [Google Scholar]
  58. 58.
    Hasanbasri Z, Tessmer MH, Stoll S, Saxena S. 2024.. Modeling of Cu(II)-based protein spin labels using rotamer libraries. . Phys. Chem. Chem. Phys. 26:(8):680616
    [Crossref] [Google Scholar]
  59. 59.
    Hatmal MM, Li Y, Hegde BG, Hegde PB, Jao CC, et al. 2012.. Computer modeling of nitroxide spin labels on proteins. . Biopolymers 97:(1):3544
    [Crossref] [Google Scholar]
  60. 60.
    Hays JM, Cafiso DS, Kasson PM. 2019.. Hybrid refinement of heterogeneous conformational ensembles using spectroscopic data. . J. Phys. Chem. Lett. 10:(12):341014
    [Crossref] [Google Scholar]
  61. 61.
    Hilger D, Jung H, Padan E, Wegener C, Vogel K-P, et al. 2005.. Assessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H+ antiporter of E. coli. . Biophys J. 89:(2):132838
    [Crossref] [Google Scholar]
  62. 62.
    Hilger D, Polyhach Y, Padan E, Jung H, Jeschke G. 2007.. High-resolution structure of a Na+/H+ antiporter dimer obtained by pulsed electron paramagnetic resonance distance measurements. . Biophys. J. 93:(10):367583
    [Crossref] [Google Scholar]
  63. 63.
    Hirst SJ, Alexander N, Mchaourab HS, Meiler J. 2011.. RosettaEPR: an integrated tool for protein structure determination from sparse EPR data. . J. Struct. Biol. 173:(3):50614
    [Crossref] [Google Scholar]
  64. 64.
    Hubbell WL, Cafiso DS, Altenbach C. 2000.. Identifying conformational changes with site-directed spin labeling. . Nat. Struct. Mol. Biol. 7:(9):73539
    [Crossref] [Google Scholar]
  65. 65.
    Hustedt EJ, Marinelli F, Stein RA, Faraldo-Gómez JD, Mchaourab HS. 2018.. Confidence analysis of DEER data and its structural interpretation with ensemble-biased metadynamics. . Biophys. J. 115:(7):120016
    [Crossref] [Google Scholar]
  66. 66.
    Hustedt EJ, Stein RA, Mchaourab HS. 2021.. Protein functional dynamics from the rigorous global analysis of DEER data: conditions, components, and conformations. . J. Gen. Physiol. 153:(11):e201711954
    [Crossref] [Google Scholar]
  67. 67.
    Hustedt EJ, Stein RA, Sethaphong L, Brandon S, Zhou Z, Desensi SC. 2005.. Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model. . Biophys. J. 90:(1):34056
    [Crossref] [Google Scholar]
  68. 68.
    Ibáñez L, Jeschke G. 2019.. General regularization framework for DEER spectroscopy. . J. Magn. Reson. 300::2840
    [Crossref] [Google Scholar]
  69. 69.
    Ibáñez LF, Jeschke G, Stoll S. 2020.. DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. . Magn. Reson. 1:(2):20924
    [Crossref] [Google Scholar]
  70. 70.
    Islam SM, Roux B. 2015.. Simulating the distance distribution between spin-labels attached to proteins. . J. Phys. Chem. B 119:(10):390111
    [Crossref] [Google Scholar]
  71. 71.
    Jacques DA, Trewhella J. 2010.. Small-angle scattering for structural biology—expanding the frontier while avoiding the pitfalls. . Protein Sci. 19:(4):64257
    [Crossref] [Google Scholar]
  72. 72.
    Jagessar KL, Claxton DP, Stein RA, Mchaourab HS. 2020.. Sequence and structural determinants of ligand-dependent alternating access of a MATE transporter. . PNAS 117:(9):473240
    [Crossref] [Google Scholar]
  73. 73.
    Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, et al. 2023.. Ultrafast bioorthogonal spin-labeling and distance measurements in mammalian cells using small, genetically encoded tetrazine amino acids. . J. Am. Chem. Soc. 145:(27):1460820
    [Crossref] [Google Scholar]
  74. 74.
    Jeschke G. 2012.. Characterization of protein conformational changes with sparse spin-label distance constraints. . J. Chem. Theory Comput. 8:(10):385463
    [Crossref] [Google Scholar]
  75. 75.
    Jeschke G. 2012.. DEER distance measurements on proteins. . Annu. Rev. Phys. Chem. 63::41946
    [Crossref] [Google Scholar]
  76. 76.
    Jeschke G. 2016.. Ensemble models of proteins and protein domains based on distance distribution restraints. . Proteins 84:(4):54460
    [Crossref] [Google Scholar]
  77. 77.
    Jeschke G. 2018.. The contribution of modern EPR to structural biology. . Emerg. Top. Life Sci. 2:(1):918
    [Crossref] [Google Scholar]
  78. 78.
    Jeschke G. 2018.. MMM: a toolbox for integrative structure modeling. . Protein Sci. 27:(1):7685
    [Crossref] [Google Scholar]
  79. 79.
    Jeschke G. 2020.. MMM: integrative ensemble modelling and ensemble analysis. . Protein Sci. 30:(1):12535
    [Crossref] [Google Scholar]
  80. 80.
    Jeschke G. 2024.. Protein ensemble modeling and analysis with MMMx. . Protein Sci. 33:(3):e4906
    [Crossref] [Google Scholar]
  81. 81.
    Jeschke G, Esteban-Hofer L. 2022.. Integrative ensemble modeling of proteins and their complexes with distance distribution restraints. . Methods Enzymol. 666::14569
    [Crossref] [Google Scholar]
  82. 82.
    Jeschke G, Koch A, Jonas U, Godt A. 2002.. Direct conversion of EPR dipolar time evolution data to distance distributions. . J. Magn. Reson. 155:(1):7282
    [Crossref] [Google Scholar]
  83. 83.
    Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. 2016.. Selective high-resolution detection of membrane protein–ligand interaction in native membranes using trityl–nitroxide PELDOR. . Angew. Chem. Int. Ed. 55:(38):1153842
    [Crossref] [Google Scholar]
  84. 84.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  85. 85.
    Kaczmarski JA, Mahawaththa MC, Feintuch A, Clifton BE, Adams LA, et al. 2020.. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. . Nat. Commun. 11:(1):5945
    [Crossref] [Google Scholar]
  86. 86.
    Kao T-Y, Chiang Y-W. 2023.. DEERefiner-assisted structural refinement using pulsed dipolar spectroscopy: a study on multidrug transporter LmrP. . Phys. Chem. Chem. Phys. 25:(36):2450817
    [Crossref] [Google Scholar]
  87. 87.
    Kazmier K, Alexander NS, Meiler J, McHaourab HS. 2011.. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination. . J. Struct. Biol. 173:(3):54957
    [Crossref] [Google Scholar]
  88. 88.
    Kazmier K, Sharma S, Quick M, Islam SM, Roux B, et al. 2014.. Conformational dynamics of ligand-dependent alternating access in LeuT. . Nat. Struct. Mol. Biol. 21:(5):47279
    [Crossref] [Google Scholar]
  89. 89.
    Keeley J, Choudhury T, Galazzo L, Bordignon E, Feintuch A, et al. 2022.. Neural networks in pulsed dipolar spectroscopy: a practical guide. . J. Magn. Reson. 338::107186
    [Crossref] [Google Scholar]
  90. 90.
    Kikhney AG, Borges CR, Molodenskiy DS, Jeffries CM, Svergun DI. 2020.. SASBDB: towards an automatically curated and validated repository for biological scattering data. . Protein Sci. 29:(1):6675
    [Crossref] [Google Scholar]
  91. 91.
    Kim M, Vishnivetskiy SA, Eps NV, Alexander NS, Cleghorn WM, et al. 2012.. Conformation of receptor-bound visual arrestin. . PNAS 109:(45):1840712
    [Crossref] [Google Scholar]
  92. 92.
    Kim M, Xu Q, Murray D, Cafiso DS. 2008.. Solutes alter the conformation of the ligand binding loops in outer membrane transporters. . Biochemistry 47:(2):67079
    [Crossref] [Google Scholar]
  93. 93.
    Kim S, Brandon S, Zhou Z, Cobb CE, Edwards SJ, et al. 2011.. Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13–24. . J. Biol. Chem. 286:(23):2074657
    [Crossref] [Google Scholar]
  94. 94.
    Klose D, Holla A, Gmeiner C, Nettels D, Ritsch I, et al. 2021.. Resolving distance variations by single-molecule FRET and EPR spectroscopy using rotamer libraries. . Biophys. J. 120:(21):484258
    [Crossref] [Google Scholar]
  95. 95.
    Krug U, Alexander NS, Stein RA, Keim A, Mchaourab HS, et al. 2016.. Characterization of the domain orientations of E. coli 5′-nucleotidase by fitting an ensemble of conformers to DEER distance distributions. . Structure 24:(1):4356
    [Crossref] [Google Scholar]
  96. 96.
    Kubatova N, Schmidt T, Schwieters CD, Clore GM. 2023.. Quantitative analysis of sterol-modulated monomer-dimer equilibrium of the β1-adrenergic receptor by DEER spectroscopy. . PNAS 120:(7):e2221036120
    [Crossref] [Google Scholar]
  97. 97.
    Kugele A, Uzun B, Müller L, Schott-Verdugo S, Gohlke H, et al. 2022.. Mapping the helix arrangement of the reconstituted ETR1 ethylene receptor transmembrane domain by EPR spectroscopy. . RSC Adv. 12:(12):735256
    [Crossref] [Google Scholar]
  98. 98.
    Laio A, Parrinello M. 2002.. Escaping free-energy minima. . PNAS 99:(20):1256266
    [Crossref] [Google Scholar]
  99. 99.
    Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. 2011.. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. . Methods Enzymol. 487::54574
    [Crossref] [Google Scholar]
  100. 100.
    Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, et al. 2010.. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. . Mol. Cell. Proteom. 9:(8):163449
    [Crossref] [Google Scholar]
  101. 101.
    Lerch MT, Matt RA, Masureel M, Elgeti M, Kumar KK, et al. 2020.. Viewing rare conformations of the β2 adrenergic receptor with pressure-resolved DEER spectroscopy. . PNAS 117:(50):3182431
    [Crossref] [Google Scholar]
  102. 102.
    Lerch MT, Yang Z, Brooks EK, Hubbell WL. 2014.. Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron-electron resonance. . PNAS 111:(13):E120110
    [Crossref] [Google Scholar]
  103. 103.
    Lillington J, Lovett JE, Johnson S, Roversi P, Timmel CR, Lea SM. 2011.. Shigella flexneri Spa15 crystal structure verified in solution by double electron electron resonance. . J. Mol. Biol. 405:(2):42735
    [Crossref] [Google Scholar]
  104. 104.
    Lin Z, Akin H, Rao R, Hie B, Zhu Z, et al. 2023.. Evolutionary-scale prediction of atomic-level protein structure with a language model. . Science 379:(6637):112330
    [Crossref] [Google Scholar]
  105. 105.
    Lovett JE, Abbott R, Roversi P, Johnson S, Caesar J, et al. 2013.. Investigating the structure of the factor B vWF-A domain/CD55 protein–protein complex using DEER spectroscopy: successes and pitfalls. . Mol. Phys. 111:(18–19):286572
    [Crossref] [Google Scholar]
  106. 106.
    Marinelli F, Faraldo-Gómez JD. 2015.. Ensemble-biased metadynamics: a molecular simulation method to sample experimental distributions. . Biophys. J. 108:(12):277982
    [Crossref] [Google Scholar]
  107. 107.
    Marinelli F, Fiorin G. 2019.. Structural characterization of biomolecules through atomistic simulations guided by DEER measurements. . Structure 27:(2):35970.e12
    [Crossref] [Google Scholar]
  108. 108.
    Martens C, Stein RA, Masureel M, Roth A, Mishra S, et al. 2016.. Lipids modulate the conformational dynamics of a secondary multidrug transporter. . Nat. Struct. Mol. Biol. 23:(8):74451
    [Crossref] [Google Scholar]
  109. 109.
    Martin PD, Svensson B, Thomas DD, Stoll S. 2019.. Trajectory-based simulation of EPR spectra: models of rotational motion for spin labels on proteins. . J. Phys. Chem. B 123:(48):1013141
    [Crossref] [Google Scholar]
  110. 110.
    Marzolf DR, Seffernick JT, Lindert S. 2021.. Protein structure prediction from NMR hydrogen-deuterium exchange data. . J. Chem. Theory Comput. 17:(4):261929
    [Crossref] [Google Scholar]
  111. 111.
    Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL. 1996.. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. . Biochemistry 35:(24):7692704
    [Crossref] [Google Scholar]
  112. 112.
    Mchaourab HS, Steed PR, Kazmier K. 2011.. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. . Structure 19:(11):154961
    [Crossref] [Google Scholar]
  113. 113.
    Ozohanics O, Ambrus A. 2020.. Hydrogen-deuterium exchange mass spectrometry: a novel structural biology approach to structure, dynamics and interactions of proteins and their complexes. . Life 10:(11):286
    [Crossref] [Google Scholar]
  114. 114.
    Pannier M, Veit S, Godt A, Jeschke G, Spiess HW. 2000.. Dead-time free measurement of dipole–dipole interactions between electron spins. . J. Magn. Reson. 142:(2):33140
    [Crossref] [Google Scholar]
  115. 115.
    Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. 2016.. The role of protein loops and linkers in conformational dynamics and allostery. . Chem. Rev. 116:(11):6391423
    [Crossref] [Google Scholar]
  116. 116.
    Peter MF, Gebhardt C, Mächtel R, Muñoz GGM, Glaenzer J, et al. 2022.. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. . Nat. Commun. 13:(1):4396
    [Crossref] [Google Scholar]
  117. 117.
    Pitera JW, Chodera JD. 2012.. On the use of experimental observations to bias simulated ensembles. . J. Chem. Theory Comput. 8:(10):344551
    [Crossref] [Google Scholar]
  118. 118.
    Polyhach Y, Bordignon E, Jeschke G. 2010.. Rotamer libraries of spin labelled cysteines for protein studies. . Phys. Chem. Chem. Phys. 13:(6):235666
    [Crossref] [Google Scholar]
  119. 119.
    Puljung MC, DeBerg HA, Zagotta WN, Stoll S. 2014.. Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels. . PNAS 111:(27):981621
    [Crossref] [Google Scholar]
  120. 120.
    Qi Y, Lee J, Cheng X, Shen R, Islam SM, et al. 2020.. CHARMM-GUI DEER facilitator for spin-pair distance distribution calculations and preparation of restrained-ensemble molecular dynamics simulations. . J. Comput. Chem. 41:(5):41520
    [Crossref] [Google Scholar]
  121. 121.
    Raba M, Dunkel S, Hilger D, Lipiszko K, Polyhach Y, et al. 2014.. Extracellular loop 4 of the proline transporter PutP controls the periplasmic entrance to ligand binding sites. . Structure 22:(5):76980
    [Crossref] [Google Scholar]
  122. 122.
    Reichel K, Stelzl LS, Köfinger J, Hummer G. 2018.. Precision DEER distances from spin-label ensemble refinement. . J. Phys. Chem. Lett. 9:(19):574852
    [Crossref] [Google Scholar]
  123. 123.
    Rein S, Lewe P, Andrade SL, Kacprzak S, Weber S. 2018.. Global analysis of complex PELDOR time traces. . J. Magn. Reson. 295::1726
    [Crossref] [Google Scholar]
  124. 124.
    Riffle M, Jaschob D, Zelter A, Davis TN. 2016.. ProXL (protein cross-linking database): a platform for analysis, visualization, and sharing of protein cross-linking mass spectrometry data. . J. Proteome Res. 15:(8):286370
    [Crossref] [Google Scholar]
  125. 125.
    Ritsch I, Esteban-Hofer L, Lehmann E, Emmanouilidis L, Yulikov M, et al. 2021.. Characterization of weak protein domain structure by spin-label distance distributions. . Front. Mol. Biosci. 8::636599
    [Crossref] [Google Scholar]
  126. 126.
    Roux B, Islam SM. 2013.. Restrained-ensemble molecular dynamics simulations based on distance histograms from double electron-electron resonance spectroscopy. . J. Phys. Chem. B 117:(17):473339
    [Crossref] [Google Scholar]
  127. 127.
    Sala D, del Alamo D, Mchaourab HS, Meiler J. 2022.. Modeling of protein conformational changes with Rosetta guided by limited experimental data. . Structure 30:(8):115768.e3
    [Crossref] [Google Scholar]
  128. 128.
    Sala D, Engelberger F, Mchaourab HS, Meiler J. 2023.. Modeling conformational states of proteins with AlphaFold. . Curr. Opin. Struct. Biol. 81::102645
    [Crossref] [Google Scholar]
  129. 129.
    Sarver JL, Townsend JE, Rajapakse G, Jen-Jacobson L, Saxena S. 2012.. Simulating the dynamics and orientations of spin-labeled side chains in a protein–DNA complex. . J. Phys. Chem. B 116:(13):402433
    [Crossref] [Google Scholar]
  130. 130.
    Sasmal S, Lincoff J, Head-Gordon T. 2017.. Effect of a paramagnetic spin label on the intrinsically disordered peptide ensemble of amyloid-β. . Biophys. J. 113:(5):100211
    [Crossref] [Google Scholar]
  131. 131.
    Schiemann O, Heubach CA, Abdullin D, Ackermann K, Azarkh M, et al. 2021.. Benchmark test and guidelines for DEER/PELDOR experiments on nitroxide-labeled biomolecules. . J. Am. Chem. Soc. 143:(43):1787590
    [Crossref] [Google Scholar]
  132. 132.
    Schmidt T, Wälti MA, Baber JL, Hustedt EJ, Clore GM. 2016.. Long distance measurements up to 160 Å in the GroEL tetradecamer using Q-band DEER EPR spectroscopy. . Angew. Chem. Int. Ed. 55:(51):159059
    [Crossref] [Google Scholar]
  133. 133.
    Schmidt T, Wang D, Jeon J, Schwieters CD, Clore GM. 2022.. Quantitative agreement between conformational substates of holo calcium-loaded calmodulin detected by double electron-electron resonance EPR and predicted by molecular dynamics simulations. . J. Am. Chem. Soc. 144:(27):1204351
    [Crossref] [Google Scholar]
  134. 134.
    Schwieters CD, Bermejo GA, Clore GM. 2018.. Xplor-NIH for molecular structure determination from NMR and other data sources. . Protein Sci. 27:(1):2640
    [Crossref] [Google Scholar]
  135. 135.
    Sen KI, Logan TM, Fajer PG. 2007.. Protein dynamics and monomer–monomer interactions in AntR activation by electron paramagnetic resonance and double electron–electron resonance. . Biochemistry 46:(41):1163949
    [Crossref] [Google Scholar]
  136. 136.
    Sezer D, Freed JH, Roux B. 2008.. Parametrization, molecular dynamics simulation, and calculation of electron spin resonance spectra of a nitroxide spin label on a polyalanine α-helix. . J. Phys. Chem. B 112:(18):575567
    [Crossref] [Google Scholar]
  137. 137.
    Shen R, Han W, Fiorin G, Islam SM, Schulten K, Roux B. 2015.. Structural refinement of proteins by restrained molecular dynamics simulations with non-interacting molecular fragments. . PLOS Comput. Biol. 11:(10):e1004368
    [Crossref] [Google Scholar]
  138. 138.
    Smith JA, Edwards SJ, Moth CW, Lybrand TP. 2013.. TagDock: an efficient rigid body docking algorithm for oligomeric protein complex model construction and experiment planning. . Biochemistry 52:(33):557784
    [Crossref] [Google Scholar]
  139. 139.
    Song Y, DiMaio F, Wang R, Kim D, Miles C, et al. 2013.. High-resolution comparative modeling with RosettaCM. . Structure 21:(10):173542
    [Crossref] [Google Scholar]
  140. 140.
    Spicher S, Abdullin D, Grimme S, Schiemann O. 2020.. Modeling of spin-spin distance distributions for nitroxide labeled biomacromolecules. . Phys. Chem. Chem. Phys. 22:(42):2428290
    [Crossref] [Google Scholar]
  141. 141.
    Spindler PE, Schöps P, Kallies W, Glaser SJ, Prisner TF. 2017.. Perspectives of shaped pulses for EPR spectroscopy. . J. Magn. Reson. 280::3045
    [Crossref] [Google Scholar]
  142. 142.
    Srivastava M, Freed JH. 2017.. Singular value decomposition method to determine distance distributions in pulsed dipolar electron spin resonance. . J. Phys. Chem. Lett. 8:(22):564855
    [Crossref] [Google Scholar]
  143. 143.
    Stadtmueller BM, Bridges MD, Dam K-MM, Lerch MT, Huey-Tubman KE, et al. 2018.. DEER spectroscopy measurements reveal multiple conformations of HIV-1 SOSIP envelopes that show similarities with envelopes on native virions. . Immunity 49:(2):23546.e4
    [Crossref] [Google Scholar]
  144. 144.
    Wu T, Stein RA, Kao T, Brown B, Mchaourab HS. 2024.. Modeling protein conformations by guiding AlphaFold2 with distance distributions. Application to double electron electron resonance (DEER) spectroscopy. . bioRxiv 2024.10.30.621127. https://doi.org/10.1101/2024.10.30.621127
    [Google Scholar]
  145. 145.
    Stein RA, Mchaourab HS. 2022.. SPEACH_AF: sampling protein ensembles and conformational heterogeneity with Alphafold2. . PLOS Comput. Biol. 18:(8):e1010483
    [Crossref] [Google Scholar]
  146. 146.
    Stevens MA, McKay JE, Robinson JLS, Mkami HE, Smith GM, Norman DG. 2015.. The use of the Rx spin label in orientation measurement on proteins, by EPR. . Phys. Chem. Chem. Phys. 18:(8):5799806
    [Crossref] [Google Scholar]
  147. 147.
    Sugita Y, Okamoto Y. 1999.. Replica-exchange molecular dynamics method for protein folding. . Chem. Phys. Lett. 314:(1–2):14151
    [Crossref] [Google Scholar]
  148. 148.
    Sweger SR, Pribitzer S, Stoll S. 2020.. Bayesian probabilistic analysis of DEER spectroscopy data using parametric distance distribution models. . J. Phys. Chem. 124:(30):6193202
    [Crossref] [Google Scholar]
  149. 149.
    Terwilliger TC, Liebschner D, Croll TI, Williams CJ, McCoy AJ, et al. 2024.. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. . Nat. Methods 21:(1):11016
    [Crossref] [Google Scholar]
  150. 150.
    Tesei G, Martins JM, Kunze MBA, Wang Y, Crehuet R, Lindorff-Larsen K. 2021.. DEER-PREdict: software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles. . PLOS Comput. Biol. 17:(1):e1008551
    [Crossref] [Google Scholar]
  151. 151.
    Tessmer MH, Anderson DM, Pickrum AM, Riegert MO, Moretti R, et al. 2018.. Identification of a ubiquitin-binding interface using Rosetta and DEER. . PNAS 115:(3):52530
    [Crossref] [Google Scholar]
  152. 152.
    Tessmer MH, Canarie ER, Stoll S. 2022.. Comparative evaluation of spin-label modeling methods for protein structural studies. . Biophys. J. 121:(18):350819
    [Crossref] [Google Scholar]
  153. 153.
    Tessmer MH, DeCero SA, del Alamo D, Riegert MO, Meiler J, et al. 2020.. Characterization of the ExoU activation mechanism using EPR and integrative modeling. . Sci. Rep. 10:(1):19700
    [Crossref] [Google Scholar]
  154. 154.
    Tessmer MH, Stoll S. 2023.. A rotamer library approach to modeling side chain ensembles of the bifunctional spin label RX. . Appl. Magn. Reson. 55::12740
    [Crossref] [Google Scholar]
  155. 155.
    Tessmer MH, Stoll S. 2023.. chiLife: an open-source Python package for in silico spin labeling and integrative protein modeling. . PLOS Comput. Biol. 19:(3):e1010834
    [Crossref] [Google Scholar]
  156. 156.
    Teucher M, Bordignon E. 2018.. Improved signal fidelity in 4-pulse DEER with Gaussian pulses. . J. Magn. Reson. 296::10311
    [Crossref] [Google Scholar]
  157. 157.
    Timachi MH, Hutter CA, Hohl M, Assafa T, Böhm S, et al. 2017.. Exploring conformational equilibria of a heterodimeric ABC transporter. . eLife 6::e20236
    [Crossref] [Google Scholar]
  158. 158.
    Todd AP, Cong J, Levinthal F, Levinthal C, Hubell WL. 1989.. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. . Proteins 6:(3):294305
    [Crossref] [Google Scholar]
  159. 159.
    Tschaggelar R, Breitgoff FD, Oberhänsli O, Qi M, Godt A, Jeschke G. 2017.. High-bandwidth Q-band EPR resonators. . Appl. Magn. Reson. 48:(11–12):1273300
    [Crossref] [Google Scholar]
  160. 160.
    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, et al. 2008.. BioMagResBank. . Nucleic Acids Res. 36::D4028
    [Crossref] [Google Scholar]
  161. 161.
    Ward R, Bowman A, Sozudogru E, El-Mkami H, Owen-Hughes T, Norman DG. 2010.. EPR distance measurements in deuterated proteins. . J. Magn. Reson. 207:(1):16467
    [Crossref] [Google Scholar]
  162. 162.
    Ward R, Zoltner M, Beer L, Mkami HE, Henderson IR, et al. 2009.. The orientation of a tandem POTRA domain pair, of the beta-barrel assembly protein BamA, determined by PELDOR spectroscopy. . Structure 17:(9):118794
    [Crossref] [Google Scholar]
  163. 163.
    Warshaviak DT, Khramtsov VV, Cascio D, Altenbach C, Hubbell WL. 2013.. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins. . J. Magn. Reson. 232::5361
    [Crossref] [Google Scholar]
  164. 164.
    Wayment-Steele HK, Ojoawo A, Otten R, Apitz JM, Pitsawong W, et al. 2024.. Predicting multiple conformations via sequence clustering and AlphaFold2. . Nature 625:(7996):83239
    [Crossref] [Google Scholar]
  165. 165.
    Worswick SG, Spencer JA, Jeschke G, Kuprov I. 2018.. Deep neural network processing of DEER data. . Sci. Adv. 4:(8):eaat5218
    [Crossref] [Google Scholar]
  166. 166.
    Yang Y, Pan B-B, Tan X, Yang F, Liu Y, et al. 2020.. In-cell trityl-trityl distance measurements on proteins. . J. Phys. Chem. Lett. 11:(3):114147
    [Crossref] [Google Scholar]
  167. 167.
    Yang Y, Yang F, Gong Y-J, Bahrenberg T, Feintuch A, et al. 2018.. High sensitivity in-cell EPR distance measurements on proteins using an optimized Gd(III) spin label. . J. Phys. Chem. Lett. 9:(20):611923
    [Crossref] [Google Scholar]
  168. 168.
    Zheng W, Brooks BR. 2005.. Normal-modes-based prediction of protein conformational changes guided by distance constraints. . Biophys. J. 88:(5):310917
    [Crossref] [Google Scholar]
  169. 169.
    Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS. 2014.. Identification of receptor binding-induced conformational changes in non-visual arrestins. . J. Biol. Chem. 289:(30):2099192
    [Crossref] [Google Scholar]
  170. 170.
    Zoltner M, Norman DG, Fyfe PK, Mkami HE, Palmer T, Hunter WN. 2013.. The architecture of EssB, an integral membrane component of the type VII secretion system. . Structure 21:(4):595603
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030524-013431
Loading
/content/journals/10.1146/annurev-biophys-030524-013431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error